

Thermo Fisher S C I E N T I F I C

Multiple studies with a single experiment:

The Power of Quantitative Multiplexing

Overview

Part 1: Introduction

 An overview of multiplexed isobaric labeling, the basics of Tandem Mass Tags and the SPS MS3 technique

Part 2: Sample Prep

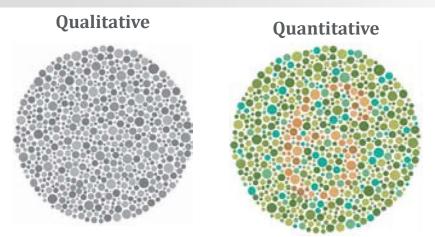
 A summary of the steps involved for a complete TMT workflow including labeling and fractionation

Part 3: Instrument Configuration

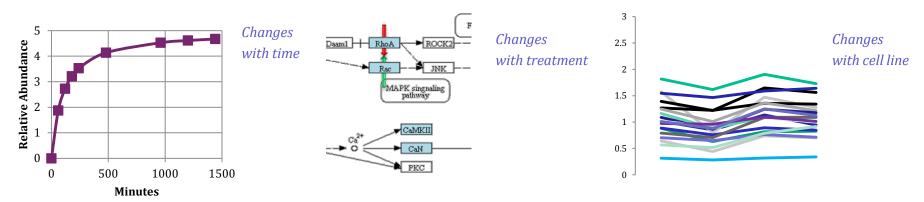
 Getting started with building an instrument method on the Orbitrap Tribrids and Benchtops using nanoHPLC

Part 4: Data Analysis

Data analysis of SPS MS3 data using Proteome Discoverer 2.1 workflow



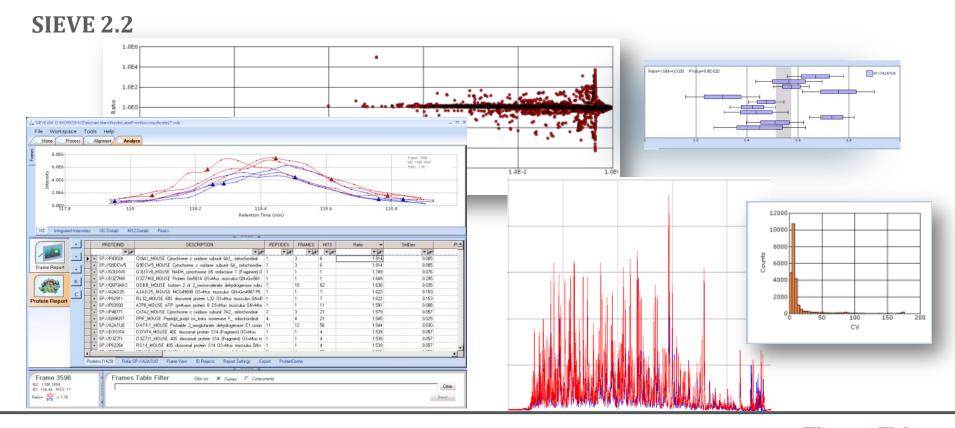
Introduction


Moving Beyond Qualitative Proteomics

Problem: Quantitative information about expression level of a protein is essential to understanding its biological role in response to change or disease.

Add another dimension to any experiment by determining the relative abundance of each identified protein

Alterations in expression can reveal a meaningful biological pattern not apparent in a pure identification experiment, which provides only a list of detected proteins

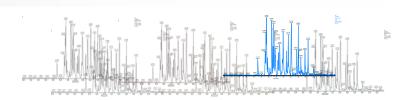


Label Free Quantitation

Several well established pipelines for the quantitation of label-free data from a data dependent (or DDA informed DIA experiment) exist. Among these:

Label Free

- o Multiple LC/MS Runs
- o Compare a few conditions
- o Requires replicate sample material



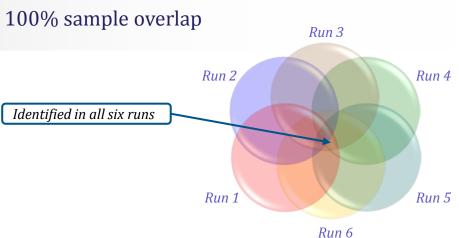
Label Free Quantitation

Problem: Requires multiple LC/MS analyses and is thus sample intensive

A differential analysis of 2 biological conditions with 3 technical replicates each would require **six** LC/MS injections and analyses:

Problem: Substantial instrument time to compare only a few conditions simultaneously

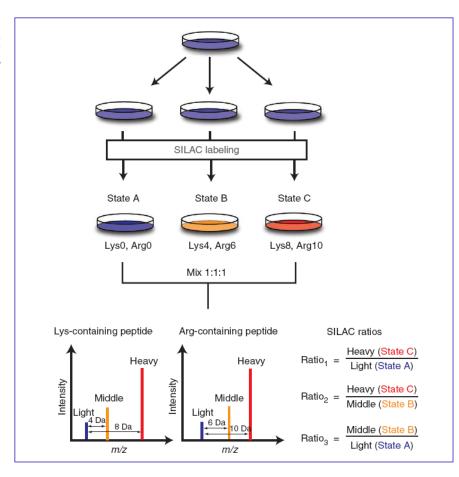
Comparing just two conditions with a two hour gradient would take more than 14 hours of instrument time



