

Food Safety Applications Notebook Agricultural Chemical Contaminants

Table of Contents

Index of Analytes and Application Notes	3
Introduction to Food Safety	4
UltiMate 3000 UHPLC ⁺ Systems	5
IC and RFIC Systems	6
MS Instruments	7
Chromeleon 7 Chromatography Data System Software	8
Process Analytical Systems and Software	9
Automated Sample Preparation	10–11
Analysis of Agricultural Chemical Contaminants	12
Accelerated Solvent Extraction (ASE) of Pesticide Residues in Food Products	13
Determination of Pesticides in Large-Volume Food Samples Using Accelerated Solvent Extraction (ASE)	16
Rapid Determination of Organochlorine Pesticides in Animal Feed Using Accelerated Solvent Extraction (ASE)	21
Extraction of Drugs from Animal Feeds Using Accelerated Solvent Extraction (ASE)	24
Rapid Determination of Sulfonamide Residues in Animal Tissue and Infant Food Containing Animal Products Using Accelerated Solvent Extraction (ASE)	27
Faster Yet Sensitive Determination of <i>N</i> -Methylcarbamates in Rice, Potato, and Corn by HPLC	30
Column Selection Guide	40

Index of Analytes and Application Notes

ANALYTES

N-Methylcarbamates.	
Pesticides	
Veterinary drugs	

APPLICATION NOTE INDEX

Application Notes by Number	
Application Note 272	
Application Note 326	
Application Note 332	
Application Note 343	
Application Note 349	
Application Note 353	

Introduction to Food Safety

Food contamination stories in the news media have raised awareness of the fact that we live with a global food supply chain, and food safety is increasingly becoming an important concern. All types of fruits, vegetables, seafood, and meat can be purchased year round independent of the local growing season. For example, in many countries, well-stocked grocery stores carry cantaloupes from Guatemala, cucumbers from Mexico, shrimp from Vietnam, and fish from China. With fruit, vegetables, seafood, and meat traveling thousands of miles to reach far-flung destinations, and with poor or no knowledge of the agricultural practices, the need for food testing is increasingly important.

Thermo Fisher Scientific understands the demands of food safety related testing. Our separation and detection technologies, combined with experienced applications competence, and our best suited chemistries provide solutions for the analysis of inorganic ions, small drug molecules, pesticides to large components, such as polysaccharides. Your laboratory can now conduct reliable, accurate, and fast testing of food. This notebook contains a wide range of food safety related application notes that will help address your food safety issues.

Thermo Scientific and Dionex Integrated Systems

Dionex Products are now a part of the Thermo Scientific brand, creating exciting new possibilities for scientific analysis. Now, leading capabilities in liquid chromatography (LC), ion chromatography (IC), and sample preparation are together in one portfolio with those in mass spectrometry (MS). Combining Dionex's leadership in chromatography with Thermo Scientific's leadership position in mass spec, a new range of powerful and simplified workflow solutions now becomes possible.

For more information on how the new lineup of Thermo Scientific products can expand your capabilities and provide the tools for new possibilities, choose one of our integrated solutions:

- Ion Chromatography and Mass Spectrometry
- Liquid Chromatography and Mass Spectrometry
- Sample Preparation and Mass Spectrometry

UltiMate 3000 UHPLC⁺ Systems

Best-in-class HPLC systems for all your chromatography needs

Thermo Scientific Dionex UltiMate 3000 UHPLC⁺ Systems provide excellent chromatographic performance while maintaining easy, reliable operation. The basic and standard analytical systems offer ultra HPLC (UHPLC) compatibility across all modules, ensuring maximum performance for all users and all laboratories. Covering flow rates from 20 nL/min to 10 mL/min with an industry-leading range of pumping, sampling, and detection modules, UltiMate[™] 3000 UHPLC⁺ Systems provide solutions from nano to semipreparative, from conventional LC to UHPLC.

- Superior chromatographic performance
- UHPLC design philosophy throughout nano, standard analytical, and rapid separation liquid chromotography (RSLC)
- 620 bar (9,000 psi) and 100 Hz data rate set a new benchmark for basic and standard analytical systems
- RSLC systems go up to 1000 bar and data rates up to 200 Hz
- ×2 Dual System for increased productivity solutions in routine analysis
- Fully UHPLC compatible advanced chromatographic techniques

• Thermo Scientific Dionex Viper and nanoViper–the first truly universal, fingertight fitting system even at UHPLC pressures

Thermo Fisher Scientific is the only HPLC company uniquely focused on making UHPLC technology available to all users, all laboratories, and for all analytes.

Rapid Separation LC Systems: The extended flowpressure footprint of the RSLC system provides the performance for ultrafast high-resolution and conventional LC applications.

RSLCnano Systems: The Rapid Separation nano LC System (RSLCnano) provides the power for highresolution and fast chromatography in nano, capillary, and micro LC.

Standard LC Systems: Choose from a wide variety of standard LC systems for demanding LC applications at nano, capillary, micro, analytical, and semipreparative flow rates.

Basic LC Systems: UltiMate 3000 Basic LC Systems are UHPLC compatible and provide reliable, high-performance solutions to fit your bench space and your budget.

Thermo

IC and RFIC Systems

A complete range of ion chromatography solutions for all customer performance and price requirements

For ion analysis, nothing compares to a Thermo Fisher Scientific ion chromatography system. Whether you have just a few samples or a heavy workload, whether your analytical task is simple or challenging, we have a solution to match your needs and budget. And with your IC purchase, you get more than just an instrument—you get a complete solution based on modern technology and world-class support.

- Thermo Scientific Dionex ICS-5000: The world's first capillary IC system
- Dionex ICS-2100: Award-winning integrated Reagent-Free[™] IC system
- Dionex ICS-1600: Standard integrated IC system
- Dionex ICS-1100: Basic integrated IC system
- Dionex ICS-900: Starter line IC system

Ranging from the Dionex ICS-900 to the ICS-5000, these IC systems cover the entire range of IC needs and budgets and come with superior support and service worldwide. *Dionex ICS-5000:* Developed with flexibility, modularity, and ease-of-use in mind, the Dionex ICS-5000 combines the highest sensitivity with convenience

Dionex ICS-2100: An integrated Reagent-Free IC (RFICTM) system for electrolytically generated isocratic and gradient separations with conductivity detection, now with electrolytic sample preparation.

Dionex ICS-1600: The Dionex ICS-1600 combines high sensitivity with convenience. Now ready for eluent regeneration, with available dual-valve configuration for automated sample preparation.

Dionex ICS-1100: With dual-piston pumping and electrolytic suppression. Now ready for eluent regeneration, with available dual-valve configuration for automated sample preparation.

Dionex ICS-900: Can routinely analyze multiple anions and cations in 10–15 min—fully automated with Displacement Chemical Regeneration (DCR).

Thermo

MS Instruments

Single-point control and automation for improved easeof-use in LC/MS and IC/MS

Thermo Fisher Scientific provides advanced integrated IC/MS and LC/MS solutions with superior ease-of-use and modest price and space requirements. UltiMate 3000 System Wellness technology and automatic MS calibration allow continuous operation with minimal maintenance. The Dionex ICS-5000 instrument and the family of RFIC systems automatically remove mobile phase ions for effort-free transition to MS detection.

- Thermo Scientific MSQ Plus mass spectrometer, the smallest and most sensitive single quadrupole on the market for LC and IC
- Self-cleaning ion source for lowmaintenance operation

- Thermo Scientific Dionex Chromeleon
 Chromatography Data System software for
 single-point method setup, instrument control, and
 data management
- Compatible with existing IC and LC methods
- The complete system includes the MSQ Plus[™] mass spectrometer, PC datasystem, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) probe inlets, and vaccum system

You no longer need two software packages to operate your LC/MS system. Chromeleon[™] LC/MS software provides single-software method setup and instrument control; powerful UV, conductivity, and MS data analysis; and fully integrated reporting.

MS Systems and Modules: MSQ Plus Mass Spectrometer; MSQ18LA nitrogen gas generator; Thermo Scientific Dionex AXP-MS digital auxiliary pump

Thermo

Chromeleon 7 Chromatography Data System Software

The fastest way to get from samples to results

Discover Chromeleon software version 7, the chromatography software that streamlines your path from samples to results. Get rich, intelligent functionality and outstanding usability at the same time with Chromeleon software version 7—the Simply Intelligent[™] chromatography software.

- Enjoy a modern, intuitive user interface designed around the principle of operational simplicity
- Streamline laboratory processes and eliminate errors with eWorkflows, which enable anyone to perform a complete analysis perfectly with just a few clicks
- Access your instruments, data, and eWorkflows instantly in the Chromeleon Console
- Locate and collate results quickly and easily using powerful built-in database query features
- Interpret multiple chromatograms at a glance using MiniPlots
- Find everything you need to view, analyze, and report data in the Chromatography Studio

- Accelerate analyses and learn more from your data through dynamic, interactive displays
- Deliver customized reports using the built-in Excelcompatible speadsheet

Chromeleon software version 7 is a forward-looking solution to your long-term chromatography data needs. It is developed using the most modern software tools and technologies, and innovative features will continue to be added for many years to come.

The Cobra[™] integration wizard uses an advanced mathematical algorithm to define peaks. This ensures that noise and shifting baselines are no longer a challenge in difficult chromatograms. When peaks are not fully resolved, the SmartPeaks[™] integration assistant visually displays integration options. Once a treatment is selected, the appropriate parameters are automatically included in the processing method.

Chromeleon software version 7 ensures data integrity and reliability with a suite of compliance tools. Compliance tools provide sophisticated user management, protected database stuctures, and a detailed interactive audit trail and versioning system.

Process Analytical Systems and Software

Improve your process by improving your process monitoring with a Thermo Scientific Dionex on-line IC or HPLC system

hermo

Our process analytical systems provide timely results by moving liquid chromatography-based measurements on-line. Information from the Thermo Scientific Dionex Integral process analyzer can help reduce process variability, improve efficiency, and reduce downtime. These systems provide comprehensive, precise, accurate information faster than is possible with laboratory-based results. From the lab to the factory floor, your plant's performance will benefit from the information provided by on-line LC.

- Characterize your samples completely with multicomponent analysis
- Reduce sample collection time and resources with automated multipoint sampling
- Improve your process control with more timely results

- See more analytes with unique detection capabilities
- 25 years of experience providing on-line IC and HPLC capabilities to a wide range of industries
- The Thermo Scientific Integral Migration Path approach lets you choose the systems that best meets your needs

The Integral Migration Path[™] approach enables on-line IC/HPLC to generate timely, high-resolution information when monitoring a small-scale reactor in a process R&D lab, in a pilot plant, or improving current manufacturing plant processes. No matter what the application, the Integral[™] process analyzer has the versatility to place a solution using on-line IC/HPLC, whenever and wherever it is needed.

Integral: The Integral Migration Path approach: System solutions wherever you need them: lab, pilot plant, or manufacturing

Chromeleon Process Analytical (PA) Software: Chromeleon PA software provides unique capabilities to support on-line IC or HPLC analysis

Automated Sample Preparation

ACCELERATED SOLVENT EXTRACTORS

Two new solvent extraction systems with pH-hardened Dionium components

We offer two solvent extraction systems. The Thermo Scientific Dionex ASE 150 Accelerated Solvent Extractor is an entry-level system with a single extraction cell, for laboratories with modest throughput. The Dionex ASE[™] 350 system is a sequential extraction system capable of automated extraction of up to 24 samples. Both systems feature chemically inert Dionium components that allow the extraction of acid- or basepretreated samples.

Thermo scientific

SOLID-PHASE EXTRACTION SYSTEMS

Faster, more reliable solid-phase extraction while using less solvent

The Thermo Scientific Dionex AutoTrace 280 Solid-Phase Extraction (SPE) instrument unit can process six samples simultaneously with minimal intervention. The instrument uses powerful pumps and positive pressure with constant flow-rate technology. Current analytical methods that require SPE sample preparation include gas chromatography (GC), GC-MS, LC, and LC-MS, IC and IC-MS. The Dionex AutoTrace[™] 280 instrument is approved or adapted for U.S. EPA clean water methods and safe drinking water methods (600 and 500 series) and can extract the following analytes:

- PCBs (polychlorinated biphenyls)
- OPPs (organophosphorus pesticides), OCPs (organochlorine pesticides), and chlorinated herbicides

- BNAs (base, neutral, acid semivolatiles)
- Dioxins and furans
- PAHs (polyaromatic hydrocarbons)
- Oil and grease or hexane extractable material

With SPE, large volumes of liquid sample are passed through the system and the compounds of interest are trapped on SPE adsorbents (cartridge or disk format), then eluted with strong solvents to generate an extract ready for analysis. Automated SPE saves time, solvent, and labor for analytical laboratories.

Dionex AutoTrace Systems: The new Dionex AutoTrace 280 system provides fast and reliable automated solid phase extraction for organic pollutants from liquid samples

Dionex AutoTrace Accessories: High-quality parts and accessories are available for Dionex AutoTrace 280 instruments

Analysis of Agricultural Chemical Contaminants

Accelerated Solvent Extraction (ASE[®]) of Pesticide Residues in Food Products

INTRODUCTION

Residue analysis in crops and food products is routinely performed in regulatory and industrial laboratories around the world. Many of the traditional procedures used to perform these extractions are timeconsuming and solvent-intensive. Accelerated Solvent Extraction (ASE) is an extraction technique that speeds the extraction process and reduces the total amount of solvent used. The system uses conventional liquid solvents at elevated temperatures and pressures, which results in increased extraction kinetics. Extraction of samples ranging from 1 to 30 g typically requires 12–17 min and 15–50 mL of solvent.

In the environmental industry, ASE has been compared extensively to traditional preparation techniques, and has been found to generate similar extracts in a more efficient manner. ASE is now widely used in environmental applications to replace time- and solventintensive techniques such as Soxhlet and sonication. The principles of ASE technology are based on conventional liquid extraction theory, so the transfer of existing solventbased extraction processes to ASE is simple. In addition, the ability to extract up to 24 samples unattended can result in a dramatic increase in laboratory efficiency.

EQUIPMENT

ASE 200 Accelerated Solvent Extractor equipped with 11-, 22-, or 33-mL cells Dionex vials for collection of extracts (40 mL, P/N 049465; 60 mL, P/N 049466) Cellulose filter disks (P/N 049458)

REAGENTS

Acetone, Optima grade (Fisher Scientific) Acetonitrile, Optima grade (Fisher Scientific) Hexane, Optima grade (Fisher Scientific) ASE Prep DE (P/N 062819) Sodium sulfate, anhydrous (Fisher Scientific) added after

EXTRACTION CONDITIONS

extraction

Temperature:	100 °C
Pressure:	10 MPa (1500 psi)
Heatup Time:	5 min
Static Time:	5 min
Flush Volume:	60%
Purge Time:	100 s
Static Cycles:	1–2
Total Extraction Time:	14–18 min per sample
Total Solvent Used:	15–45 mL per sample

SAMPLE PREPARATION

Weigh dry samples (1-20 g) and add directly to extraction cells containing a cellulose extraction filter. Grind wet samples (1-10 g) and mix with 6 g of ASE Prep DE (diatomaceous earth) using a mortar and pestle. Rinse the mortar and pestle with 2–3 mL of the extraction solvent. Add this volume to the sample in the extraction cell.

EXTRACTION

Perform the sample extractions according to the outlined conditions. Following extraction, add 5 g of anhydrous sodium sulfate to the collection vial to absorb coextracted water. Shake the vial for 15 s and decant the water-free extract into a clean 60-mL vial. Rinse the original vial with 5 mL of the extraction solvent and decant this volume into a second vial. Concentrate the combined volume to approximately 10 mL under nitrogen.