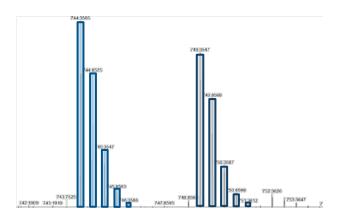
Problem: Irreproducibility due to less than 100% sample overlap

Even with 85% overlap run to run **AND**

4000 proteins identified in each run



...less than 2500 common proteins



Improving Quantitation Throughput: SILAC

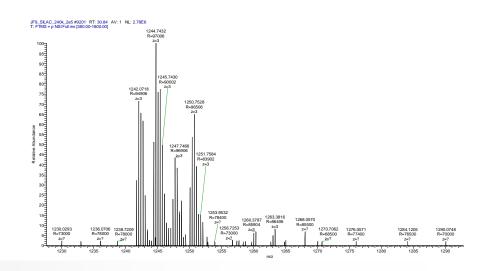
SILAC Workflow

SILAC MS1 Quantitation

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

- o Low variation between samples
- o Requires Hi-Res Mass Spectrometry
- o Compare up to 3 conditions
- o Applicable to cell culture
- o Peptide ID not required

Geiger T., et al, Nature protocols(2011):147-157



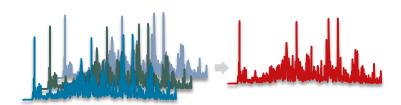
SILAC Quantitation

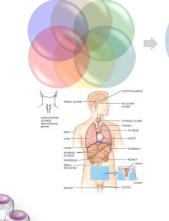
Problem: Increases MS1 Spectral Complexity

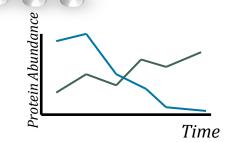
High resolution and intelligent precursor selection (i.e. selection of only one SILAC labeled peptide per pair or triad) is required for best quantitative results

Problem: Requires cell labeling in culture

Proteins must be able to be metabolically labelled and thus is not suitable for all organisms/conditions

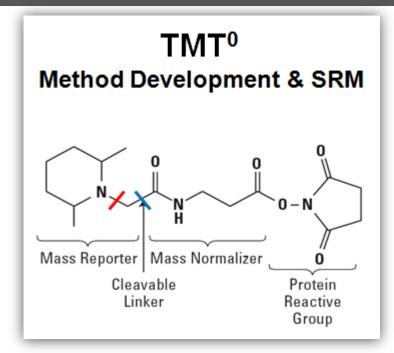


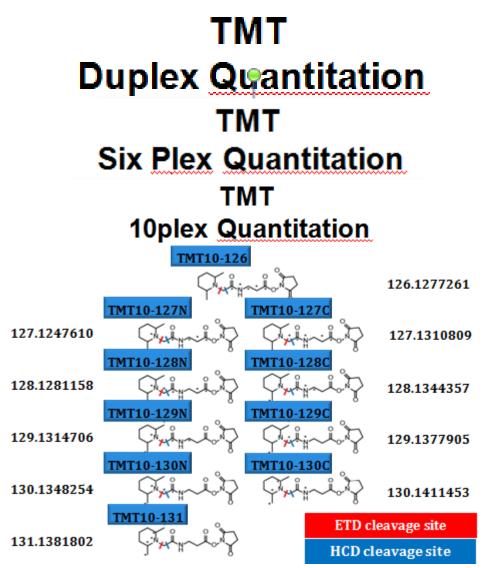

With SILAC began a trend towards increased multiplexing...



A Better Multiplexing Method-Isobaric Mass Tagging

- Less MS1 Complexity
- Increased Throughput
 - Concurrent MS analysis of multiple samples
 - Less consumed samples and less instrument time
- Fewer Missing Values
 - Identification and quantification achieved in a single run
 - No worries about irreproducibility
- Sample Origin Flexibility
 - Samples can be derived from cells, tissues or biological fluids
- Increased Multiplexing
 - Compare more than 3 conditions
- Multiple Comparisons and Improved Statistics
 - Incorporate replicates with multiple conditions: doseresponse, time-course, multiple tissues, subcellular fractions, etc





Thermo Scientific Tandem Mass Tag (TMT) Isobaric Tag Family

- 13C and 15N labeled reporter
- Fragments by ETD or HCD
- Isotopes balanced between linker region and reporter region keeping all tags exactly isobaric
- Up to 10 different tags
- Other reactive tags : Iodo TMT and Aminoxy TMT

The Multiplexing Revolution –Not Only Consumables...

SILAC

Compare 3 Conditions Ong SE, Blagoev B, et al. Mol Cell Proteomics. 2002 May;1(5):376-86

Orbitrap Classic

High Resolution Orbitrap Mass Analyzer

Hu, Q., Noll, R. J., Li, H., Makarov, A., et al. (2005), I. Mass Spectrom., 40: 430-443

TMT6plex

Compare 6 Conditions in MS² with amine reactive tags Andrew Thompson, Juergen Schaefer, Karsten Kuhn, et al. Anal. Chem., 2006, 78 (12), pp 4235-4235

Orbitrap Velos

New Axial Field HCD Cell for Improved MS² Olsen, JV; Schwartz, JC, et al. Mol Cell Proteomics, 2009 December: 8: 2759-2769

iTRAQ8plex

Label and compare 8 Conditions Choe, L., D'Ascenzo, M., Relkin, et al. (2007),. Proteomics, 7: 3651-3660

Orbitrap Elite

Hybrid; Single Notch MS³; PTR Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ. Nat Methods. 2011 Oct 2;8(11):933-5

TMT8 and TMT10

Concurrently quantify up to 10 sample conditions McAlister, G., Huttlin, E.L.; Haas, W.; et. al. Anal Chem. 2012. 84, 7469-7478.

2015

2002

2009

2011

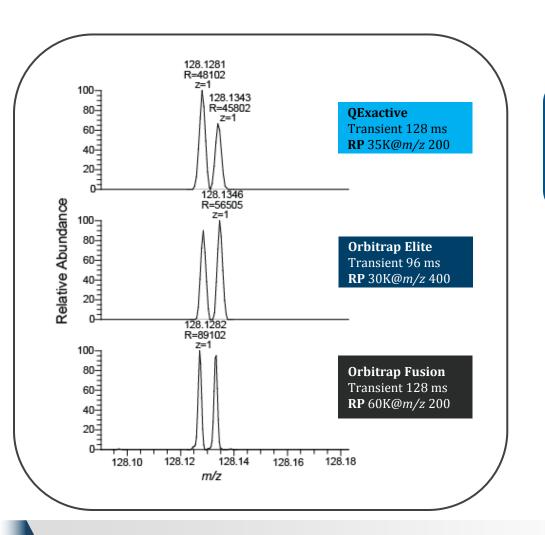
2013

Orbitrap Fusion

Tribrid, Parallelized Analysis, Multinotch

Erickson BK, Jedrychowski MP, McAlister GC, Everley RA, Kunz R, Gygi SP. Anal Chem 2015 Jan 20;87(2):1241-9

Orbitrap Fusion Lumos

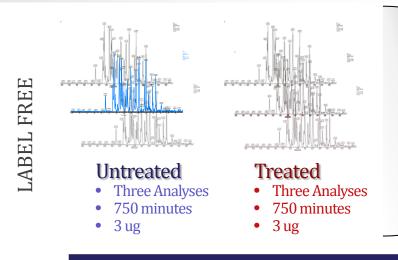

Newest Tribrid, highest sensitivity and

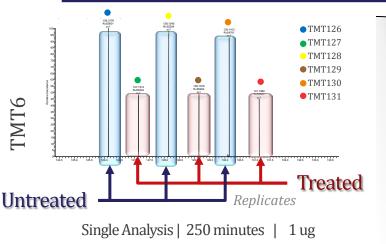
High Performance Depends Upon High Resolution Instruments

HIGH RESOLVING POWER IS ESSENTIAL FOR ACCURATE QUANTITATION OF THE TMT10PLEX REAGENTS

Result: Get accurate quantitation using the high resolution of **Orbitrap Mass Analyzer**

A Real Example




Sample: Mouse mitochondrial extract untreated or treated with phosphatase inhibitor

Orbitrap Elite

- 75 um x 50 cm PepMap C18
- 210 min gradient: 250 min run
- 1 ug of sample on column