ANALYTICAL

Analyze organochlorine pesticides using a gas chromatograph with a 30-m \times 0.25-mm i.d. RTX-5 capillary column (Restek Corporation). Set up a 1-µL splitless injection volume with the injector at 275 °C and the electron capture detector (ECD) maintained at 300 °C with a nitrogen atmosphere. Program the run from 140 °C (3 min) to 265 °C at 10 °C/min. Quantify results using endosulfan I or endrin aldehyde as the internal standard. Pass pesticide extracts through carbon or C18 cleanup cartridges prior to analysis. Quantify results by GC analysis with ECD detection (U.S. EPA Method 8151) or GC with MS detection (U.S. EPA Method 8270).

RESULTS AND DISCUSSION

Samples (10 g) of raw potato and banana were spiked with 100 μ L of a standard solution in hexane containing 12 organochlorine pesticides. Hexane with 10% acetone was chosen as the extraction solvent because it delivered good recoveries of the analytes with fewer interferences (coextractables) than a 1:1 mixture. Resulting extracts were clear (after sodium sulfate treatment) upon concentration and suitable for GC/ECD analysis. The necessity of the drying step limits the amount of raw sample that can be extracted to 10 g. Results are presented in Tables 1 and 2. These results represent three extractions with duplicate GC injections of each extract.

A 5-g sample of ground wheat grain was spiked with 100 μ L of a standard solution containing 29 pesticides and herbicides at levels ranging from 8 to 102 ppb (see Table 3) and extracted at 100 °C with acetonitrile. Spike levels and recovery results are shown in Table 3. Recoveries ranged from 54.1 to 115.7%. The average recovery was 95.3% if the two outliers, dichlorvos and carbaryl, are excluded. Following the spike studies, 12 naturally incurred grain samples were extracted by the traditional wrist shaker

Table 1. Recovery of Organochlorine Pesticides Spiked onto Raw Banana at the 100 ppm Level*

Compound	Av. Recovery (%)	SD (µg/kg)	RSD (%)
α-BHC	100.3	2.3	2.3
β-ВНС	102.2	2.3	2.3
Υ-BHC	98.9	3.2	3.2
Heptachlor	89.2	7.6	8.5
Aldrin	89.4	2.2	2.5
Heptachlor Epoxide	93.5	2.1	2.2
Dieldrin	93.7	1.6	1.7
4,4'-DDE	92.1	1.8	1.9
2,4'-DDD	95.4	2.5	2.6
Endrin	94.4	2.7	3.0
4,4'-DDD	88.0	2.7	3.0
4,4'-DDT	89.6	5.8	6.4

* N = 3

Table 2. Reco Spiked onto F	very of Organochl law Potato at the	orine Pesti 100 ppm Lo	cides evel*
Compound	Avg. Recovery (%)	SD (µg/kg)	RSD (%)
α-BHC	96.3	6.3	6.6
β-ΒΗϹ	108.6	2.3	2.1
Υ-BHC	97.4	6.6	6.8
Heptachlor	93.9	3.5	3.7
Aldrin	95.9	3.3	3.4
Heptachlor Epoxide	95.2	2.4	2.6
Dieldrin	97.1	0.55	0.57
4,4'-DDE	95.4	0.67	0.70
2,4'-DDD	95.7	0.85	0.89
Endrin	97.8	1.8	1.9
4,4'-DDD	93.7	1.8	1.9
4,4'-DDT	93.0	4.5	4.8

* N = 3

extraction with acetonitrile, using postextraction solid phase extraction (SPE) cleanup, and by ASE using either acetone or acetonitrile as the extraction solvent. The ASE extraction took 12 min per sample and required 12–15 mL of solvent, while the shaker extraction took approximately 1 h per sample (including postextraction SPE cleanup on carbon or C18) and used 130 mL of acetonitrile per sample. The ASE extracts did not require postextraction processing.

Pesticides from Wheat by ASE							
Compound	Spike Level (µg/kg)	Recovery (%)					
o-Methoate	74	85.4					
Trifluralin	44	99.6					
Dichlorvos	18	60.5					
Phorate	18	92.8					
Demeton	38	96.7					
Dimethoate	58	87.8					
Carbofuran	22	96.6					
Atrazine	14	92.8					
Diazinon	26	96.9					
Disulfoton	22	87.9					
Triallate	68	87.8					
Parathion-methyl	40	115.7					
Chlorpyrifos-methyl	8	115.4					
Carbaryl	92	54.1					
Linuron	102	83.6					
Malathion	22	104.5					
Phorate-sulfone	32	105.7					
Parathion	84	101.2					
Endosulfan-alpha	56	94.1					
Disulfoton-sulfone	98	77.1					
Imazalil	40	108.8					
Endosulfan-beta	68	93.3					
Endosulfan sulfate	20	77.0					
Methoxychlor-o,p	48	89.9					
Diclofop-methyl	36	81.8					
Methoxychlor-p,p'	50	114.9					
Azinphos-methyl	56	94.2					

Extraction results for two compounds identified in these extracts, methyl chlorpyrifos and malathion, are shown in Table 4. The detected amounts compared well between the two techniques, with the ASE values generally 10–20% higher. In all cases, samples with nondetectable levels (ND) were identified as such by both techniques. Acetonitrile and acetone appear to be good solvent choices for this application.

Table 4. Extraction of Incurred Pesticides in Wheat by ASE and Conventional Wrist Shaker Extraction

		Samula	Meth Chlorpy (µg/k	yl vrifos (g)	Malathion (µg/kg)		
Sample No.	Solvent	Weight (g)	Wrist Shaker	ASE	Wrist Shaker	ASE	
1	Acetone	20.31	70	90	40	50	
2	Acetone	19.78	80	100	40	50	
3	Acetone	20.91	50	60	60	70	
4	Acetone 10.13		ND	ND	ND	ND	
5	Acetone	10.24	30	70	40	100	
6	Acetone	9.93	ND	ND	ND	ND	
7	Acetone	5.32	ND	ND	ND	ND	
8	Acetone	5.39	ND	ND	ND	ND	
9	Acetonitrile	19.85	60	80	60	80	
10	Acetonitrile	20.4	70 90		60	70	
11	Acetonitrile	5.30	ND	ND	ND	ND	

ND = Not Detected

CONCLUSION

Using ASE, pesticide residue analysis laboratories can increase sample throughput while reducing overall solvent usage. The simplicity of the ASE technique, combined with results showing excellent correlation to existing methods, have resulted in the rapid acceptance of ASE for environmental analysis. The promulgation of U.S. EPA Method 3545 now provides a means for environmental test laboratories to take full advantage of ASE technology. In addition to the wide range of target analytes covered under Method 3545 for organic pollutants in solid waste, ASE has been applied successfully to the extraction of total petroleum hydrocarbons (TPH), dioxins, and furans from a variety of matrices. ASE has also been applied to the extraction of explosives from soil, PCBs from fish and other marine tissues, and polyurethane foam (PUF) air sampling cartridges.

SUPPLIERS

Fisher Scientific, 2000 Park Lane, Pittsburgh, PA 15275-

1126 USA, Tel: 800-766-7000, www.fishersci.com. Restek Corporation, 110 Benner Cir., Bellefonte, Pennsylvania, 16823 USA, Tel.: 814-353-1300, www. restekcorp.com.

DIONEX

Application Note 343

Determination of Pesticides in Large-Volume Food Samples Using Accelerated Solvent Extraction (ASE®)

INTRODUCTION

Pesticide residue analysis in crops and food products is routinely performed in regulatory and industrial laboratories around the world. Many of the traditional procedures used to perform the extractions for these analyses are time consuming and solvent intensive. Accelerated Solvent Extraction (ASE) is an extraction technique that speeds the extraction process and reduces the total amount of solvent used. The system uses conventional solvents at elevated temperatures and pressures, which results in improved extraction kinetics. The extraction of samples ranging from 1 to 30 g typically requires 12–17 min and 15–50 mL of solvent.

Extraction of samples up to 30 g have been reported using the Dionex ASE 200 extractor with an upper limit sample cell size of 33 mL. However, for many pesticide residue analyses, this volume is insufficient. Food samples such as fruit and vegetables have very high water contents and must be mixed with desiccants such as sodium sulfate to achieve quantitative pesticide recovery. In this case, the actual weight of the sample extracted will be much less than 30 g. The Dionex ASE 300 has the capability to extract samples with volumes as large as 100 mL. This capability allows the direct extraction of food and vegetable samples with weights in the 30 to 50-g range. This application note reports on the use of the ASE 300 for the determination of organophosphorus pesticides (OPPs) in fruits and vegetables. ASE has previously been compared to more traditional extraction procedures for the determination of OPPs in soils.^{1,2}

EQUIPMENT

ASE 300 Accelerated Solvent Extractor with 34-, 66-, or 100-mL extraction cells Dionex vials (250 mL) for collection of extracts (P/N 056785) Cellulose filter disks (P/N 056780)

REAGENTS

Acetone, Optima grade (Fisher Scientific) Methylene chloride, Optima grade (Fisher Scientific) Ethyl acetate, Optima grade (Fisher Scientific) Hexane, Optima grade (Fisher Scientific) Cyclohexane, Optima grade (Fisher Scientific) ASE Prep DE (diatomaceous earth) Sodium sulfate, anhydrous (Fisher Scientific)

EXTRACTION CONDITIONS

Temperature:	100 °C
Pressure:	10 MPa (1500 psi)
Solvent:	Ethyl acetate/cyclohexane or MeCl ₂ /acetone (1:1, v/v)
Heatup Time:	5 min
Static Time:	5 min
Flush Volume:	60%
Purge Time:	180 s
Static Cycles:	1–2
Total Extraction	
Time:	14–20 min per sample
Total Solvent:	135–145 mL per sample

SAMPLE PREPARATION

The results of this study were obtained using baby food purchased at a local grocery store. Baby food was used because of the strict requirements enforced for these products, and it was assumed that no pesticide residues were present above the detection levels. In addition, these samples are already homogenized. Samples of 30 g of carrots and apples were weighed out. For this study, 7.5 μ L of a pesticide mixture at 0.2 mg/mL was added to the baby food for a final concentration of 50 μ g/kg on a sample mass basis. The samples were mixed with enough ASE Prep DE to make them easy to work with and easy to load into the extraction cells, usually around 1:1 (w/w). (If surrogates are used, they should be added to the sample prior to loading the extraction cells.)

For samples other than baby food, blend or chop the food samples to produce a uniform homogenate. (A blender or food processor can be used.) Then weigh a 30–50 g portion of the homogenate and mix with ASE Prep DE.

Place a cellulose filter disk in the outlet end of each extraction cell. Carefully transfer the samples to the extraction cells, ensuring that each sample is completely removed from the container in which it was mixed with the ASE Prep DE. Load the extraction cells and collection vials into the ASE 300 and perform the extraction according to the conditions listed.

ANALYTICAL

The total volume of the organic phase obtained was filtered through sodium sulfate (50 g) into a 500-mL round-bottom flask. The filter and flask were rinsed four times with approximately 20-mL portions of ethyl acetate/ cyclohexane (1/1). The filtrate was evaporated to a watery residue (not to dryness). Exactly 5 mL of ethyl acetate was added to the evaporation residue. The residue was dissolved completely, immersing the flask in an ultrasonic bath. Approximately 5 g of a mixture of sodium sulfate/ sodium chloride (1:1 w/w) was added and swirled. Then exactly 5 mL of cyclohexane was added to obtain a total volume of 10.0 mL (= V_{R1}) and swirled vigorously again. The solution was allowed to stand so the salt mixture could settle to the bottom of the flask. This solution was then ready for cleanup by gel permeation chromatography (GPC).

Gel Permeation Chromatography

A 5.0-mL aliquot (= V_{R2}) of the sample extract (= V_{R1}) was cleaned up using GPC. The automated gel permeation chromatograph (Clean-Up XL, ABIMED Gilson, D-40736, Langenfeld, Germany) was equipped with a 5-mL loop and chromatographic column (600 × 25 mm i.d.) filled with 52-g Bio-Beads S-X3 (200–400 mesh), 33-cm gel bed length (Bio-Rad Laboratories, D-80901 Munich, Germany). A solvent of ethyl acetate/cyclohexane (1:1, v/v) at 5 mL/min was used.

The conditions for gel permeation chromatography were:

Dump: 17 min (to discard 85 mL) Collect: 22 min (to collect 100 mL)

The collected fraction containing the pesticides was concentrated to about 4 mL using rotary evaporation and was then made up to a volume of 5.0 mL (= V_{End}) with ethyl acetate and analyzed by gas chromatography with flame photometric detection (FPD).

Detection

Chromatographic Conditions—DB 5

Pesticide determination was by gas chromatography using flame photometric detection._

Gas Chromatograph:	HP 5890 (Hewlett-Packard) with					
	Autosampler HP7673 and					
	FPD (phosp	horus mode, 526 nm)				
	(now Agilen	t Technologies)				
Column:	30-m fused s	silica capillary column				
	DB-5 (J&W); internal diameter				
	0.53 mm, fil	m thickness 1.5 μm				
Gases:	Carrier:	Helium, 10 mL/min				
Makeup:	Helium, 15	mL/min				
Detector:	Air, 100 mL	/min				
		Hydrogen, 75 mL/min				
Temperatures:	Oven:	Initial 60 °C (hold for				
		1 min), heat rate				
		10 °C/min to 250 °C				
		(hold for 10 min)				
Injector:	250 °C					
Detector:	240 °C					
Injection Volume:	5 μL, splitless					
Integrator:	HP ChemStation (software A.05.04)					

Chromatographic Conditions—DB 1701

The following conditions were for the determination							
of Sulfotep, Chlorpyrifos, and Parathion (-ethyl).							
Gas Chromatograph: HP 5890 (Hewlett-Packard) with							
Autosampler HP7673 and							
	FPD (phosp	horus mode, 526 nm)					
	(now Agiler	nt Technologies)					
Column:	15-m fused	silica capillary column					
	DB-1701 (J	&W); internal diameter					
	0.53 mm, fi	lm thickness 1 μm					
Gases:	Carrier:	Helium, 8 mL/min					
Makeup:	Helium, 15	mL/min					
Detector:	Air, 100 mL/min						
	Hydrogen,	75 mL/min					
Temperatures:	Oven:	Initial 60 °C (hold for					
		1 min), heat rate					
		10 °C/min to 260 °C					
		(hold for 10 min)					
Injector:	250 °C						
Detector:	240 °C						
Injection Volume:	5 µL, splitle	ess					
Integrator:	HP ChemSt	HP ChemStation (software A.05.04)					

RESULTS AND DISCUSSION

Tables 1 and 2 show the analysis results of the ASE 300 extracts of fortified apple and carrot samples. The recovery using ASE averaged 91% for the 26 compounds with average RSD of 11.8% (n = 12) from apples. The recovery using ASE averaged 89.7% for all compounds with an average RSD of 8.7% (n = 12) from carrots. These recovery and precision values are well within acceptable performance limits of other extraction techniques. As a control, blank sample extracts from each matrix were fortified with the pesticide standard following ASE extraction. Compounds that exhibited lower recovery in Table 2 (Demeton-O, 65%; Demeton-S, 59%; and Disulfoton, 63%) also exhibited lower recovery in the test samples (83%, 66%, and 82% respectively). This result indicates that these compounds are lost during the postextraction cleanup steps or in the GC analysis.

CONCLUSION

These results confirm that pesticide residues can be easily extracted from large-volume food samples using the ASE 300. Traditional extraction methods would take from one to several hours for each sample and several hundred milliliters of solvent would be used for each sample. With the ASE 300, these samples can be extracted in about 15 min each with about 160 mL of solvent for each sample. In addition, the ASE 300 can extract up to 12 samples sequentially without user intervention.

REFERENCES

- Dionex Corporation. "Extraction of Organophosphorous Pesticides Using Accelerated Solvent Extraction (ASE)". Application Note 319; Sunnyvale, CA.
- Ezzell, J. L.; Richter, B. E.; Felix, W. D.; Black, S. R.; Meikle, J. E. "A Comparison of Accelerated Solvent Extraction with Conventional Solvent Extraction for Organophosphorus Pesticides and Herbicides." *LC-GC*, **1995**, 13, 390–398.