Quantified

1423 protein groups

in 1.04 days

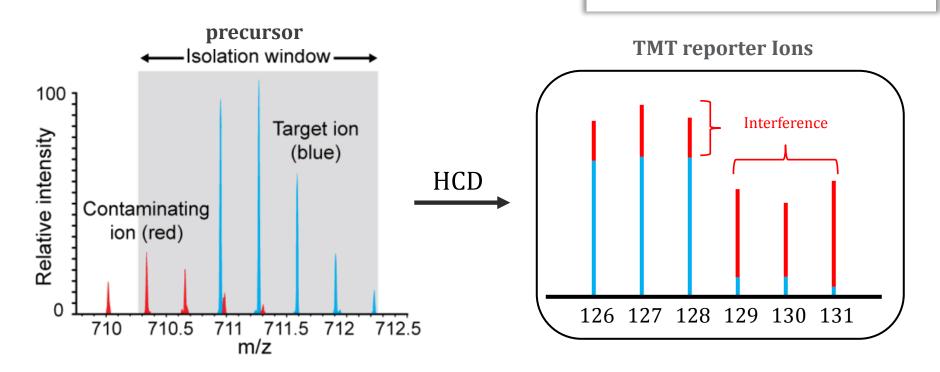
using 6 ug material

Quantified

1310 protein groups

in **4.16 hours**

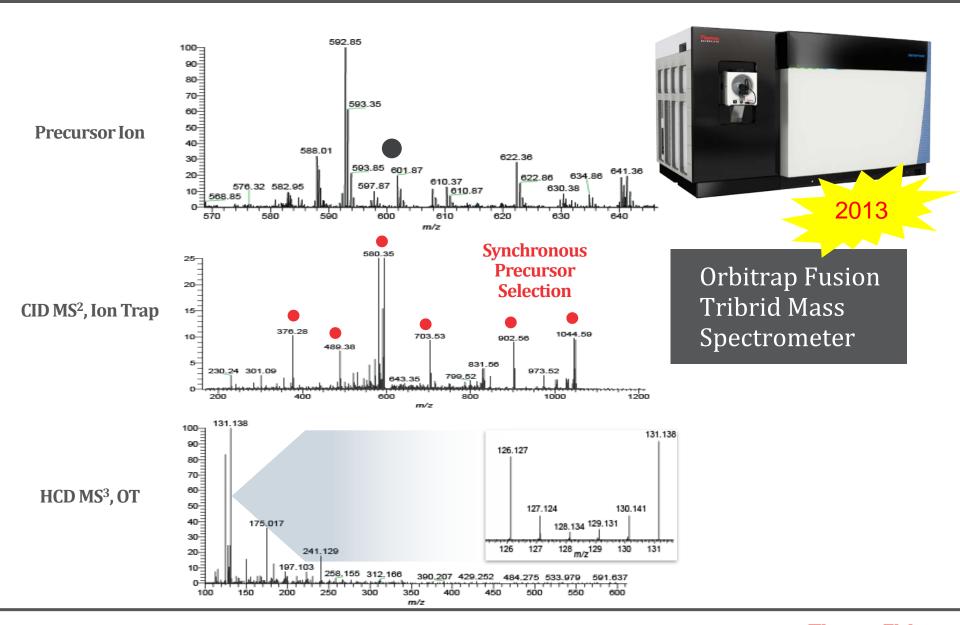
using 1 ug material


Ratio Distortion with Isobaric Multiplexing

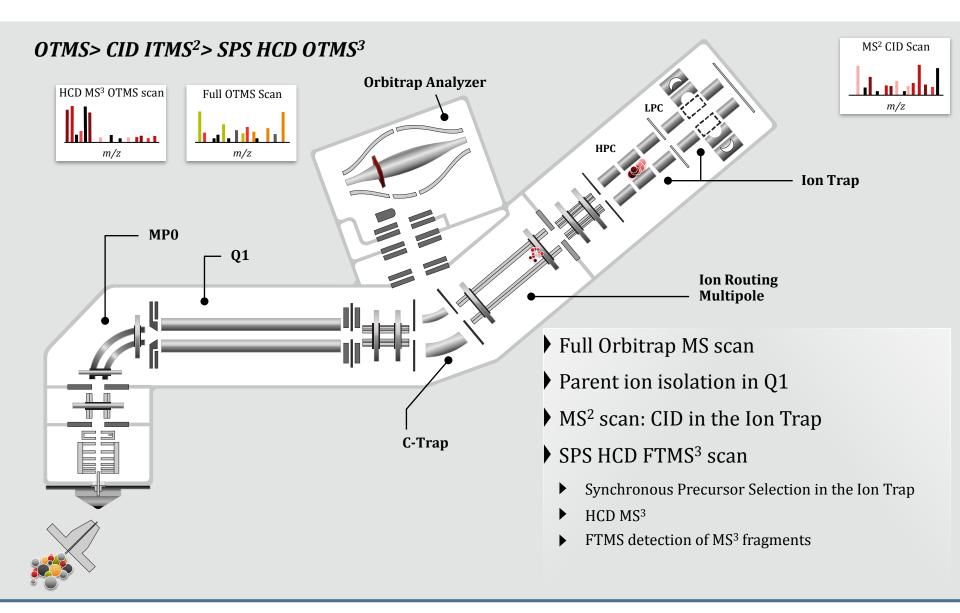
Problem: Quantitation of low-abundance proteins in a complex background is distorted by co-isolated interfering precursor ions

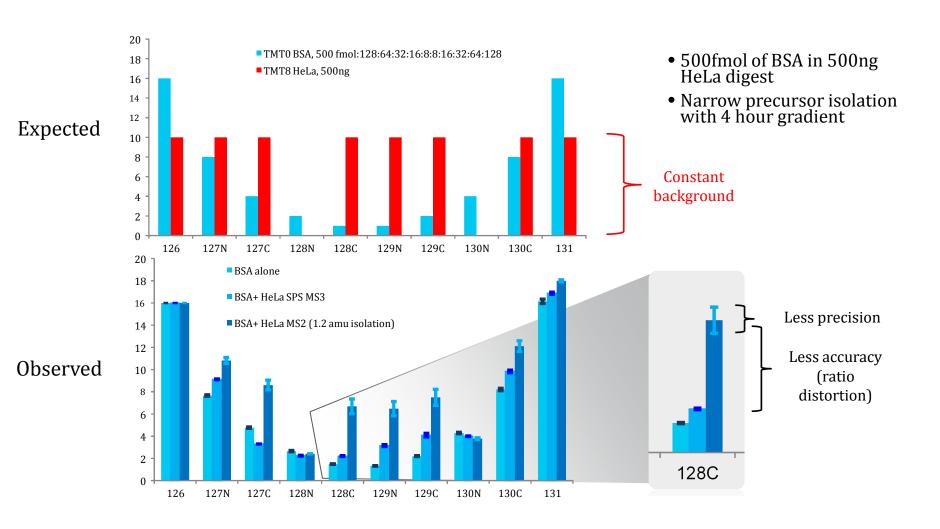
iTRAQ Underestimation in Simple and Complex Mixtures:
"The Good, the Bad and the Ugly"

Saw Yen Ow,[†] Malinda Salim,[†] Josselin Noirel,[†] Caroline Evans,^{†,‡} Ishtiaq Rehman,[‡] and Phillip C. Wright*,[†]