SUPPLIERS

- ABIMED Analysen-Technik GmbH, Raiffeisenstr. 3, 40764 Langenfeld, Germany, Tel: 02173 89 05 0, www.abimed.de.
- Agilent Technologies, 395 Page Mill Rd., Palo Alto, CA 94306 USA, Tel: 877-424-4536, www.agilent.com.
- Bio-Rad Laboratories, 1000 Alfred Nobel Drive, Hercules, CA 94547 USA, Tel: (510) 724-7000, www.bio-rad.com.
- Fisher Scientific, 2000 Park Lane, Pittsburgh, PA 15275-1126 USA, Tel: 800-766-7000, www.fishersci.com.

ACKNOWLEDGEMENTS

We acknowledge the work of Manfred Linkerhaegner and his colleagues at Dr. Specht and Partner in Hamburg, Germany who performed the GPC cleanup and GC analysis of the extracts.

Table 1. Pe	rcent	Recove	ery of ()rgano	phosp	horus	Pestici	ides fr	om Ap	ple Pu	ree Foi	rtified	at 50 p	pb	
Apples	1	2	3	4	5	6	7	8	9	10	11	12	Mean (%)	SD	RSD (%)
Dichlorvos/Naled	76	80	93	82	80	97	102	95	97	90	67	92	87	10	12
Mevinphos	91	96	105	93	90	108	115	111	110	104	71	106	100	12	12
TEPP	117	141	124	120	96	126	144	137	150	107	79	115	121	20	16
Demeton-O	64	78	47	44	64	67	83	71	75	51	64	77	65	12	19
Ethoprophos (Ethoprop)	84	86	105	91	87	106	110	106	103	91	70	97	95	11	12
Sulfotep	94	100	101	95	88	102	105	101	108	87	72	90	95	10	10
Phorate	80	84	85	77	83	88	100	93	95	83	71	89	86	8	9
Demeton-S	60	68	45	46	72	55	65	55	72	41	63	73	59	11	18
Dimethoate	128	125	146	133	106	141	148	140	149	115	81	121	128	19	15
Diazinon	87	92	101	86	86	99	107	101	104	91	73	93	93	9	10
Disulfoton	59	73	46	44	66	59	78	63	75	52	66	80	63	11	18
Parathion-methyl	91	95	104	89	88	103	108	104	101	94	70	95	95	10	10
Fenchlorphos	82	89	101	86	85	100	103	99	96	91	71	93	91	9	10
Malathion	87	96	106	97	84	106	116	104	105	82	62	89	94	14	15
Fenthion	82	89	87	79	83	91	98	93	94	82	71	90	86	7	8
Chlorpyrifos	89	97	94	82	84	101	99	100	95	89	70	87	91	9	10
Parathion-ethyl	100	104	105	99	87	104	109	106	118	92	75	91	99	11	11
Trichloronat	80	91	98	83	82	99	98	95	96	90	68	90	89	9	10
Tetrachlorvinphos	87	90	100	87	85	95	100	97	98	91	71	94	91	8	9
Prothiofos	76	87	93	78	78	93	93	91	97	85	64	90	85	9	11
Merphos	78	79	91	76	74	88	89	88	96	82	63	83	82	9	10
Fensulfothion	91	92	113	93	90	106	110	106	105	100	71	95	98	11	11
Sulprofos	70	85	80	70	76	86	92	82	88	76	64	85	80	8	10
EPN	96	103	100	97	88	105	111	103	111	89	70	93	97	11	11
Azinphos-methyl	95	99	106	87	84	105	111	104	111	99	75	104	98	11	11
Coumaphos	95	98	102	92	89	102	110	102	106	101	80	96	98	8	8

Table 2. Perc	ent Re	ecover	y of Or	ganop	hosph	orus P	esticid	les fro	m Carı	ot Pur	ee For	tified	at 50 p	pb	
Carrots	1	2	3	4	5	6	7	8	9	10	11	12	Mean (%)	SD	RSD (%)
Dichlorvos/Naled	85	87	80	84	86	86	75	84	83	90	74	67	82	6	8
Mevinphos	99	96	95	98	101	100	83	96	92	101	85	77	94	7	8
TEPP	76	110	98	78	107	106	75	79	100	82	87	83	90	13	14
Demeton-O	91	93	82	96	100	110	89	109	108	112	95	80	97	11	11
Ethoprophos (Ethoprop)	93	92	89	95	95	95	78	89	91	97	82	73	89	7	8
Sulfotep	91	85	79	86	90	89	75	82	91	89	84	80	85	5	6
Phorate	91	88	85	89	92	96	79	88	90	96	83	75	88	6	7
Demeton-S	87	85	80	72	98	110	91	117	104	119	97	63	93	17	18
Dimethoate	145	130	113	122	129	138	103	125	131	127	116	114	125	11	9
Diazinon	88	85	86	89	88	89	77	87	89	97	80	75	86	6	7
Disulfoton	90	87	82	94	105	112	89	109	106	112	95	81	97	11	11
Parathion-methyl	90	88	86	92	91	95	79	92	90	96	78	72	87	7	8
Fenchlorphos	89	87	82	88	88	88	75	84	86	94	79	74	84	6	7
Malathion	98	88	83	86	86	89	73	78	93	93	84	81	86	7	8
Fenthion	90	86	86	92	95	90	79	89	95	97	82	76	88	6	7
Chlorpyrifos	85	84	79	90	90	89	77	82	86	93	77	68	83	7	8
Parathion-ethyl	93	89	82	95	92	87	75	78	92	89	60	78	84	10	12
Trichloronat	88	87	85	88	92	87	74	87	90	94	80	76	86	6	7
Tetrachlorvinphos	86	86	83	88	89	91	77	88	89	94	79	74	85	6	7
Prothiofos	81	86	81	87	86	89	76	85	90	94	81	71	84	6	7
Merphos	87	87	87	89	94	93	73	85	92	100	82	72	87	8	9
Fensulfothion	92	91	93	97	97	97	83	91	95	100	83	76	91	7	8
Sulprofos	84	84	81	88	92	93	77	88	90	99	82	71	86	7	8
EPN	98	87	87	94	95	93	77	88	94	92	85	80	89	6	7
Azinphos-methyl	103	98	93	101	103	97	84	94	102	105	86	75	95	9	9
Coumaphos	91	91	89	94	95	94	81	91	93	99	84	78	90	6	7

Rapid Determination of Organochlorine Pesticides in Animal Feed Using Accelerated Solvent Extraction (ASE®)

INTRODUCTION

Animal feed contaminated with organochlorine pesticides (OCPs) has begun to attract worldwide attention. When ingested, the OCPs from animal feed tend to accumulate in certain animal products, especially those rich in fat, such as meat, milk, and butter. Because these types of animal products are widely consumed by humans, methods are needed that quickly extract and determine OCPs in the feeds of animals used to produce products for human consumption.

Traditional methods used to extract OCPs from animal feed require large amounts of organic solvents and take from one to several hours per extraction. Also, many of the traditional methods are very labor intensive and require constant analyst attention.

ASE was introduced in 1995 and is a proven, valuable technique for environmental laboratories. ASE is EPA approved under method 3545A. This technique uses high temperatures and pressures to increase the kinetics of the extraction process, thus decreasing the extraction time and solvent consumption. Also, because ASE is automated, it allows unattended extraction of up to 24 samples. In this application note, OCPs are extracted from certified reference material (CRM) BCR 115 (Institute for Reference Materials and Measurement, Geel Belgium), an animal feed containing certified levels of organochlorine pesticides.

EQUIPMENT

Dionex ASE 200 Accelerated Extractor with Solvent Controller (P/N 048765)
11-mL stainless steel extraction cells (P/N 055422)
Dionex cellulose filters (P/N 049458)
Dionex collection vials 40 mL (P/N 048783)
Analytical balance (accurate to the nearest 0.0001 g or better)
Laboratory grinder
Sand (Ottawa Standard, Fisher Scientific, Cat. No. S23-3 20-30 mesh)
Dichloromethane silica gel, 0.063–0.200 mm, water content 2.62% (Merck, Darmstadt, Germany)
S-X3 Bio-Beads (Bio Rad Laboratories)

REAGENTS

For reagents, use either: Bulk Isolute Sorbent (International Sorbent Technology Ltd., UK) Hydromatrix[™] (Varian Associates)

STANDARD REFERENCE MATERIAL

CRM BCR 115 (Institute for Reference Materials and Measurement, Geel Belgium)* *Similar standard reference materials may be substituted.

Solvents

Hexane

- Acetone
- (All solvents are pesticide-grade or equivalent and available from Fisher Scientific.)

EXTRACTION CONDITIONS

Solvent:	Hexane: acetone (3:2)
Temperature:	100 °C
Pressure:	1500 psi
Static time:	9 min
Static cycles:	1
Flush:	60%
Purge:	60 s

SAMPLE PREPARATION

Each animal feed sample should be ground to a powder using a laboratory grinder. Weigh approximately 1.0 g of the powder and blend with 0.5 g of the Bulk Isolute Sorbent using a mortar and pestle. Transfer the mixture to an 11-mL stainless steel extraction cell containing a cellulose filter. Top off any void volume in the cell with Ottawa sand.

Table 1. Concentration Values (ng g ⁻¹) and RSD (%) for the Extraction of CRM BCR 115					
Compounds	Certified	Value	ASE (n = 3)		
	C (ng g ⁻¹)	RSD (%)	C (ng g ⁻¹)	RSD (%)	
α-HCH	*	*	21.5 ± 0.5	2.5	
НСВ	19.4 ± 1.4	7.2	20.6 ± 0.4	1.8	
β-НСН	23 ± 3	13.0	26.0 ± 2.3	8.7	
ү-НСН	21.8 ± 2	9.2	27.1 ± 1.4	5.3	
Heptachlor	19 ± 1.5	7.9	20.0 ± 0.5	2.7	
Aldrin	*	*	56.0 ± 3.1	5.5	
p,p'–DDE	47 ± 4	8.5	54.6 ± 2.6	4.7	
Dieldrin	18 ± 3	16.7	22.0 ± 0.6	2.6	
Endrin	46 ± 6	13.0	52.1 ± 1.9	3.6	
p,p ' –DDD	*	*	91.8 ± 2.6	2.8	
o,p' -DDT	46 ± 5	10.9	49.8 ± 0.5	1.1	
p,p' -DDT	*	*	59.4 ± 1.8	3.1	

* Present but not certified

Figure 1. Graph of results from Table 1.

EXTRACTION PROCEDURE

Place the extraction cells onto the ASE 200. Label the appropriate number of collection vials and place these into the vial carousel. Set up the method suggested above and begin the extraction sequence. When the extractions are complete, the extracts can then be cleaned using silica gel adsorption followed by gel permeation chromatography (GPC) with *n*-hexane:dichloromethane (1:1) as the elution solvent.¹

A two-step cleanup procedure based on silica gel adsorption followed by gel permeation chromatography (GPC) was optimized for the present determinations. An open glass cartridge (8-mm i.d., 6 mL) with a polyethylene frit at its bottom was packed with 1.5-g fresh dichloromethane silica gel and 1-g Na₂SO₄. The column bed was preconditioned with 50 mL *n*-hexane and compressed by a stream of N₂ (200 kPa). Thereafter, the concentrated raw extract was added onto the top of the silica gel column. The sample flask was rinsed with two 0.5-mL portions fo *n*-hexane-CH₂Cl (7+3, v/v) and this was added to the column bed. The analytes were eluted with 19 mL *n*-hexane-dichloromethane (7+3, v/v). The eluate was collected in a 50-mL pear-shaped flask and concentrated to 0.5 mL by means of a rotary evaporator.

The GPC column was prepared by weighting 6 g S-X3 bio-beads that were swelled in *n*-hexanedichlorometrane (1 + 1, v/v) overnight, into a chromatographic column (15-mm i.d., 30 cm, 100 mL) with a reservoir, fused-in fritted disk, and Teflon[®] stopcock. The concentrated extract from the silica gel cleanup was applied onto the GPC column. The sample flask was rinsed twice with 0.5-µL elution solvent and also applied on the GPC column. After permeation of the sample into the column bed, the separation was performed with an additional 35-mL *n*-hexane-dichloromethane 1 + 1 (v/v). The first 18.5 mL were discarded while the volume of 18.5–26.0 mL containing the analytes was collected. This eluate was concentrated to 1 mL by a rotary evaporator, blown to dryness under a gentle stream of N₂, dissolved in 250-µL cyclohexane, and transferred into a GC autosampler microvial for measurement.

Any efficient cleanup procedure may be substituted.

RESULTS AND DISCUSSION

Sample preparation is critical to good recoveries. Grind the samples to a uniform particle size to ensure proper permeation of the solvent into the matrix. It is important to remove the fat and lipids from the extracts so they are ready for GC-MS analysis.

The results of three extractions using ASE are compared to the certified values and listed in Table 1. Figure 1 shows these results graphically. The ASE results are in general agreement with the certified values, with the values of g-HCH and p,p –DDE slightly above the certified values. This slight difference is attributed to the higher temperatures and pressures of ASE, which increases the desorption of highly bound pesticides.

CONCLUSIONS

The extraction efficiency and reproducibility of ASE for extracting OCPs from animal feed was tested using an optimized method to extract a certified reference material (BCR 115). ASE provides a faster way to extract OCPs from animal feed than traditional techniques, such as Soxhlet, and ASE can accomplish these results using far less solvent.

ACKNOWLEDGEMENTS

We would like to acknowledge the work of S. Chen, M. Gfrerer, E. Lankmayr, X. Quan, and F. Yang at the University of Technology, Austria.

REFERENCES

 Chen, S.; Gfrerer, M; Lankmayr, E.; Quan, X.; Yang, F. Optimization of Accelerated Solvent Extraction for the Determination of Chlorinated Pesticides from Animal Feed. *Chromatographia* 2003, *58*, 631–636.

Extraction of Drugs from Animal Feeds Using Accelerated Solvent Extraction (ASE®)

INTRODUCTION

Maintaining adequate quality control of drug testing and production processes requires the ability to rapidly and efficiently extract prepared animal feed products. Current sample extraction techniques are labor and time intensive, and are often responsible for communication delays between manufacturing and quality control. Automation of the sample extraction process can accelerate the flow of information, free the analyst from the handson, repetitive nature of the work, and reduce potential exposure to hazardous solvents.

Accelerated Solvent Extraction (ASE) is an extraction technique developed to speed the extraction process and reduce the total amount of solvent. Conventional liquid solvents are used at elevated temperatures and pressures, which results in increased extraction kinetics. Extraction of sample sizes ranging from 1 to 30 g typically require 12–17 min and 15–50 mL of solvent.

ASE is widely used in the environmental industry to replace time- and solvent-intensive techniques such as Soxhlet and sonication extraction. Many features of the ASE system also make it attractive for use in pharmaceutical laboratories. Users can select organic and aqueous solvents to match the polarity of the extraction fluid to the target analytes. Extractions can be performed at temperatures ranging from ambient to 200 °C. Because the efficiency of a liquid extraction process is directly related to temperature, the user can select the most efficient temperature (maximum temperature below analyte degradation point), thereby reducing the time and the amount of solvent required. Finally, the ability to extract up to 24 samples, unattended, results in a dramatic increase in laboratory efficiency. This Application Note gives two examples of how ASE can provide extraction efficiencies superior to other techniques. In the first example, ASE is used to extract an antischizophrenic agent from rodent feed used in drug testing. In the second example, ASE is used to extract Lasalocid, a veterinary medicinal added to poultry and cattle feed.