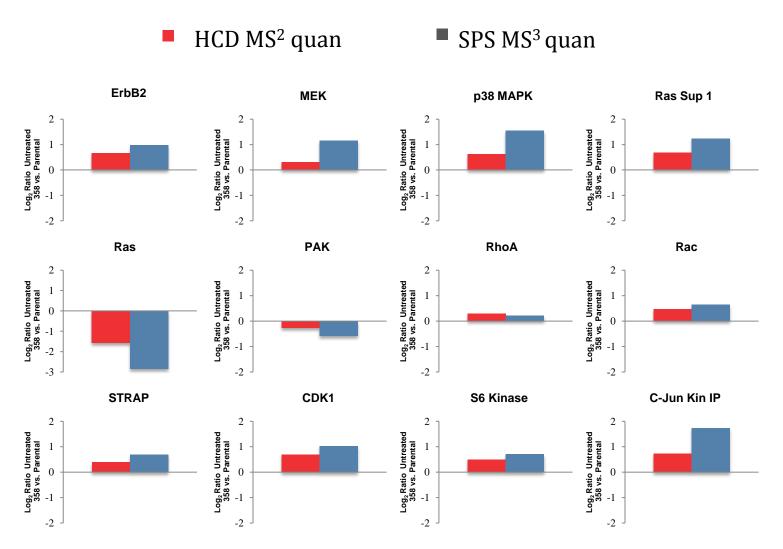


Ow, S.Y. et al. 2009. JPR 5347-5355

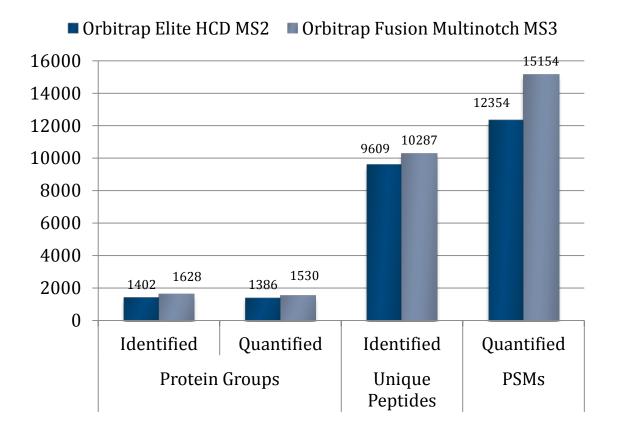

Ting, L. et al. 2011. Nature Methods 8: 937-940


Synchronous Precursor Selection (SPS) for Accurate Quantification

TMT³ Experiment, Powered by SPS


Co-isolation of Interfering Ions Affects Accuracy

Results: Best possible accuracy and precision by reducing co-isolated interfering ions.


Enhanced Differences Using SPS MS³ Quantitation

Thermo Poster Note: Towards Mechanism of EGFR Inhibitor Resistance in Non-Small Lung Cancer Cell; M.Blank. et al

...While Still Getting Proteome Coverage

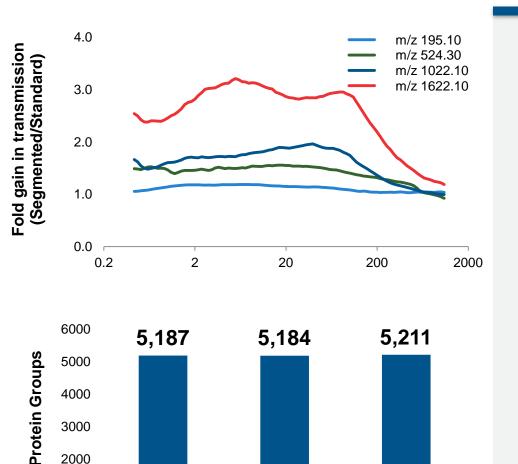
The speed and parallelizable work flow of the Orbitrap Fusion means not choosing between accuracy and coverage...

The Orbitrap Fusion using multinotch can **Quantify** more proteins than were **Identified** on the previous generation top tier hybrid

Orbitrap Fusion Lumos Tribrid Mass Spectrometer

analytical results

Unmatched Analytical Performance


Revolutionary performance

Exceptional versatility

Unprecedented usability

Highest sensitivity

Better Ion Transmission With Segmented Quadrupole

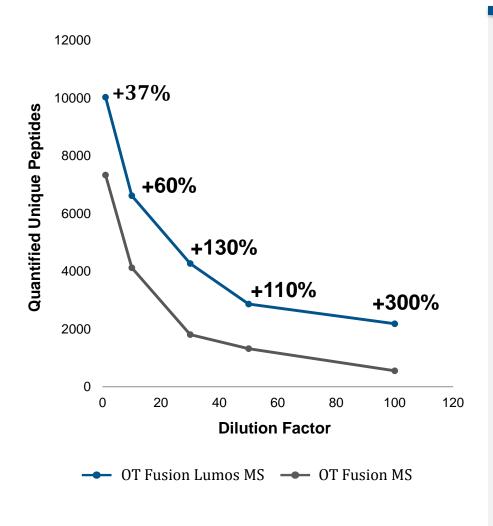
0.7

Q1 Isolation width

0.4

Segmented Quadrupole

- Improved transmission across m/z range and for narrow windows
- Brighter Source and Segmented Quad allows the use of a 0.4 amu isolation without loss of IDs (here for 1 ug HeLa, DD OT IT CID, 2 h runs, n=2
- Improved performance for TMT quantitation
- Improved performance for PRM and DIA
- Improved performance for top down