EQUIPMENT

Dionex ASE 200 Accelerated Solvent Extractor equipped with 11-, 22-, or 33-mL cells

Analytical balance

Dionex vials for extract collection (40 mL, P/N 49465; 60 mL, P/N 49466) Cellulose filter disks (P/N 49458)

REAGENTS

Methanol (HPLC grade or better) Acetic acid

EXTRACTION CONDITIONS

Rodent Feed:	Antischizophrenic Agent
Extraction Solvent:	Methanol
Temperature:	100 °C
Pressure:	1500 psi (10 MPa)
Heat-up Time:	5 min
Static Time:	5 min
Flush Volume:	60%
Purge Time:	100 s
Static Cycles:	1
Total Extraction Time:	12 min per sample

Total Solvent Use:	30 mL per sample
Poultry and Cattle Feed:	Veterinary Medicinal
Extraction Solvent:	Methanol + 0.3% Acetic acid
Temperature:	80 °C
Pressure:	1500 psi (10 MPa)
Heat-up Time:	5 min
Static Time:	5 min
Flush Volume:	60%
Purge Time:	100 s
Static Cycles:	1
Total Extraction Time:	12 min per sample
Total Solvent Use:	30 mL per sample

SAMPLE PREPARATION

Weigh and directly add dry, granular feed (1–20 g) to the ASE extraction cells containing a cellulose filter. Samples should be in the ground state (not pelleted). Sand (Fisher Scientific, P/N S23-3) can be used as a dispersant if sample particles tend to clump or adhere firmly.

ANALYTICAL

Feed sample extracts containing the antischizophrenic drug were sent to the manufacturer's facility for quantification. HPLC analysis was performed using an Astec Cyclobond[®] I 25 cm x 4.6 mm i.d. column at 5 °C and a Brownlee Labs[™] Polypore[®] Phenyl RP (PRP-1) 3 cm × 4.6 mm i.d. pre-column held at ambient temperature. Columns were pur-chased from Alltech Associates, Inc. An isocratic mobile phase of acetonitrile:triethanolamine (97:3 v/v, pH 4.5) at 1.0 mL/min was used with UV detection at 280 nm.

Lasalocid feed sample extracts were analyzed by HPLC using a Phenomenex Ultracarb 5 ODS $25 \text{ cm} \times 4.6 \text{ mm}$ i.d. C18 column with an IPA:water mobile phase (20:80) and UV detection at 248 and 318 nm.

RESULTS AND DISCUSSION

Feed samples were batch-fortified by the manufacturer's facility with an antischizophrenic drug at 10 and 0.2 g/kg. 10-g samples were extracted using ASE at 100 °C with a total extraction time of 12 min per sample and a total solvent volume of 30 mL of methanol per sample. Conventional wrist shaker extraction was performed for 30 min using acetonitrile, followed by

filtering and volume adjustment. The method requires a total extraction time of approximately 55 min and uses 100–400 mL of solvent. Extraction of spiked placebo samples (blank samples spiked with the active compound) was performed by first loading the extraction cell and then adding the standard mixture directly to the top of the sample.

Table 1 compares the recovery and reproducibility generated for the target compound using ASE and the wrist shaker extraction method. The recovery of the ASE extractions is higher than the wrist shaker method for the two concentration-level samples. The ASE extracts were shipped to a different location for analysis, which may account for the greater RSD values. Although the higher temperatures used in ASE expedite the extraction process, there was concern that possible co-extractable materials could interfere with the chromatographic analysis of the active compound. Figure 1 compares the chromatographic analysis of ASE-generated extracts with standard and blank runs. No interferences were present in the analysis.

The chemical structure of Lasalocid is shown in Figure 2. This compound is currently licensed for veterinary use as an antibacterial (coccidiostat) in poultry and a growth promoter in cattle. The conventional method for the extraction of Lasalocid is either soaking the sample overnight or sonication for 30 min in 100–200 mL methanol. The ASE method requires only 12 min and 30 mL methanol containing 0.3% (v/v) acetic acid per sample. The results shown in Table 2 summarize extractions performed for poultry and cattle feed containing differing amounts of Lasalocid. Comparison of the average and standard deviations indicate that the two techniques generate equivalent results, with ASE recovery values between 96–105%, relative to the conventional method.

Table 1 Recovery of an Antischizophrenic Drug from
10 g of Rodent Feed using ASE and Wrist Shaker
Extraction Methods

	Feed Level (% RSD)*				
Extraction Method	0.2 g/kg	10 g/kg			
ASE (placebo spikes)	0.199 (4.1)	10.1 (4.2)			
ASE	0.185 (4.2)	9.68 (4.4)			
Wrist Shaker	0.170 (1.3)	9.43 (1.3)			

*n=10

Figure 1. HPLC analysis of feed standards and extracts. (1) ASE extraction blank, (2) drug standard, (3) ASE extract of spiked standard, (4) ASE extraction of drug containing feed sample.

Figure 2. Lasalocid chemical structure.

CONCLUSION

Accelerated solvent extraction takes advantage of enhanced solubilization kinetics that occur at temperatures higher than are commonly used to perform liquid solvent extractions. As the efficiency of the extraction process improves, less solvent and time are required to complete the process. Because reducing solvent consumption and increasing sample throughput are important concerns to laboratories, ASE offers significant advantages for both production and research labs.

Table 2 Lasalocid Recovered from 10-g Samples of Poultry and Cattle Feed Taken from 12 Individual Lots by ASE and Sonication Extraction Methods

	Lasalocid Red	covered (ppm)
Sample #	ASE	Sonication
1	80.0	77.5
2	82.2	78.4
3	81.4	79.4
4	82.0	78.7
5	89.5	78.2
6	85.5	81.2
7	136.0	130.3
8	138.3	140.8
9	136.3	141.1
10	135.2	136.8
11	133.8	135.8
12	138.0	133.7

In this Application Note, ASE was compared to conventional solvent extractions of compounds added to animal feeds. ASE provides results comparable to conventional extraction methods while reducing the time and volume of extraction solvent typically associated with these analyses. Chromatographic profiles indicate ASE-generated extracts are nearly identical in composition to those generated by conventional techniques. In addition to savings in time and solvent consumption, ASE technology is automated to increase laboratory productivity.

LIST OF SUPPLIERS

- Fisher Scientific, 711 Forbes Avenue, Pittsburgh, Pennsylvania, 15219-4785, USA. Tel.: 1-800-766-7000
- Alltech Associates, Inc., 2051 Waukegan Road, Deerfield, Illinois, 60015, USA. Tel.: 1-800-255-8324
- Phenomenex, 2320 W. 205th Street, Torrance, California, 90501, USA. Tel.: 1-310-212-0555

Application Note 353

Rapid Determination of Sulfonamide Residues in Animal Tissue and Infant Food Containing Animal Products Using Accelerated Solvent Extraction (ASE[®])

INTRODUCTION

DIONEX 📄

Veterinary drugs containing antimicrobial agents are often administered to livestock for the treatment or prevention of disease and, at low levels, to promote growth in food-producing animals. Recently, government agencies have discovered that some livestock companies are abusing the use of these antimicrobial drugs, by administering them at higher than recommended levels to promote faster growth. This practice can result in unwanted residues of these drugs in meat and meat products eaten by humans. Negative health effects in humans have been traced to the consumption of these antimicrobial drugs and their metabolites. Therefore, screening for these types of residues in animal tissue and meats has become a priority, not only in the United States, but in Europe as well.

Sulfonamides are one class of antimicrobial agent used widely in the livestock industry to promote growth. Sulfonamides are often overused because they are inexpensive and readily available. Short-life sulfonamides are mixed with the feed several times per day to prevent bacterial contamination, while the long-life sulfonamides are injected into the animals at high levels to increase animal growth. American and European institutions have established maximum residue levels (MRLs) to regulate the amount of veterinary medicinal product residues allowed in meat and meat products used for human consumption.

This application note shows that ASE is an excellent technique for the extraction of sulfonamides from meat and baby food containing meat products.

EQUIPMENT

ASE 200 Accelerated Extractor with Solvent Controller (P/N 048765) 11-mL Stainless Steel Extraction Cells (P/N 055422) Glass-Fiber Filters (P/N 049458) Collection Vials, 40 mL (P/N 048783) Analytical Balance (to read to nearest 0.0001 g or better) Standard-Grade tissue homogenizer Centrifuge (any standard laboratory centrifuge capable of at least 10,000 rpm) Freezer capable of –18 °C

REAGENTS

C18 resin (can be purchased from any reputable manufacturer like Supelco or Restek)

STANDARD REFERENCE MATERIAL

Sulfamethoxazole (SMX), Sulfamoxole (SMO), Sulfapyradine (SPD), Sulfamethoxypiridazine (SMT), Sulfachloropyridazine (SCP), Sulfamethoxypiridazine (SMP), Sulfadiazine (SDZ), Sulfamerazine (SMR), Sulfamethazine (SMZ), Sulfasomidine (SIM), Sulfamonomethoxine (SMM), Sulfadimethoxine (SDM), Sulfaquinozaline (SQX)

SAMPLES

Crude Meat Samples

Bovine: Tissues of veal, tender beef, and beef

Porcine and Poultry: Ham and chicken

Baby Food Samples

Containing:

Bovine (veal and beef), porcine (pork products and ham), poultry (chicken and turkey)

SOLVENTS

HPLC-grade water

EXTRACTION CONDITIONS

Solvent:HPLC-grade waterTemperature:160 °CPressure:1500 psiStatic time:5 minStatic cycles:1Flush:60%Purge:60 s

SAMPLE PREPARATION

Baby Food Samples

Mix 2 g of baby food with 4 g of C18 material using a mortar and pestle until the entire mixture is of uniform consistency. Transfer this mixture to an 11-mL cell containing a glass-fiber filter.

Crude Meat Samples

Homogenize the meat samples using any standard tissue homogenizer. This task should be done with deionized (DI) water added to the sample, starting the homogenizer at 5000 rpm and increasing to 25,000 rpm for 15 min. Evaporate excess water. Weigh out approximately 2 g of homogenized tissue and mix with 4 g of C18 resin until the entire mixture is of uniform consistency. Transfer this mixture to an 11-mL cell containing a glass-fiber filter.

Extraction Procedure

Place the cell onto the ASE 200 cell tray. Label the appropriate number of collection vials and place these into the vial carousel. Set up and load the method suggested above. Then press start. After the extraction, allow the sample vials to cool in a freezer at -18 °C for one hour to precipitate the coextracted lipids. Centrifuge the vials for 5 min at 10,000 rpm. Inject 100 µL of the supernatant for analysis.

Analytical Procedure

For the data shown in Table 1, all analyses were performed using LC-MS/MS (Perkin-Elmer Series 200 with a PE Sciex API 2000 tandem triple-quadrupole mass spectrometer with a TurboIonSpray[®] source operated in the positive ionization mode). The HPLC column was an AlltimaTM 25 cm × 4.5 i.d. column filled with 5 µm C-18 reverse phase packing. For additional details, consult Reference 1.

RESULTS AND DISCUSSION

When compared with diatomaceous earth, C18 material was the best agent for dispersing the meat samples because it retained more of the lipids from the sample matrix, giving cleaner extracts.¹

Temperature tests were conducted and the best recoveries of all sulfonamides were at 160 °C with no negative effects on analyte stability.¹

Recovery levels were tested on bovine, porcine, and poultry samples. Table 1 lists the recovery results with the limits of detection (LODs) and limits of quantitation (LOQs) listed in Table 2.

CONCLUSION

For several reasons, ASE technology has proven advantages for extracting sulfonamides from meat. First, extraction times of ~15 min when using ASE, second, ASE uses between 25–30 mL of solvent, and third, because of the efficiency offered by the increased temperature and pressure, ASE is able to extract polar compounds at acceptable recovery levels such as sulfonamides using water as the extraction solvent, which cuts solvent purchase and disposal costs.

Table 1	. Recoveries (%)	of Sulfonamides	from Various Me	at Matrices Spik	ed with 100 ppb S	Standards
	Bovin	e Meat	Porcir	ne Meat	Poultry Meat	
Analyte	Raw Meat	Baby Food	Raw Meat	Baby Food	Raw Meat	Baby Food
SPD	89 (5)	90 (4)	92 (5)	94 (3)	91 (4)	93 (3)
SDZ	92 (4)	91 (3)	93 (4)	95 (4)	94 (3)	94 (4)
SMX	92 (4)	94 (3)	94 (5)	93 (3)	96 (4)	95 (3)
SMR	99 (4)	101 (4)	98 (5)	99 (4)	98 (6)	100 (5)
SMO	70 (6)	71 (4)	72 (5)	74 (5)	76 (5)	75 (5)
SMT	86 (6)	87 (6)	90 (5)	92 (5)	91 (4)	93 (4)
SIM	94 (4)	97 (4)	98 (5)	100 (4)	99 (3)	98 (4)
SMZ	88 (5)	91 (5)	90 (5)	89 (4)	92 (4)	95 (4)
SMP	85 (6)	84 (4)	85 (5)	85 (5)	85 (5)	87 (3)
SMM	90 (6)	92 (5)	92 (5)	91 (5)	94 (5)	95 (5)
SCP	79 (4)	83 (5)	85 (5)	84 (6)	82 (6)	88 (4)
SQX	81 (5)	84 (4)	82 (6)	82 (5)	85 (5)	87 (5)
SDM	85 (6)	88 (5)	90 (5)	92 (5)	93 (4)	91 (4)

The numbers in parenthesis equal total extractions performed.

Table 2. LODs and LOQs of the Method for Analyzing Sulfonamides in Beef, Raw Meat, and <u>Baby Food</u>				
	Raw	Meat	Baby	Food
Analyte	LOD (ppb)	LOQ (ppb)	LOD (ppb)	LOQ (ppb)
SPD	1.4	4.2	1.2	3.5
SDZ	1.6	4.8	0.8	2.4
SMX	2.6	7.8	1.4	4.2
SMR	1.9	5.7	1.5	4.5
SMO	1.1	3.3	1.1	3.3
SMT	1.1	3.3	0.4	1.2
SIM	1.7	5.1	1.7	5.1
SMZ	2.1	8.3	1.6	4.8
SMP	0.7	2.1	0.4	1.2
SMM	0.9	2.7	0.9	2.7
SCP	1.3	3.7	0.5	1.5
SQX	1.2	3.8	1.2	3.8
SDM	0.8	1.8	0.5	1.5

LOD = Three times the noise level of the baseline in the chromatogram (S/N = 3)

LOQ = Three times the LOD. The noise level depends on the matrix, therefore there are different LODs for different samples.¹

ACKNOWLEDGEMENTS

We would like to acknowledge the work of Alessandra Gentili and colleagues at the University "La Sapienza" Department of Chemistry, Roma, Italy.

LIST OF SUPPLIERS

- Supelco Inc, Supelco Park Bellefonte, PA 16823
 - USA, Tel: 814-359-3441, www.sigmaaldrich.com.
- Restek Corporation, 110 Benner Circle, Bellefonte, PA 16823 USA, Tel: 800-356-1688, www.restekcorp. com.

Sigma-Aldrich Chemical Company, 3050 Spruce St., St. Louis, MO 63103 USA, Tel: 800-325-3010, www. sigmaaldrich.com.

REFERENCES

 Gentili, A., Perret, D., Marchese, S., Sergi, M., Olmi, C., and Curini, R. "Accelerated Solvent Extraction and Confirmatory Analysis of Sulfonamide Residues in Raw Meat and Infant Foods by Liquid Chromatography Electrospray Tandem Mass Spectrometry", *J. Agric. Food Chem*, **2004**, *52*, 4614-4624.

Application Note 272

Faster Yet Sensitive Determination of *N*-Methylcarbamates in Rice, Potato, and Corn by HPLC

INTRODUCTION

DIONEX 📄

The *N*-methylcarbamates and the *N*-methylcarbamoximes are among the most widely used pesticides in agriculture. Because these pesticides may create health problems—including issues impacting the central nervous and reproductive systems—concerns over the presence of carbamate residues in water, crops, and food products have promoted increased awareness and testing for these compounds.

For the detection of carbamate residues in environmental waters, the United States Environmental Protection Agency (U.S. EPA) provides guidelines for monitoring the presence of carbamate pesticides and related compounds in raw surface water using EPA Method 531.2.¹ This method uses high-performance liquid chromatography (HPLC) with fluorescence detection (FD) following postcolumn derivatization to enhance method sensitivity and selectivity compared to UV absorbance detection. Dionex has published detailed methods that are consistent with EPA Method 531.2.²⁻⁴

For the detection of carbamate residues in food matrices, sample preparation is key for a sensitive determination. Several methods currently exist for the extraction from a variety of different food matrices, such as using a solid-phase extraction (SPE) column,^{5,6} accelerated solvent extraction (ASE),^{7.8} liquid-liquid extraction,⁹ and cloud-point extraction (CPE).¹⁰ The work shown here uses a two-step sample preparation method that first uses a salting-out extraction to extract the target analytes, then a dispersive solid-phase extraction (dSPE) to remove sugars, lipids, organic acids, sterols, proteins, and pigments. Similar methods are now available, such as AOAC 2007.01 Method¹¹ by the Association of Official Analytical Chemists (AOAC) in the United States, and the European equivalent, EN 15662.¹²

This study describes a faster yet sensitive method for the determination of carbamates (those specified in EPA Method 531.2) in rice, potato, and corn (maize). The sample preparation method uses a salting-out extraction step with acetonitrile, NaCl, and MgSO₄; and a dSPE cleanup step using primary secondary amine (PSA) resin to extract the carbamates and remove interfering substances from these crop samples. The separation is performed on an Acclaim[®] Carbamate column with detection by a FLD-3400RS fluorescence detector. The chromatography method is based on a reversedphase separation of the carbamates with subsequent derivatization by *o*-Phthalaldehyde (OPA) followed by FD.

EQUIPMENT

Dionex UltiMate® 3000 HPLC system including: HPG-3400A Pump with SRD-3400 Solvent Rack with Degasser WPS-3000 Autosampler TCC-3000 Thermostatted Column Compartment FLD-3400 Fluorescence Detector Chromeleon[®] Chromatography Data System (CDS) software Version 6.80 SR9 Pickering PCX 5200 Derivatization Instrument, Pickering Laboratories, Inc. CA, U.S.A. Mettler Toledo AL204 Laboratory Balance, Mettler Toledo (Shanghai) Co., Shanghai, China Anke TDL 80-2B centrifuge, Anting Scientific Instrumental Factory, Shanghai, China Anke TDL 16B centrifuge, Anting Scientific Instrumental Factory, Shanghai, China IKA MS1 Minishaker, IKA Works, Guangzhou, China Note:

Prior to the use of HPLC and Pickering PCX 5200 Derivatization Instruments, use pure methanol to wash the system.

The pressure limit of the Pickering PCX 5200 Derivatization Instrument needs to be increased to 350 bar to prevent shutdown during derivatization.

For more details on using the Pickering PCX 5200 Derivatization Instrument, see AN 96.³

REAGENTS AND STANDARDS

Deionized water, Milli-Q[®] Gradient A10, Millipore Corporation

Methanol (CH₃OH), Fisher

Acetonitrile (CH₃CN), Fisher

Potassium dihydrogen citrate ($KC_6H_7O_7$), 98%, Fluka

Sodium thiosulfate (Na₂S₂O₃), 98%, Fluka

Sodium hydroxide solution, (NaOH), 50%, Fluka

Boric acid, 99.5%, Fluka

o-Phthalaldehyde (OPA, C₈H₆O₂), 99%, Pickering

β-Mercaptoethanol, 99%, SCRC, China

Magnesium sulfate (MgSO₄), analytical grade, SCRC, China

Sodium chloride (NaCl), analytical grade, SCRC, China

Primary secondary amine (PSA) Bonded Silica, Supelco

Activated carbon, SCRC, China

EPA Method 531.2 Carbamate Pesticide Calibration Mixture, Restek, 100 μg/mL (P/N 257974)

4-Bromo-3,5-dimethylphenyl-*N*-methylcarbamate standard (BDMC), Restek, 100 µg/mL (P/N 32274)

PREPARATION OF REAGENTS AND STANDARDS Reagent Water

Use deionized water from a Milli-Q Gradient A10, 18 M Ω -cm resistivity or better.

Preserved Reagent Water

Dissolve 4.6 g of potassium dihydrogen citrate and 40 mg of $Na_2S_2O_3$ in a 50 mL beaker with reagent water, transfer this solution to a 500 mL volumetric flask, and bring to volume with reagent water. Prior to use, filter the solution through a 0.45 µm filter.

Stock Standard Carbamates Calibration Mixture

Pipet 10 μ L of EPA 531.2 carbamate calibration mixture (100 μ g/mL) into a 1 mL vial and add 990 μ L of methanol. The concentration for each carbamate in the stock standard mixture is 1.0 μ g/mL.

1-Naphthol is naturally fluorescent. It may assist in troubleshooting postcolumn chemistry issues because it will be the only peak present in a chromatogram when the postcolumn system is not functioning properly.

Stock Standard of BDMC (Surrogate Analyte, SUR)

Pipet 10 μ L of BDMC (100 μ g/mL) into a 1 mL vial and add 990 μ L of methanol. The concentration of the stock standard solution is 1.0 μ g/mL.

Working Standard Solutions for Calibration

Prepare five working standard solutions by adding the quantities of carbamate mixture stock standard solutions listed in Table 1 to 25 mL volumetric flasks. Add 50 μ L of the stock standard solution of BDMC into each flask. Bring to volume with preserved reagent water.

Sodium Hydroxide Hydrolysis Reagent (Postcolumn Reagent 1)

Sodium hydroxide, 0.2%: Dilute 4 mL of 50% w/w NaOH solution to 1 L with reagent water. The concentration of the hydrolysis solution can dramatically affect the analyte response. Filter and degas with nitrogen just before use.¹

OPA Reagent (Postcolumn Reagent 2) for Postcolumn Derivatization

To prepare boric acid buffer: dissolve 3.0 g of boric acid in approximately 800 mL of reagent water in a 1 L volumetric flask. Add 1.2 mL of a 50% (w/w) NaOH solution. Bring the volume to 1.0 L with reagent water. Filter and degas prior to preparation of postcolumn reagent 2. Dissolve 100 mg of OPA in 5–10 mL of methanol and add to 1 L of boric acid buffer, then add 1 mL of 2-mercaptoethanol. This solution is postcolumn reagent 2.¹ To review the postcolumn chemistry and see a diagram of the postcolumn system configuration, see EPA Method 531.2.¹

SAMPLES AND SAMPLE PREPARATION

Three kinds of crop samples—rice, potato, and dried and fresh corn—were purchased from a market located in Zhangjiang High-Tech Park, Shanghai.

Mill the samples to powder or mash using a food processor. Put an accurately weighed ~5 g of milled sample into a clean 15 mL centrifuge tube, then add 5.0 mL of acetonitrile and 10 μ L of 1 μ g/mL BDMC (SUR). After 1 min of vortexing, add ~2 g MgSO₄ and ~0.5 g NaCl, then vortex for 1 min. Centrifuge for 10 min (rpm 3000), pipet 1.00 mL of supernatant into a 1.5 mL centrifuge tube, then add ~100 mg MgSO₄ and ~50 mg PSA. After 1 min of vortexing followed by 5 min of centrifugation (10,000 rpm), pipet 100 μ L of supernatant to a 1.5 mL vial, then add 900 μ L of preserved reagent water. Vortex this sample for a few seconds prior to analysis by HPLC.

Table 1. Preparation of Calibration Curve Standards						
Stock Standard of Carbamate Mixture (µg/mL)	Volume of Stock Standard of Carbamate Mixture (µL)	Stock Standard of BDMC (SUR) (µg/mL)	Volume of Stock Standard of BDMC (SUR) (µL)	Final Volume of Calibration Standard (mL)	Final Concentration of Carbamate Standard (µg/L)	Final Concentration of BDMC (SUR) (µg/L)
	6.25				0.25	
	12.5				0.50	
1.0	25.0	1.0	50.0	25	1.00	2.0
	50.0				2.00	
	200				8.00	

CONDITIONS

Guard Column:	Acclaim Carbamate,
	3.0 × 10 mm, 3 μm, P/N 072929
	(Use Holder V2, P/N 069580)
Analytical Column:	Acclaim Carbamate,
	3.0 × 150 mm, 3 μm, P/N 072926
Column Temp.:	50 °C
Mobile Phase:	Methanol-water, in gradient
	(Table 2)
Flow Rate:	0.9 mL/min
Inj. Volume:	50 μL
Postcolumn Reagent 1:	0.2% NaOH, first reaction coil
	at 100 °C
Postcolumn Reagent 2:	OPA regent, second reaction coil
	at room temperature
Flow Rate	
of Reagent 1 and 2:	0.3 mL/min
Fluorescence:	Excitation: 330 nm
	Emission: 465 nm
	Data Collection Rate: 5
	Response Time: 4
	Sensitivity: 7
	Lamp Mode: High Power
	PMT (Photomultiplier Tube):
	Pmt1
	Filter Wheel: 280 nm

Table 2. G	radient for the Sep	aration of Car	bamates
Time (min)	Flow Rate (mL/min)	Methanol (%)	H ₂ 0 (%)
-4		14	86
0		14	86
2	0.0	20	80
8	0.9	40	60
13.6]	70	30
16		70	30

RESULTS AND DISCUSSION Sample Preparation

The sample preparation uses two steps. One extraction step that is based on partitioning using saltingout extraction involving equilibrium between aqueous and organic layers, and then a second step, dSPE, that involves further cleanup using various combinations of salts and porous sorbents.

Acetonitrile was used because it is a good solvent for carbamates, and NaCl was used for the salting-out extraction. To remove residual water, $MgSO_4$ was used. The authors chose PSA for the dSPE step to remove sugars and fatty acids, and also because it was reported to be a good choice for the determination of carbamate and organophosphorus pesticides in fruits and vegetables.¹³

Effect of Water in Extracts

The presence of water in the extract may affect the adsorptivity of PSA in the dSPE step, resulting in poor removal of coextracted interferences.¹³ The experiments showed that the more residual water in the extract, the more coextracted interferences were left after dSPE with PSA. A simple way to resolve this problem is to add enough MgSO₄ to remove the residual water as completely as possible. Therefore, use two additions of MgSO₄ during sample preparation.

Determining the Amount of PSA for Sample Preparation

Enough PSA is required to absorb as much of the coextracted interferences as possible. Therefore, the effects of PSA on the determination of crop samples spiked with carbamate standards were investigated. Experiments showed that there was no significant difference for peak area of each carbamate after dSPE using 50 and 100 mg of PSA, respectively. Thus, use 50 mg of PSA for the dSPE sample preparation step.

Figure 1. Chromatograms of extracts of carbamate standardspiked rice samples $(2 \mu g/L each)$ after acetonitrile and salt-out extractions (A) without and (B) with dSPE using PSA.

Choice of Sorbent

For some crop samples, such as rice, the coextracted substances were sufficiently removed after acetonitrile and salt-out extractions, and hence the dSPE cleanup step was not required. As shown in Figure 1, there is no significant difference between the chromatograms of the extracts of carbamate standard-spiked rice samples obtained by acetonitrile and salt-out extractions with and without using dSPE.

Figure 2. Chromatograms of extracts of carbamate standardspiked corn samples $(2 \mu g/L each)$ after acetonitrile and salt-out extractions (A) without and with dSPE using (B) PSA and (C) activated carbon. Other conditions are the same as in Figure 1.

For other crop samples, such as corn and potato, experiments demonstrated that after acetonitrile and saltout extractions, coextracted interferences were still present in the extracts. Figure 2(A) shows a chromatogram of the extract of a carbamate standard-spiked corn sample obtained by acetonitrile and salt-out extractions. The coextracted interferences with retention times 3 ~ 5 min may interfere with the determination of aldicarb sulfoxide, aldicarb sulfone, oxamyl, and methomyl (peaks 1 to 4). Use dSPE with PSA or activated carbon to try to remove these interferences. As shown in Figure 2(B), after dSPE with PSA, good separation of these carbamates was observed. This can be attributed to the efficient removal of these interferences by PSA treatment. When using activated carbon instead of PSA, better removal of interferences was obtained. As shown in Figure 2(C), the coextracted substances with retention times $3 \sim 5 \min$ were removed, and the unknown peaks in Figure 2(B)were removed as well; however, carbaryl (peak 9) and 1-naphthol (peak 10) were lost, and methiocarb (peak 11) was not fully recovered after dSPE with activated carbon, demonstrating that they were absorbed by activated carbon.

Figure 3. Chromatograms of extracts of carbamate standardspiked potato samples (2 μ g/L each) after acetonitrile and salt-out extractions (A) without and with dSPE using (B) PSA, (C) activated carbon, and (D) mixture of PSA and activated carbon (1:1, w/w). Other conditions are the same as in Figure 1.

Figure 3(A) shows a chromatogram of an extract of a potato sample obtained by acetonitrile and saltout extractions and spiked with carbamate standards. It appears that large amounts of coextracted polar substances with retention times $1 \sim 2$ min may interfere with the determination of carbamates (i.e., there are low responses for the carbamates). After dSPE with PSA, as shown in Figure 3(B), much higher responses were observed; however, the presence of the substances with retention times $5 \sim 7$ min probably interfere with the determination of 3-hydroxycarbofuran (peak 5).

When using activated carbon, as shown in Figure 3(C), these coextracted interferences were removed, but the polar substances with retention times $1 \sim 2$ min still remained and resulted in low responses of all carbamates.

Figure 4. Chromatograms of BDMC (SUR) after acetonitrile and salt-out extractions (A) without and with dSPE using (B) PSA, (C) activated carbon, and (D) mix of PSA and activated carbon (1:1, w/w). Other conditions are the same as in Figure 1.

As with the corn samples, carbaryl (peak 9) and 1-naphthol (peak 10) were lost, and methiocarb (peak 11) exhibited poor recovery after dSPE with activated carbon. If the carbamates, except for those absorbed by activated carbon, were the target analytes, the mixture of PSA and activated carbon would be a better choice (Figure 3[D]).

The mixed sorbent treatment removed most of the interferences and the analyte responses were good. Unfortunately, the carbamate BDMC, whose addition was specified in EPA Method 531.2¹ as an SUR for quantification, was also absorbed completely by activated carbon (Figure 4). Therefore, only PSA was used for dSPE for all samples in this study (Table 3).

Effect of Sample Dilution

Experiments showed that the peak shapes of aldicarb sulfoxide, aldicarb sulfone, oxamyl, and methomyl (peak 1 ~ 4) were asymmetrical when the extract (extracted by acetonitrile) was injected directly, which can be attributed to the significant difference of solvent strength between the sample solvent (acetonitrile) and mobile phase (methanol–water). To acquire ideal peak shape, the extract was diluted with preserved reagent water (see the section on Preparation of Reagents and Standards). Accordingly, the injection volume was increased to 50 μ L to maintain the detection limits.

Table 3. Peak Areas of Carbamates in Crop Samples Spiked with Carbamate Standards (2 µg/L for each), after dSPE Using Different Amounts of PSA

						Peak Area (Counts*n	nin)				
		Dies				Corn (Maize)				Detet	
Carbamate		Rice			Dried			Fresh			Polali	1
	PSA 50 mg	PSA 100 mg	Difference (%)									
Aldicarb sulfoxide	121.3	127.2	4.9	125.9	128.7	2.2	128.9	138.5	7.5	123.7	127.2	2.8
Aldicarb sulfone	115.0	117.3	2.0	117.3	116.7	-0.5	123.0	128.1	4.1	109.8	116.6	6.2
Oxamyl	87.30	98.21	12	100.3	97.11	-3.2	105.8	108.6	2.6	95.33	103.5	8.6
Methomyl	138.9	157.3	13	135.3	150.6	11	145.9	156.4	7.2	153.5	162.0	5.5
3-Hydroxy carbofuran	57.30	63.81	11	66.42	67.47	1.6	67.28	70.86	5.3	65.34	68.03	4.1
Aldicarb	106.9	118.7	11	120.0	123.7	3.1	123.1	133.7	8.6	111.1	126.8	14
Propoxur	70.28	75.01	6.7	78.08	74.39	4.7	77.58	84.89	9.4	73.14	79.67	8.9
Carbofuran	62.44	69.14	11	68.36	69.55	1.7	74.53	80.85	8.5	68.46	72.67	6.1
Carbaryl	113.5	126.5	11	124.4	123.1	1.0	129.6	137.7	6.2	121.3	134.0	10
1-Naphthol	86.46	61.96	-28	104.0	45.73	-56	137.6	120.4	-12.5	99.22	89.02	-10
Methiocarb	32.01	36.81	15	34.68	34.68	0.0	34.37	38.16	11	36.23	41.20	14

*Note: The difference was calculated by using the following equation: Difference = $(A_{100 \text{ mg of PSA}} - A_{50 \text{ mg of PSA}}) / A_{50 \text{ mg of PSA}})$

A 100 mm of PSA in dSPE, and Asim of PSA in dSPE and Asim of PSA in the obtained by using 50 mg of PSA.