2000

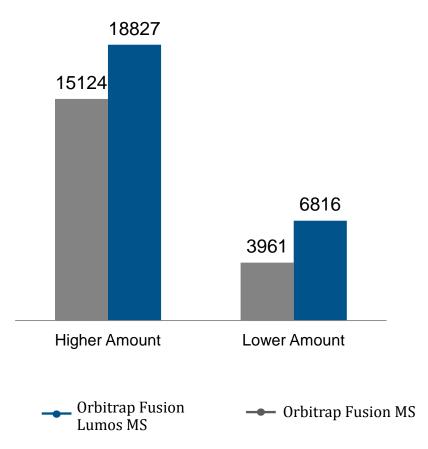
1000

0

1.6

Improved TMT SPS MS³ Performance

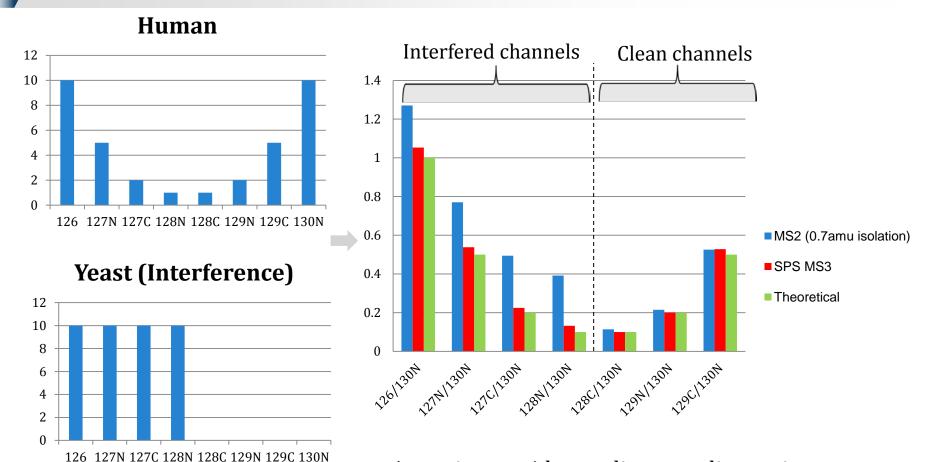
TMT Dilution


- Standard HeLa digest, labeled with TMT0 analyzed with an 85 min gradient using SPS-MS³
- Sample diluted 1:1, 1:10, 1:30, 1:50, 1:100
- The number of MS³ acquisitions was similar in both analyses
- The number of unique peptides quantified was systematically higher with the Orbitrap Fusion Lumos MS

Chris Rose, Gygi's lab, Harvard Medical School

Improved Low Level Quan: Ubiquitinated Peptides

TMT10 Quantitation of Ubiquitinated Peptides

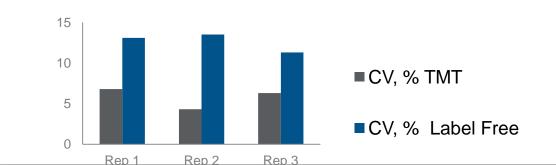

- Human HTC116 cells were treated with a proteasome inhibitor (Bortezomib) for 16 h and analyzed with TMT 10-plex (5 treated vs. 5 untreated)
- Two fractions were prepared
 - With higher amount
 - With lower amount.
- 25-73% more quantifiable peptides

<u>ASMS Lecture: Rose et al.</u> Isobaric labeling enables 10-Plex quantitative analysis of ubiquitylated peptides: A diagnostic ion to improve identification and quantification

SPS MS³ Quantification on Orbitrap Fusion Lumos MS

Results: Best possible accuracy and precision by reducing co-isolated interferences.

1ug mixture, 4 hr gradient, median ratios


TMT Technology is More Precise than Label Free Quan

Roman Zubarev Karolinska Institute

"We compared the average and median CVs (calculated for the whole dataset containing ca. 4000 proteins quantified with ≥2 peptides) between the three biological replicates of the same treatment. Ignoring the fact that the cell lines were different, the results are clearly in favor of TMT.

In other words, TMT produced two times lower CVs than our label-free quantification, which we thought was pretty good. *I am stunned...*"

Additional Key Customers Include:

TMT Used for Protein Research in...

Received 28 Aug 2014 | Accepted 21 Oct 2014 | Published 10 Dec 2014

DOI: 10.1038/ncomms6613

Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

Marco Benevento^{1,2}, Peter D. Tonge³, Mira C. Puri^{3,4}, Samer M.I. Hussein³, Nicole Cloonan⁵, David L. Wood⁵, Sean M. Grimmond⁵, Andras Nagy^{3,6,7}, Javier Munoz^{1,2,†} & Albert J.R. Heck^{1,2}

Viromics

Stem Cells

Quantitative Temporal Viromics: An Approach to Investigate Host-Pathogen Interaction

Cell 157, 1460-1472, June 5, 2014

Michael P. Weekes, 1,3,4,* Peter Tomasec, 2,4 Edward L. Huttlin, 1 Ceri A. Fielding, 2 David Nusinow, 1 Richard J. Stanton, 2 Eddie C.Y. Wang, 2 Rebecca Aicheler, 2 Isa Murrell, 2 Gavin W.G. Wilkinson, 2 Paul J. Lehner, 3 and Steven P. Gygi^{1,*}

Tracking cancer drugs in living cells by thermal profiling of the proteome

Mikhail M. Savitski, ^{1*}† Friedrich B. M. Reinhard, ¹† Holger Franken, ¹ Thilo Werner, ¹ Maria Fälth Savitski, ¹ Dirk Eberhard, ¹ Daniel Martinez Molina, ² Rozbeh Jafari, ² Rebecca Bakszt Dovega, ² Susan Klaeger, ^{3,4} Bernhard Kuster, ^{3,4} Pär Nordlund, ^{2,5} Marcus Bantscheff, ^{1*} Gerard Drewes ^{1*}

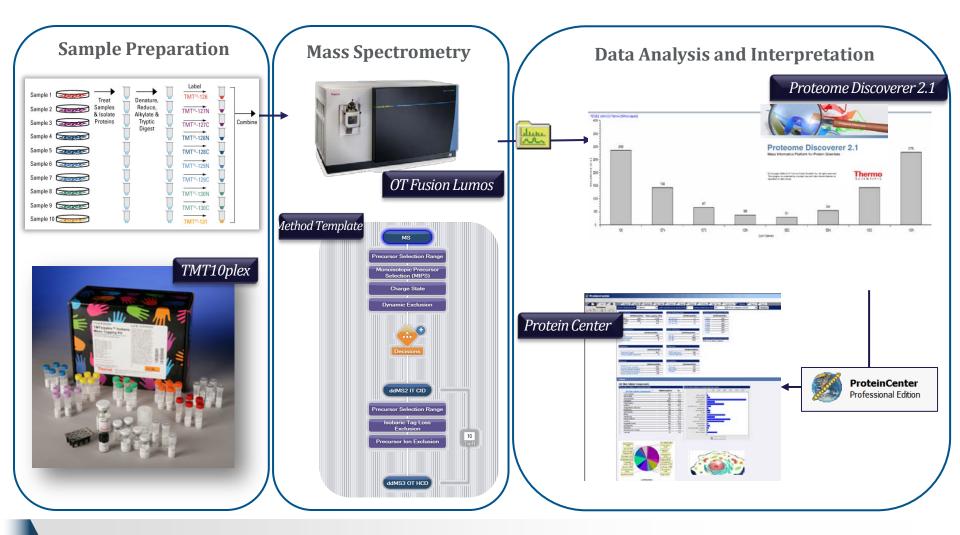
3 OCTOBER 2014 • VOL 346 ISSUE 6205

sciencemag.org SCIENCE

Drug Discovery

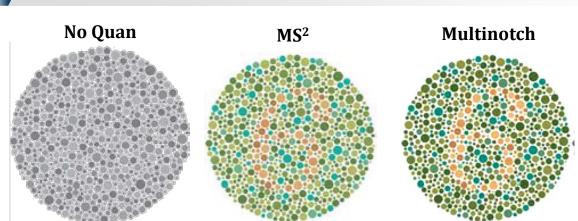
Quantification of Pancreatic Cancer Proteome and Phosphorylome: Indicates Molecular Events Likely Contributing to Cancer and Activity of Drug Targets

David Britton¹*, Yoh Zen², Alberto Quaglia², Stefan Selzer¹, Vikram Mitra¹, Christopher Lößner¹, Stephan Jung¹, Gitte Böhm¹, Peter Schmid¹, Petra Prefot¹, Claudia Hoehle¹, Sasa Koncarevic¹, Julia Gee⁴ Robert Nicholson⁴, Malcolm Ward¹, Leandro Castellano³, Justin Stebbing³, Hans Dieter Zucht¹, Debashis Sarker², Nigel Heaton², Ian Pike¹


PLOS ONE | www.plosone.org

March 2014 | Volume 9 | Issue 3 | e90948

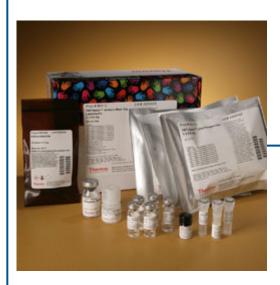
Straightforward Workflow


Result: Complete software and method development suite from reagents to data analysis

Competitive Advantages

Trust your quantitation!

- Multinotch MS³ quantitation is more accurate than other MS² Methods
- The accuracy of Multinotch MS³ quantitation means not missing important expression level changes due to co-isolated interference
- Multinotch MS³ quantitation is only available on the <u>Orbitrap Fusion and Orbitrap Fusion</u> <u>Lumos</u>
 - Orbitrap Fusion Lumos provides highest sensitivity, highest selectivity and lowest detection limit for best quantitation



Sample Preparation

Sample Preparation: Materials

Part No. 90113

Complete sample preparation kit including alkylation, reduction and digestion

Description

TMT10plex Isobaric Mass Tag Labeling Kit

Formulation: Set of ten TMT10 label reagents (3 x 0.8mg each)

Sufficient For: Three 10-plex (3 x 10-way) experiment

Contents:

TMT10-126 Label Reagent, 3 × 0.8mg

TMT10-127N Label Reagent, 3 × 0.8mg

TMT10-127C Label Reagent, 3 × 0.8mg

TMT10-128N Label Reagent, 3 × 0.8mg

TMT10-128C Label Reagent, 3 × 0.8mg

TMT10-129N Label Reagent, 3 × 0.8mg

TMT10-129C Label Reagent, 3×0.8 mg

TMT10-130N Label Reagent, 3 × 0.8mg

TMT10-130C Label Reagent, 3 × 0.8mg

TMT10-131 Label Reagent, 3 × 0.8mg

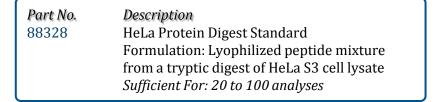
Dissolution Buffer (1M triethyl ammonium bicarbonate), 5mL