Separation and Reproducibility

Figure 5 illustrates good separation of the carbamates listed in EPA Method 531.2 using the Acclaim Carbamate column, which is designed for the baseline separation of these carbamates. Resolution (R_s) for all peaks is ≥ 1.5 .

Reproducibility of the separation method was estimated by making seven replicate injections of a calibration standard with a concentration of 8.0 μ g/L for each carbamate. The RSD value of each carbamate was $\leq 0.07\%$ for retention time and $\leq 3.0\%$ for peak area.

The reproducibility of the sample preparation method was evaluated by making injections of carbamate standard-spiked crop samples from five separate sample preparations. The value of relative standard deviation (RSD) of each carbamate for peak area was \leq 7.0 %, demonstrating sufficient reproducibility for the sample preparation method.

Figure 5. Overlays of chromatograms of seven consecutive injections of carbamate standards (8 μ g/L each). Other conditions are the same as in Figure 1.

	Table 4. Method	Linearity D	ata and Method Detection Limits	(MDL)
			M	DL
Carbamate	Regression Equation	ľ	In Well-Prepared Sample Solution µg/L	Equivalent in the Original Sample µg/Kg
Aldicarb sulfoxide	A = 2.4522 c - 0.0994	0.9971	0.08	0.8
Aldicarb sulfone	A = 2.2352 c - 0.0862	0.9973	0.07	0.7
Oxamyl	A = 1.7381 <i>c</i> - 0.0523	0.9972	0.06	0.6
Methomyl	A = 2.7759 <i>c</i> - 0.0117	0.9975	0.09	0.9
3-Hydroxycarbofuran	A = 1.2364 <i>c</i> - 0.0627	0.9965	0.09	0.9
Aldicarb	A = 2.0374 c + 0.0498	0.9977	0.10	1.0
Propoxur	<i>A</i> = 1.3220 <i>c</i> + 0.0094	0.9978	0.09	0.9
Carbofuran	A = 1.2588 <i>c</i> - 0.0315	0.9973	0.04	0.4
Carbaryl	A = 2.5121 <i>c</i> - 0.0995	0.9973	0.09	0.9
1-Naphthol	A = 1.9981 c + 0.0008	0.9979	0.11	1.1
Methiocarb	A = 0.6360 c + 0.0069	0.9976	0.09	0.9

Note: The single-sided Student's test method (at the 99% confidence limit) was used for determining MDL, where the standard deviation (SD) of the peak area of seven injections is multiplied by 3.50 to yield the MDL.

Linearity and Detection Limits

Calibration linearity for the determination of carbamates by this method was investigated by making seven replicate injections of serial standard solutions of carbamates at five different concentrations from 0.25 to 8 μ g/L.

Detection limits of carbamates were calculated using the equation:

Detection limit = $St_{(n-1, 1-\alpha=0.99)}$

The symbol S represents Standard Deviation (SD) of replicate analyses, n represents number of replicates, and $t_{(n-1,1-\alpha=0.99)}$ represents Student's value for the 99% confidence level with n – 1 degrees of freedom. Seven replicate injections of extract of rice sample spiked with 2 µg/L of carbamate standard mixture were used to determine the minimum detection limits. Table 4 summarizes the calibration and MDL data, showing excellent method linearity and sensitivity.

Rice, Potato, and Corn Sample Analysis

Figure 6 shows the chromatograms of rice, potato, and fresh corn samples; the related data is summarized in Table 5, showing satisfactory spike recovery for each carbamate. No detectable levels of carbamates were found in rice and potato samples.

Figure 6. Overlays of chromatograms of crop samples spiked with 2.0 μ g/L of BDMC (SUR, peak 12), and the same samples spiked with a carbamate standard mixture with 2.0 μ g/L for each carbamate. Chromatograms, (a) crop samples, (b) carbamate standard-spiked crop samples; samples, (A) rice, (B) potato, and (C) fresh corn (maize). Other conditions are the same as in Figure 1.

					Table 5. (Crop Sa	mple A	nalysis					
		Ri	ice			Pot	ato			Fres	n Corn (Ma	aize)	
Carhamate	Detected	Addad	Found	Decovery	Detected	Addad	Found	Decovery	Detec	ted (µg/L)	Addad	Found	Decement
Curbanato	μg/L)	Addea (µg/L)	rouna (µg/L)	(%)	μg/L)	Addea (µg/L)	rouna (µg/L)	(%)	By FD	Confirmed by MS	Addea (µg/L)	rouna (µg/L)	(%)
Aldicarb sulfoxide	ND*		1.81	90	ND		1.87	94	0.10	ND		1.82	91
Aldicarb sulfone	ND		1.72	86	ND		1.81	90	ND	Detected		1.88	94
Oxamyl	ND]	1.82	91	ND]	1.99	99		ND		2.05	102
Methomyl	ND		1.78	89	ND		2.06	103		ND		1.77	89
3-Hydroxy- carbofuran	ND	2.0	1.68	84	ND	2.0	1.98	99	ND	Detected	2.0	1.74	87
Aldicarb	ND]	1.85	93	ND]	1.97	98	0.29	Detected		1.73	87
Propoxur	ND		1.87	93	ND		1.96	98		ND		2.06	103
Carbofuran	ND		1.87	93	ND		1.88	94		ND		1.89	95
Carbaryl	ND]	1.68	84	ND]	1.77	89		ND		1.85	92
1-Naphthol	ND		1.58	79	ND		1.85	93		ND		1.80	90
Methiocarb	ND		1.79	90	ND		1.97	94		ND		1.95	97

Note: ND = not detected

When the fresh corn sample was analyzed, two small peaks with retention times near that of aldicarb sulfoxide (peak 1) and aldicarb (peak 6) were found and labeled, as the two carbamates with concentrations were 0.10 and 0.29 μ g/L, respectively (Figure 6[C]).

A complicated matrix may sometimes yield false positives for carbamates. An efficient way to determine if the peaks are carbamates is by using mass spectrometry (MS) detection. Based on the LC-MS method described in Reference 14, LC-MS results revealed that the peak with retention time near peak 1 was not aldicarb sulfoxide, and the one near peak 6 was aldicarb with estimated concentration of $0.30 \mu g/L$, which is similar to the concentration determined using FD.

The EPA's August 2010 risk assessment indicates that aldicarb no longer meets the Agency's rigorous food safety standards and may pose unacceptable dietary risks, especially to infants and young children. The Agency is initiating action to terminate uses of aldicarb, and also plans to revoke aldicarb tolerances. Bayer CropScience plans to stop marketing aldicarb worldwide by 2014.¹⁵ Therefore, simpler, efficient, and sensitive methods for the determination of aldicarb in soil, crops, environmental water, and food products are desired. Additionally, although aldicarb sulfone (peak 2) and 3-hydroxycarbofuran (peak 5) were not found in the fresh corn sample using FD, they were detected using LC-MS.

CONCLUSION

This testing describes an effective method for the determination of carbamates in rice, potato, and corn on an UltiMate 3000 HPLC system with an Acclaim Carbamate column and FD following postcolumn derivatization. Acetonitrile extraction and dSPE cleanup using a PSA was used to isolate the carbamates and remove the interference substances from the crop samples prior to HPLC analysis. The prepared samples yielded accurate results using the method described here.

REFERENCES

- U.S. EPA Method 531.2, Revision 1.0, Measurement of N-methylcarbamoyloximes and N-methylcarbamates in Water by Direct Aqueous Injection HPLC with Postcolumn Derivatization; Environmental Protection Agency: Cincinnati, OH, 2001.
- Dionex Corporation, Determination of N-Methylcarbamates by Reversed-Phase HPLC. Application Note 96, LPN 1935, 2007, Sunnyvale, CA.
- Dionex Corporation, Determination of N-Methylcarbamates by Reversed-Phase HPLC Using an Acclaim Carbamate LC Column and FLD-3400RS Fluorescence Detector. Application Brief 115, LPN 2587, 2010, Sunnyvale, CA.
- Dionex Corporation, *Determination of* N-*Methylcarbamates in Drinking Water by HPLC*. Application Update 177, LPN 2675, 2010, Sunnyvale, CA.
- Basheer, C.; Alnedhary, A.A.; Madhava, R.B.S.; Lee, H.K. Determination of Carbamate Pesticides Using Micro-Solid-Phase Extraction Combined with High-Performance Liquid Chromatography. *J. Chromatogr.*, A 2009, 1216, 211.
- Liu, C.W.; Liu, X.W.; Zhai, G.S.; Liu, F.Z.; Mai, G.X.; Chen; Y.; Wang, Y.R. Determination of the Multiresidues of Carbamate Insecticides and Their Metabolites in Vegetables and Fruits by Solid-Phase Extraction and High Performance Liquid Chromatography. *Chin. J. Chromatogr.* 2003, *21*, 255.
- Okihashi, M.; Obana, H.; Hori, S. Determination of *N*-Methylcarbamate Pesticides in Foods Using an Accelerated Solvent Extraction with a Mini-Column Cleanup. *The Analyst* **1998**, *123*, 711.
- Dionex Corporation, Accelerated Solvent Extraction (ASE) of Pesticide Residues in Food Products. Application Note 332, LPN 1043-02, 2004, Sunnyvale, CA.

- Ding, T.; Xu, J.Z.; Shen, C.Y.; Shen, W.J.; Jiang, Y.; Chu, X.G. Determination of Carbamate Pesticide Residues in Rice by HPLC with Post-Column Derivatization Coupled with Mass Spectrometry. Chin. J. Anal. Lab. 2007, 26 (9), 77.
- Zhou, Z.M.; Chen, J.B.; Zhao, D.Y.; Yang, M.M. Determination of Four Carbamate Pesticides in Corn by Cloud Point Extraction and High-Performance Liquid Chromatography in the Visible Region Based on Their Derivatization Reaction. *J. Agric. Food Chem.* 2009, *57*, 8722.
- 11. AOAC Official Method 2007.01, Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate.
- EN 15662, 2008, Foods of Plant Origin -Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/ Partitioning and Clean-Up by Dispersive SPE.
- Liu, M.; Hashi, Y.; Song, Y.Y.; Lin, J.M. Determination of Carbamate and Organophosphorus Pesticides in Fruits and Vegetables by Liquid Chromatography-Mass Spectrometry with Dispersive Solid Phase Extraction. Chin. J. Anal. Chem. 2006, 34, 941.
- Wang, L. (J.Y.); Liu, X.D.; Schnute, W.C. *LC-MS Method for the Direct Determination of Trace* N-*Methyl Carbamates in Water Samples*. LPN 2386-01, 2010, Sunnyvale, CA.
- 15. Agreement to Terminate All Uses of Aldicarb, Current as of August 2010, Pesticides: Reregistration, Environmental Protection Agency: Cincinnati, OH, cited from http://www.epa.gov/oppsrrd1/REDs/ factsheets/aldicarb_fs.html (accessed Jan 14, 2011).

Column Selection Guide

	Si	lica Colu	mns	F	lever	sed-	Pha	se (R	P)	Mix	ed-N	1ode	Н	LIC	Ap	olica	tion-	Spec	cific	
Matrix Matrix<				Acclaim 120 C18	Acclaim 120 C8	Acclaim 300 C18	Acclaim Polar Advantage (PA)	Acclaim Polar Advantage II (PA2)	Acclaim Phenyl-1	Acclaim Trinity P1	Acclaim Mixed-Mode WAX-1	Acclaim Mixed-Mode WCX-1	Acclaim Mixed-Mode HILIC-1	Acclaim HILIC-10	Acclaim Organic Acid	Acclaim Surfactant	Acclaim Explosives E1	Acclaim Explosives E2	Acclaim Carbamate	Example Applications
Mutual Mutua Mutual Mutua Mutual Mutual Mutual Mutual Mutual Mutual Mutual Mu			High hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						Fat-soluble vitamins, PAHs, glycerides
		Neutral Molecules	Intermediate hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							Steroids, phthalates, phenolics
Anime High Indicatorial Myclophobiny V V <			Low hydrophobicity	\checkmark			\checkmark	\checkmark					\checkmark	\checkmark						Acetaminophen, urea, polyethylene glycols
Alloining Matrice of the second		a : :	High hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							NSAIDs, phospholipids
Number Image: Market interpretation of the state interpretation of the sta		Anionic Molecules	Intermediate hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							Asprin, alkyl acids, aromatic acids
Processories High hydrophobicity V V V	su	moreculee	Low hydrophobicity				\checkmark			\checkmark	\checkmark		\checkmark	\checkmark						Small organic acids, e.g. acetic acids
Catalonic Molecules Intermediate hydrophobicity 4 4 4 4 <td>atio</td> <td></td> <td>High hydrophobicity</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td>\checkmark</td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Antidepressants</td>	atio		High hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark							Antidepressants
Multiculus Low hydrophobicity V<	plic	Cationic	Intermediate hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark							Beta blockers, benzidines, alkaloids
Amplicitation High hydrophobicity V V V <th< td=""><td>al Aµ</td><td>Wolecules</td><td>Low hydrophobicity</td><td>\checkmark</td><td></td><td></td><td>\checkmark</td><td></td><td></td><td>\checkmark</td><td></td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td></td><td></td><td></td><td></td><td></td><td>Antacids, pseudoephedrine, amino sugars</td></th<>	al Aµ	Wolecules	Low hydrophobicity	\checkmark			\checkmark			\checkmark		\checkmark	\checkmark	\checkmark						Antacids, pseudoephedrine, amino sugars
Avitanonic Maleculus Intermediate hydrophobicity V <ll>V <ll>V </ll></ll>	ner	Amnhoteric/	High hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark							Phospholipids
Molacules Low hydrophobicity C <thc< th=""> C<td>66</td><td>Zwitterionic</td><td>Intermediate hydrophobicity</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td></td><td></td><td>\checkmark</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Amphoteric surfactants, peptides</td></thc<>	66	Zwitterionic	Intermediate hydrophobicity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark								Amphoteric surfactants, peptides
Matures of Noutrals and socials Nutrals and social and socials Nutrals and social and socia		Molecules	Low hydrophobicity				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						Amino acids, aspartame, small peptides
Number of Calionic Molecules Neutrals and bases V </td <td></td> <td>Mixturae of</td> <td>Neutrals and acids</td> <td>\checkmark</td> <td></td> <td></td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td>\checkmark</td> <td>\checkmark</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Artificial sweeteners</td>		Mixturae of	Neutrals and acids	\checkmark			\checkmark	\checkmark		\checkmark	\checkmark									Artificial sweeteners
Cationic Molecules Adids and bases I <thi< th=""> I <thi< th=""></thi<></thi<>		Neutral, Anionic,	Neutrals and bases	\checkmark			\checkmark	\checkmark		\checkmark		\checkmark								Cough syrup
Molecules Neutrals, acids, and bases I <thi< th=""> I I <</thi<>		Cationic	Acids and bases				\checkmark			\checkmark										Drug active ingredient with counterion
Anionic		Molecules	Neutrals, acids, and bases				\checkmark			\checkmark										Combination pain relievers
Surfactants Cationic Signal Cationic Signal Signal <t< td=""><td></td><td></td><td>Anionic</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td>\checkmark</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\checkmark</td><td></td><td></td><td></td><td>SDS, LAS, laureth sulfates</td></t<>			Anionic	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark				SDS, LAS, laureth sulfates
Surfactants Noninic I <thi< th=""> I I</thi<>			Cationic													\checkmark				Quats, benzylalkonium in medicines
Surfactants Amphoteric Image: Margina decision of the second decision of the sec		0.6.4.4	Nonionic	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					\checkmark			\checkmark				Triton X-100 in washing tank
Hydrotopes Hydrotopes I <thi< th=""> I</thi<>		Surfactants	Amphoteric	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark								\checkmark				Cocoamidopropyl betaine
Surfactant blends I <thi< th=""> I <thi< th=""></thi<></thi<>			Hydrotropes													\checkmark				Xylenesulfonates in handsoap
Organic Acids Hydrophobic I <thi< th=""> I <thi< th=""> I</thi<></thi<>			Surfactant blends													\checkmark				Noionic and anionic surfactants
Organic Acids Hydrophilic I <thi< th=""> <thi< th=""> <thi< th=""> I</thi<></thi<></thi<>			Hydrophobic							\checkmark	\checkmark				\checkmark					Aromatic acids, fatty acids
Function Explosives Image: Carbonyl compounds		Organic Acids	Hydrophilic							\checkmark	\checkmark				\checkmark					Organic acids in soft drinks, pharmaceuticals
Favionyl compounds I			Explosives														\checkmark	\checkmark		U.S. EPA Method 8330, 8330B
Phenols Image: Construction of the constructio			Carbonyl compounds															\checkmark		U.S. FPA 1667, 555, 0T-11, CA CARB 1004
Privinos Image: status of the status of	suc		Phenols	\checkmark			\checkmark													Compounds regulated by U.S. EPA 604
Furiarization V <	cati		Chlorinated/Phenoxy acids				~													U.S. FPA Method 555
Environmental Contaminants Nitrosamines Image: Solution of the so	Ippl		Triazines	\checkmark																Compounds regulated by U.S. FPA 619
Vitaminants Microcystins Image: Sector of the sector	ific /	Environmental	Nitrosamines				\checkmark													Compounds regulated by U.S. EPA 8270
Vitamins Anions	pec	Contaminants	Renzidines	\checkmark																U.S. FPA Method 605
Nicrocystins N <t< td=""><td>S</td><td></td><td>Perfluorinated acids</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dionex TN73</td></t<>	S		Perfluorinated acids																	Dionex TN73
Non-optimize Non-optimize Non-optimize Non-optimize Non-optimize Isocyanates			Microcystins	V																ISO 20179
Notice			Isocvanates																	II.S. OSHA Methods 42, 47
Vitamins Vitamins <th< td=""><td></td><td></td><td>Carbamate insecticides</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\checkmark</td><td>U.S. FPA Method 531.2</td></th<>			Carbamate insecticides																\checkmark	U.S. FPA Method 531.2
Vitamins Vitamins <th< td=""><td></td><td></td><td>Water-soluble vitamins</td><td></td><td></td><td></td><td>V</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Vitamins in dietary sunnlements</td></th<>			Water-soluble vitamins				V													Vitamins in dietary sunnlements
Anions Image: Constraints Image: Constraints <td></td> <td>Vitamins</td> <td>Fat-soluble vitamins</td> <td>V</td> <td></td> <td>V</td> <td>ا</td> <td>, √</td> <td></td> <td>Vitamin nills</td>		Vitamins	Fat-soluble vitamins	V		V	ا	, √												Vitamin nills
Pharmacutical Counterions Cations N N N Inorgaic cations and organic bases in drugs Nixture of Anions and Cations N N N Screening of pharmaceutical counterions			Anions								V			-						Inormaic anions and organic acids in drugs
Counterions Mixture of Anions and Cations V Screening of pharmaceutical counterions		Phormonutinel	Cations							V		\checkmark								Inorgaic cations and organic actus in drugs
		Counterions	Mixture of Anions and Cations				-			V				-						Screening of pharmaceutical counterions
API and counterions			API and counterions							√										Nanroxen Nat salt metformin Cloalt oto

Pe Ce	olymer olumns	IonPac AS23	IonPac AS22	IonPac AS22-Fast	IonPac AS14/A	IonPac AS12A	lonPac AS9/HC/SC	IonPac AS4A/SC	IonSwift MAX-100	IonPac AS24	IonPac AS21	IonPac AS20	IonPac AS19	IonPac AS18	IonPac AS18-Fast	IonPac AS17-C	lonPac AS16	lonPac AS15	IonPac AS11(-HC)	lonPac AS10	lonPac AS7	lonPac AS5	lonPac Fast Anion IIIA	OmniPac PAX-100	OmniPac PAX-500
	Inorganic Anions	J	V	J	J	V	J	J	V	V		V	J	J	J	V		V	V	J					_
		, √				√	, √			√			√												_
	Bromato	, J					, √			√			√												
	Perchlorate		-							•	V	V					V								
NS		-							V							V		V	V	V					_
NID	Phosphoric/Citric Acids	-																					\checkmark		
A	Poly/High-Valence Anions	-							V			V													
	Hydrophobic Anions											\checkmark					\checkmark		\checkmark						
	Hydrophobic/Halogenated Anions	-							\checkmark			\checkmark							\checkmark					\checkmark	
	Anionic Neutral Molecules									\checkmark	\checkmark	\checkmark	\checkmark												
	Inorganic Cations																								
	Sodium/Ammonium																								
	Amines/Polyvalent Amines																								
lS	Aliphatic/Aromatic Amines																								
10V	Alkanol/Ethhanolamines																								
CAT	Biogenic Amines																								
	Transition/Lanthanide Metals																								
	Hydrophobic Cations																								
	Cationic Neutral Molecules																								
	Amino Acids																								
	Phosphorylated Amino Acids																								
	Amino Sugars																								
	Oligosccharides																								
ES	Mono-/Di-Saccharides																								
CUL	Glycoproteins																								
OLE	Alditols/Aldoses mono/di Saccharides																								
W-C	ds Nucleic Acids																								
BIC	Single-Stranded Oligonucleotides																								
	Peptides																								
	Proteins																								
	Metal-binding Proteins																								
	Monoclonal antibodies																								
	Aliphatic Organic Acids																								
60	Alcohols																								
ILES	Borate																								
ECL	Large Molecules, Anions																								
ТОИ	Small Molecules																								
110	Small Molecules/LC-MS																								
GAN	Polar/Non-Polar Small Molecules																								
OR	Hydrophobic/Aliphatic Organic Acids																								
	Surfactant Formulations																								
	Explosives/EPA 8330																								
	Anion Exchange / Carbonate	V	V	V	\checkmark	V	\checkmark	V																	
	Anion Exchange / Hydroxide								V	\checkmark	V	V	V	V	V	V	V	V	V	V	V	V	V		
100	Cation Exchange																								
ODE	Multi-Mode																							V	\checkmark
M	Affinity	L							<u> </u>																
	Ion Exclusion	L																							
	Reversed Phase	L																							
	Anion Exchange/Other																								

IonPac CS18	IonPac CS17	IonPac CS16	IonPac CS15	IonPac CS14	IonPac CS12A	IonPac CS11	IonPac CS10	IonPac CS5A	OmniPac PCX-100	OmniPac PCX-500	AminoPac PA10	AminoPac PA1	CarboPac PA200	CarboPac PA100	CarboPac PA20	CarboPac PA10	CarboPac PA1	CarboPac MA1	DNAPac PA200	DNAPac PA100	ProPac WAX/SAX	ProPac WCX/SCX	ProPac IMAC	ProPac HIC	ProPac PA1	ProSwift	IonPac ICE-AS6	IonPac ICE-AS1	IonPac ICE-Borate	IonPac NS1
V	V	V	V	V	V	V	V																							
N	7	V	V		V																									
	√			V	\checkmark																									
√ √	√ √		V																											
								V																						
N	V			N					N	\checkmark																				
											ار ا	V																		
											√		V	\checkmark	\checkmark	\checkmark														
													V	V	V	\checkmark	√ √	√ √												
															1	1				V	V	V				\checkmark				
															V	V	V	V	\checkmark	1										
																			V	V			2	al	al	V				
																					V	\checkmark	V	V	1	V				
													V	V			V		1	V	V	V	√ √	V	V	V				
																											V	V		V
																											V	V	\checkmark	
																														V
																														V
					1								V	V	V	\checkmark	\checkmark	V								1				
V	V	N	V	N	N	V	N	N	\checkmark	V												V			V	N				
																							V				1	J	N	
																								V	V	\checkmark	Y	Y	V	\checkmark
											\checkmark	\checkmark							\checkmark	\checkmark	\checkmark				\checkmark	\checkmark				

Column Specifications

IC Anion Columns

Column	Format	Primary Eluent	Application	Particle Diameter	Substrate Crosslinking	Latex Diameter	Latex Crosslinking	Capacity (per column)	Functional Group	Hydrophobicity
lonPac AS24	2 × 250 mm	Hydroxide	Recommended column for haloacetic acids prior to MS or MS/MS detection	7 µm	55%	-	-	140 µeq	Alkanol quaternary ammonium	Ultralow
IonPac AS23	2 × 250 mm 4 × 250 mm	Carbonate	Recommended column for inorganic anions and oxyhalides. Trace bromate in drinking water.	6 µm	55%	-	-	80 µeq 320 µeq	Alkyl quaternary ammonium	Ultralow
IonPac AS22	2 × 250 mm 4 × 250 mm	Carbonate	Recommended column for fast analysis of common inorganic anions.	6.5 µm	55%	-	-	52.5 µeq 210 µeq	Alkyl quaternary ammonium	Ultralow
lonPac AS21	2 × 250 mm	Hydroxide	Recommended column for trace perchlorate prior to MS or MS/MS detection	7.0 µm	55%	-	-	45 µeq	Alkanol quaternary ammonium	Ultralow
lonPac AS20	2 × 250 mm 4 × 250 mm	Hydroxide	Recommended column for trace perchlorate prior to suppressed conductivity detection.	7.5 µm	55%	-	-	77.5 µeq 310 µeq	Alkanol quaternary ammonium	Ultralow
lonPac AS19	2 × 250 mm 4 × 250 mm	Hydroxide	Recommended column for inorganic anions and oxyhalides. Trace bromate in drinking water.	7.5 µm	55%	-	-	60 µeq 350 µeq	Alkanol quaternary ammonium	Low
lonPac AS18	2 × 250 mm 4 × 250 mm	Hydroxide	Recommended column for the analysis of common inorganic anions.	7.5 µm	55%	65 nm	8%	75 µeq 285 µeq	Alkanol quaternary ammonium	Low
lonPac AS17-C	2 × 250 mm 4 × 250 mm	Hydroxide	Trace anions in HPW matrices. Carboxylated resin, no sulfate blank. Low capacity for fast analysis of common inorganic anions using gradient elution with the Eluent Generator.	10.5 μm	55%	75 nm	6%	7.5 µeq 30 µeq	Alkanol quaternary ammonium	Low
lonPac AS16	2 × 250 mm 4 × 250 mm	Hydroxide	High capacity for hydrophobic anions including iodide, thiocyanate, thiosulfate, and perchlorate. Polyvalent anions including: polyphosphates and polycarboxylates	9 µm	55%	80 nm	1%	42.5 µeq 170 µeq	Alkanol quaternary ammonium	Ultralow
lonPac AS15	2 × 250 mm 4 × 250 mm	Hydroxide	High capacity for trace analysis of inorganic anions and low molecular weight organic acids in high purity water matrices.	9 µm	55%	-	-	56.25 µеq 225 µеq	Alkanol quaternary ammonium	Medium- High
lonPac AS15- 5mm	3 × 150 mm	Hydroxide	Fast run, high capacity for trace analysis of inorganic anions and low molecular weight organic acids in high purity water matrices.	5 µm	55%	-	-	70 µeq	Alkanol quaternary ammonium	Medium- High
lonPac AS14A- 5 µm	3 × 150 mm	Carbonate	Recommended column for fast analysis of common inorganic anions.	5 µm	55%	-	-	40 ueq	Alkyl quaternary ammonium	Medium
IonPac AS14A	4 × 250 mm	Carbonate	For analysis of common inorganic anions.	7 µm	55%	-	-	120 µeq	Alkyl quaternary ammonium	Medium
IonPac AS14	2 × 250 mm 4 × 250 mm	Carbonate	Moderate capacity for fast analysis of common inorganic anions.	9 µm	55%	-	-	16 µеq 65 µеq	Alkyl quaternary ammonium	Medium- High

Column	Format	Primary Eluent	Application	Particle Diameter	Substrate Crosslinking	Latex Diameter	Latex Crosslinking	Capacity (per column)	Functional Group	Hydrophobicity
IonPac AS12A	2 × 200 mm 4 × 200 mm	Carbonate	Moderate capacity for analysis of inorganic anions and oxyhalides. Trace chloride and sulfate in high carbonate matrices.	9 µm	55%	140 nm	0.20%	13 µеq 52 µеq	Alkyl quaternary ammonium	Medium
IonPac AS11-HC	2 × 250 mm 4 × 250 mm	Hydroxide	High capacity for the determination of organic acids and inorganic anions in uncharacterized samples.	9 µm	55%	70 nm	6%	72.5 µeq 290 µeq	Alkanol quaternary ammonium	Medium- Low
lonPac AS11	2 × 250 mm 4 × 250 mm	Hydroxide	Low capacity for fast profiling of organic acids and inorganic anions in well-characterized samples.	13 µm	55%	85 nm	6%	11 μeq 45 μeq	Alkanol quaternary ammonium	Very Low
lonPac AS10	2 × 250 mm 4 × 250 mm	Hydroxide	High capacity for the analysis of inorganic anions and organic acids in high nitrate samples.	8.5 µm	55%	65 nm	5%	42.5 µeq 170 µeq	Alkyl quaternary ammonium	Low
IonPac AS9-HC	2 × 250 mm 4 × 250 mm	Carbonate	High-capacity column for inorganic anions and oxyhalides. Trace bromate in drinking water.	9 µm	55%	90 nm	18%	48 µeq 190 µeq	Alkyl quaternary ammonium	Medium- Low
IonPac AS9-SC	4 × 250 mm	Carbonate	Low capacity for fast analysis of inorganic anions and oxyhalides. Specified column in US EPA Method 300.0 (B).	13 µm	55%	110 nm	20%	30-35 µeq	Alkyl quaternary ammonium	Medium- Low
IonPac AS4A-SC	2 × 250 mm 4 × 250 mm	Carbonate	Low capacity for fast analysis of common inorganic anions. Specified column in U.S. EPA Method 300.0 (A).	13 µm	55%	160 nm	0.50%	5 µeq 20 µeq	Alkanol quaternary ammonium	Medium- Low
IonPac Fast Anion IIIA	3 × 250 mm	Hydroxide	Recommended column for phosphoric and citric acids in cola soft drinks.	7.5 µm	55%	-	-	55 µeq	Alkanol quaternary ammonium	Ultralow
IonPac AS7	4 × 250 mm	Specialty Eluents	Polyvalent anions including chelating agents, polyphosphates and polyphosphonates. Cyanide, sulfide, hexavalent chromium, and arsenic speciation.	10 µm	2%	530 nm	5%	100 µeq	Alkyl quaternary ammonium	Medium- High
IonPac AS5A	4 × 150 mm	Hydroxide	Low capacity for fast profiling of organic acids and inorganic anions in well-characterized samples.	5 µm	2%	60 nm	4%	35 µeq	Alkanol quaternary ammonium	Low
lonPac AS5	4 × 250 mm	Hydroxide	Metal-EDTA complexes, metal- cyanide complexes, and oxyanions.	15 µm	2%	120 nm	1%	20 µeq	Alkanol quaternary ammonium	Low

IC Cation Columns

Column	Format	Primary Eluent	Application	Particle Diameter	Substrate Crosslinking	Latex Diameter	Latex Crosslinking	Capacity (per column)	Functional Group	Hydrophobicity
IonPac CS18	2 × 250 mm	MSA	Recommended column for polar amines (alkanolamines and methylamines) and moderately hydrophobic and polyvalent amines (biogenic and diamines). Nonsuppressed mode when extended calibration linearity for ammonium and weak bases is required	6 μm	55%	-	-	0.29 µeq	Carboxylic acid	Medium
lonPac CS17	2 × 250 mm 4 × 250 mm	MSA	Recommended column for hydrophobic and polyvalent amines (biogenic amines and diamines)	7 µm	55%	-	-	0.363 µeq 1.45 µeq	Carboxylic acid	Very Low
IonPac CS16	3 × 250 mm 5 × 250 mm	MSA	Recommended column for disparate concentration ratios of adjacent- eluting cations such as sodium and ammonium. Can be used for alkylamines and alkanolamines.	5 µm	55%	-	-	3.0 µеq 8.4 µеq	Carboxylic acid	Medium
lonPac CS15	2 × 250 mm 4 × 250 mm	MSA	Disparate concentration ratios of ammonium and sodium. Trace ethanolamine in high-ammonium or high- potassium concentrations. Alkanolamines.	8.5 µm	55%	-	-	0.7 µеq 2.8 µеq	Carboxylic acid/ phosphonic acid/ crown ether	Medium
lonPac CS14	2 × 250 mm 4 × 250 mm	MSA	Aliphatic amines, aromatic amines, and polyamines plus mono- and divalent cations.	8.5 µm	55%	-	-	0.325 µeq 1.3 µeq	Carboxylic acid	Low
lonPac CS12A- MS	2 × 100 mm	MSA	IC-MS screening column for fast elution and low flow rates required for interfacing with IC-MS	8.5 µm	55%	-	-	0.28 µeq	Carboxylic acid/ phosphonic acid	Medium
lonPac CS12A- 5 µm	3 × 150 mm	MSA	Recommended column for high efficiency and fast analysis (3 min) of mono- and divalent cations.	5 µm	55%	-	-	0.94 µeq	Carboxylic acid/ phosphonic acid	Medium
lonPac CS12A	2 × 250 mm 4 × 250 mm	MSA	Recommended column for the separation of mono- and divalent cations. Manganese morpholine, alkylamines, and aromatic amines.	8.5 µm	55%	-	-	0.7 µеq 2.8 µеq	Carboxylic acid/ phosphonic acid	Medium
lonPac CS11	2 × 250 mm	HCI + DAP	Separation of mono- and divalent cations. Ethanolamines if divalent cations are not present.	8 µm	55%	200 nm	5%	0.035 µeq	Sulfonic acid	Medium
lonPac CS10	4 × 250 mm	HCI + DAP	Separation of mono- and divalent cations.	8.5 µm	55%	200 nm	5%	0.08 µeq	Sulfonic acid	Medium
lonPac CS5A	2 × 250 mm 4 × 250 mm	Pyridine dicarboxylic acid	Recommended column for transition and lanthanide metals analysis. Aluminum analysis.	9 µm	55%	140 nm 75 nm	10% 20%	0.02 µeq/ 0.005 µeq 0.04 µeq/ 0.01 µeq	Sulfonic acid/ alkanol quaternary ammonium	-

Ion-Exclusion Columns

Column	Format	Primary Eluent	Application	Particle Diameter	Substrate Crosslinking	Latex Diameter	Latex Crosslinking	Capacity (per column)	Functional Group	Hydro- phobicity
IonPac ICE-AS1	4 × 250 mm 9 × 250 mm	Heptafluorobutyric acid	Organic acids in high ionic strength matrices. Fast separation of organic acids.	7.5 µm	8%	-	-	5.3 µeq 27 µeq	Sulfonic acid	Ultra Low
IonPac ICE-AS6	9 × 250 mm	Heptafluorobutyric acid	Organic acids in complex or high ionic strength matrices.	8 µm	8%	-	-	27 µeq	Sulfonic and carboxylic acid	Moderate
IonPac ICE- Borate	9 × 250 mm	MSA/ Mannitol	Trace concentrations of borate	7.5 µm	8%	-	-	27 µeq	Sulfonic acid	Ultra Low

Acclaim General and Specialty Columns

Column	Bonded Phase	USP Type	Endcapped	Substrate	Particle Shape	Particle Size	Metal Impurity (ppm) Na, Fe, AL	Average Pore Diameter	Surface Area (m²/g)	Total Carbon Content
Mixed-Mode WAX	Proprietary alkyl amine	na	Proprietary			5 µm		120 Å	300	na
Mixed-Mode HILIC	Proprietary alkyl diol	na	Proprietary			5 µm		120 Å	300	na
Mixed-Mode WCX	Proprietary alkyl carboxyl	na	Proprietary			5 µm		120 Å	300	na
Organic Acid (OA)	Proprietary	na	Yes			5 µm		120 Å	300	17%
Surfactant and Explosives E1/2	Proprietary	na	Yes			5 µm		120 Å	300	na
120 C18	C18	L1	Yes			2, 3 and 5 μm		120 Å	300	18%
120 C8	C8	L7	Yes	Ultrapure	Spherical	3 and 5 µm	<10 ppm	120 Å	300	11%
300 C18	C18	L1	Yes	Silica		3 µm		300 Å	100	7%
Polar Advantage	Sulfamido C16	na	Yes			3 and 5 µm		120 Å	300	17%
Polar Advantage II	Amide C18	na	Yes			2, 3 and 5 μm		120 Å	300	17%
HILIC	Proprietary hydrophilic		Yes			3 µm		120 Å	300	
Phenyl-1	Proprietary alkyl phenyl		Yes			3 µm		120 Å	300	
Carbamate	Proprietary alkyl group		Yes			3 and 5 µm		120 Å	300	
Trinity			Yes					120 Å	300	

Bio Columns

Protein

Column	Phase	Target Applications	Base Matrix Material	Substrate Crosslinking	Capacity	Recommended Flow Rate	Solvent Compatibility	Maximum Backpressure	pH Range
MAbPac SEC-1									
MAbPac SCX-10									
ProPac WCX-10	Weak Cation Exchange	High resolution and high efficiency separations of proteins and glycoproteins, pl =3-10, MW>10,000 units	10-µm diameter nonporous substrate to which is grafted a polymer chain bearing carboxylate groups.	55%	6 mg/ mL lysozyme	0.2—2 mL/min	80% ACN, acetone. Incompatable with alcohols and MeOH	3000 psi (21 MPa)	2–12.0
ProPac SCX-10	Strong Cation Exchange	High resolution and high efficiency separations of proteins and glycoproteins, pl =3-10, MW>10,000 units	10 µm diameter nonporous substrate to which is grafted a polymer chain bearing sulfonate groups.	55%	3 mg/ mL lysozyme	0.2–2.0 80% ACN, mL/min acetone, MeOH		3000 psi (21 MPa)	2–12.0
ProPac SCX-20									
ProPac WAX-10	Weak Anion Exchange	High resolution and high efficiency separations of proteins and glycoproteins, pl =3-10, MW>10,000 units	10 µm diameter non-porous substrate to which is grafted a polymer chain bearing tertiary amine groups.	55%	5 mg/ mL BSA/ mL	0.2–2.0 mL/min	80% ACN, acetone, MeOH,	3000 psi (21 MPa)	2–12.0
ProPac SAX-10	Strong Anion Exchange	High resolution and high efficiency separations of proteins and glycoproteins, pl =3-10, MW>10,000 units	10 µm diameter non- porous substrate with grafted polymer chain bearing quaternary ammonium groups.	55%	15 mg/ mL BSA	0.2–2.0 mL/min	80% ACN, acetone, MeOH	3000 psi (21 MPa)	2–12.0
ProSwift RP-1S	Reversed- Phase	Fast protein separation with high capacity using Reversed Phase	Monolith; polystyrene- divinylbenzene with phenyl functional group	Monolith Standard permeability	5.5 mg/mL Insulin	2–4 mL/min	Most common organic solvents	2800 psi (19.2 Mpa)	1—14
ProSwift RP-2H	Reversed- Phase	Fast protein separation with high capacity using Reversed Phase	Monolith; polystyrene- divinylbenzene with phenyl functional group	Monolith High permeability	1.0 mg/mL Lysozyme	1—10 mL/min	Most common organic solvents	2800 psi (19.3 Mpa)	1–14
ProSwift RP-4H									
ProSwift RP-3U	Reversed- Phase	Fast protein separation with high capacity using Reversed Phase	Monolith; polystyrene- divinylbenzene with phenyl functional group	Monolith Ultrahigh permeability	0.5 mg/mL Lysozyme	1— 16 mL/min	Most common organic solvents	2800 psi (19.3 Mpa)	1–14
ProSwift SAX-1S	Strong Anion Exchange	Fast protein separation with good resolution using Anion Exchange	Monolith; polymethac- rylate with quaternary amine functional group	Monolith Standard permeability	18 mg/mL BSA	0.5–1.5 (4.6 mm), 0.05–.25 (1.0 mm)	Most common organic solvents	1000 psi (4.6 mm) 2000 psi (1.0 mm)	2–12.0
ProSwift SCX-1S	Strong Cation Exchange	Fast protein separation with good resolution using Cation Exchange	Monolith; polymethac- rylate with sulfonic acid fuctional group	Monolith Standard permeability	30 mg/mL Lysozyme	0.5–1.5 mL/min (4.6 mm)	Most common organic solvents	1000 psi (4.6 mm)	2–12.0

Column	Phase	Target Applications	Base Matrix Material	Substrate Crosslinking	Capacity	Recommended Flow Rate	Solvent Compatibility	Maximum Backpressure	pH Range
ProSwift WAX-1S	Weak Anion Exchange	Fast protein separation with good resolution using Anion Exchange	Monolith; polymethacrylate with tertiary amine (DEAE) functional group	Monolith Standard permeability	18 mg/mL BSA	0.5–1.5 mL/min (4.6 mm), 0.05–.25 (1.0 mm)	Most common organic solvents	1000 psi (4.6 mm) 2000 psi (1.0 mm)	2–12.0
ProSwift WCX-1S	Weak Cation Exchange	Fast protein separation with good resolution using Cation Exchange	Monolith; polymethacrylate with carboxylic acid (CM) functional group	Monolith Standard permeability	23 mg/mL Lysozyme	0.5–1.5 mL/min (4.6 mm), 0.05–.20 (1.0 mm)	Most common organic solvents	1000 psi (4.6 mm) 2000 psi (1.0 mm)	2–12.0
ProPac IMAC-10	Immobilized Metal Affinity	High resolution separation of certain metal-binding proteins and peptides	10 µm diameter non- porous polystyrene divinylbenzene substrate with poly (IDA) grafts.	55%	>60 mg lysozyme/ mL gel (4 x 250 mm)	1.0 mL/min	EtOH, urea, NaCl, non- ionic detergents, glycerol, acetic acid, guanidine HCl	3000 psi (21MPa)	2–12
ProSwift ConA-1S									
ProPac HIC-10	Reversed- Phase	Protein separation using hydrophobic interaction with salt gradient elution	Spherical 5 µm, ultrapure silica, 300 A, surface area 100 m²/ g,	n/a	340 mg lysozyme per 7.8 x 75 mm column	1.0 mL/ min	2M Ammonium sulfate/ phosphate salts, organic solvent for cleanup	4,000 psi	2.5–7.5

Carbohydrate

Column	Target Applications	Base Matrix Material	Substrate Crosslinking	Latex Crosslinking	Capacity	Recommended Eluents	Recommended Flow Rate	Solvent Compatibility	Maximum Backpressure	pH Range
CarboPac MA1	Reduced mono- and disaccharide analysis.	7.5 µm diameter macroporous substrate fully functionalized with an alkyl quaternary ammonium group	15%	No latex	1450 µeq (4 × 250 mm)	Hydroxide	0.4 mL/min	0%	2000 psi (14 MPa)	0–14
CarboPac PA1	General purpose mono-, di-, and oligosaccharide analysis	10 µm diameter nonporous substrate agglomerted with a 500 nm MicroBead quaternary ammonium functionalized latex	2%	5%	100 µeq (4 × 250 mm)	Hydroxide, acetate/ hydroxide	1.0 mL/min	0—5%	4000 psi (28 MPa)	0–14
CarboPac PA10	Monosaccharide compositonal anaylysis	10 µm diameter nonporous substrate agglomerated with a 460 nm MicroBead di- functionalized latex	55%	5%	100 µeq (4 × 250 mm)	Hydroxide, acetate/ hydroxide	1.0 mL/min	0—90%	3500 psi (24.5 MPa)	0–14
CarboPac PA20	Fast mono-, and disaccharide analysis	6.5 μm diameter nonporous substrate agglomerated with a 130 nm MicroBead quaternary ammonium functionalized latex	55%	5%	65 μeq (3 × 150 mm)	Hydroxide, acetate/ hydroxide	0.5 mL/min	0—100%	3000 psi (21 MPa)	0–14
CarboPac PA100	Oligosaccharide mapping and analysis	8.5 µm diameter nonporous substrate agglomerated with a 275 nm MicroBead di-functionalized latex	55%	6%	90 µeq (4 × 250 mm)	Hydroxide, acetate/ hydroxide	1.0 mL/min	0—90%	4000 psi (28 MPa)	0–14
CarboPac PA200	High resolution oligosaccharide mapping and analysis	5.5 µm diameter nonporous substrate agglomerated with a 43 nm MicroBead quaternary ammonium functionalized latex	55%	6%	35 µеq (3 × 250 mm)	Hydroxide, acetate/ hydroxide	0.5 mL/min	0—100%	4000 psi (28 MPa)	0–14

DNA

Column	Target Applications	Base Matrix Material	Substrate Crosslinking	Latex Crosslinking	Capacity	Recommended Eluents	Recommended Flow Rate	Solvent Compatibility	Max. Backpressure	pH Range
DNAPac PA100	Single stranded DNA or RNA oligonucleotides, restriction fragments, glycoprotein isoforms.	13-µm diameter nonporous substrate agglomerated with a 100-nm MicroBead alkyl quaternary ammonium functionalized latex.	55%	5%	40 µeq	Chloride, acetate, bromide, perchlorate: in lithium sodium or ammonium forms	1.5 mL/min	0—100%	4000psi (28MPa)	2–12.5
DNAPac PA200	High resolution single stranded DNA or RNA oligonucleotides, restriction fragments, glycoprotein isoforms.	8-µm diameter nonporous substrate agglomerated with a 130-nm MicroBead alkyl quaternary ammonium functionalized latex.	55%	5%	40 µeq	Chloride, acetate, bromide, perchlorate: in lithium sodium or ammonium forms	1.2 mL/min	0—100%	4000psi (28MPa)	2–12.5
DNASwift										

Teflon is a registered trademark of E. I. du Pont de Nemours. Hydromatrix is a trademark of Varian Associates, Inc. Browntec Labs is a trademark and Polypore is a registered trademark of Applied Biosystems. Cyclobond is a registered trademark of Advanced Separation Technologies, Inc. Altima is a trademark of Altech Associates, Inc. TurbolonSpray is a registered trademark of Applied Biosystems. Soxtec is a trademark of Foss. PEEK is a trademark of Victrex PLC. Milli-Q is a registered trademark of Millipore Corporation. Teramyl is a registered trademark of Novozymes, Denmark.

All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

©2012 Thermo Fisher Scientific, Inc. All rights reserved. This information is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others.

 Dionex Products:
 1228 Titan Way, PO Box 3603, Sunnyvale, CA 94088-3603, (408) 737-0700

 North America:
 U.S./Canada (847) 295-7500

 South America:
 Brazil (55) 11 3731 5140

 Europe:
 Austria (43) 616 51 25, Benelux (31) 20 683 9768 (32) 3 353 4294

 Denmark (45) 36 36 90 90, France (33) 1 39 30 01 10, Germany (49) 61125 991 0

 Ireland (353) 644 0064, Italy (39) 02 51 62 1267, Sweden (46) 8 473 3380, Switzerland (41) 62 205 9966, United Kingdom (44) 1276 691722

 Asia Pacific:
 Austria (61) 2 9420 5233, China (852) 2428 3282, India (91) 22 2764 2735, Japan (81) 6885 1213, Korea (82) 2 2653 2580, Singapore (65) 6289 1190, Taiwan (886) 2 875 6655
 Now sold under the Thermo Scientific brand