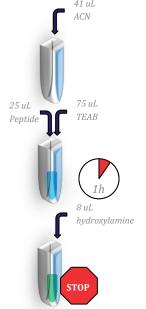
Denaturing Reagent (10% SDS), 1mL

Reducing Reagent (0.5M TCEP), 1mL

Iodoacetamide, 12 × 9mg

Quenching Reagent (50% hydroxylamine), 1mL

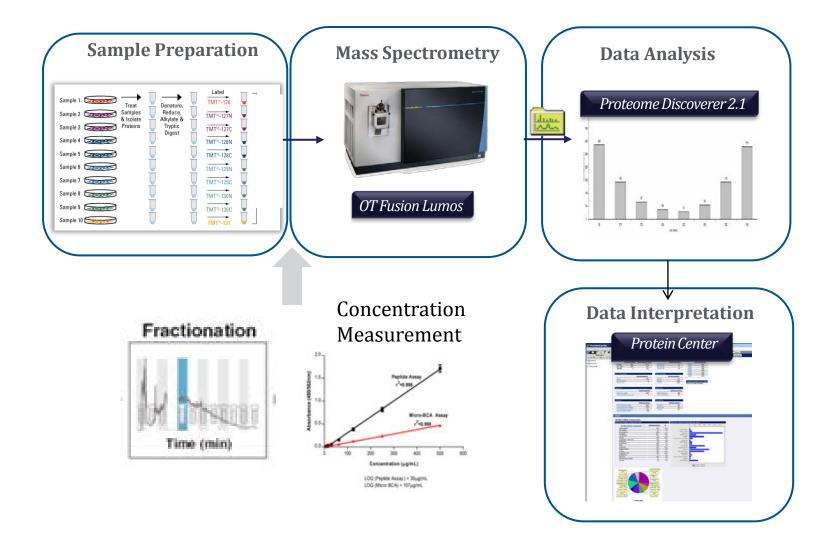

Pierce Trypsin Protease, MS Grade, 5 × 20μg


Trypsin Storage Solution, 250µL

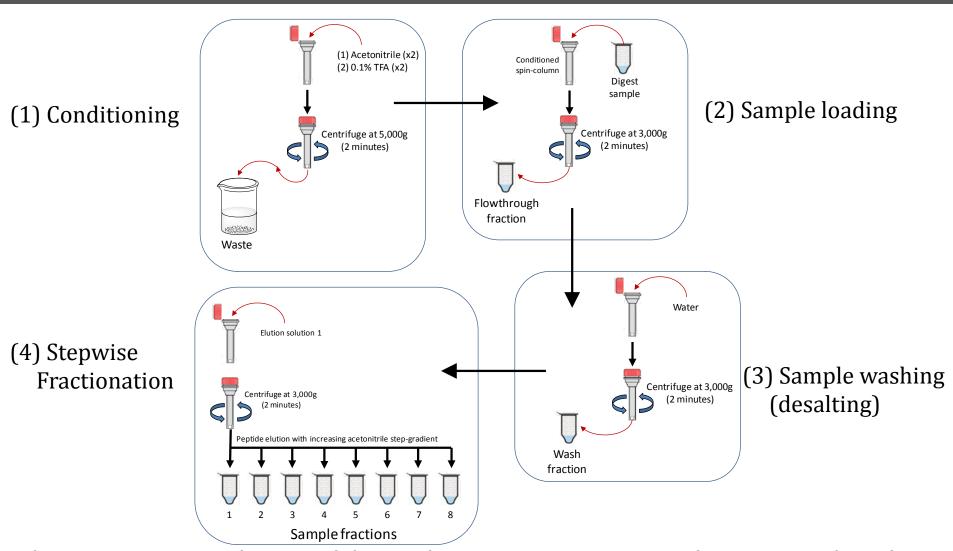
Albumin, Bovine, 2.5mg

Sample Preparation: Simple Peptide Labeling

Reduced and alkylated trypsin digested proteins Use Non-Amine Buffer @ pH ~ 8.0 (e.g. TEAB)

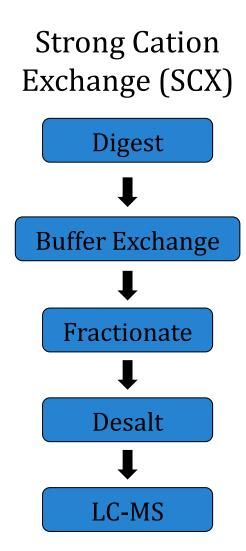


- Add 41µL of anhydrous acetonitrile to each tube. Allow the reagent to dissolve for 5 minutes with occasional vortexing. Briefly centrifuge the tube to gather the solution.
- Transfer 25-100 uL of the reduced and alkylated protein digest (each condition) to the TMT Reagent vial (41 uL). Add sufficient 100 mM TEAB buffer to reach a final volume in vial of 141 uL. Vortex briefly
- Incubate the reaction for 1 hour at room temperature.
- Add $8\mu L$ of 5% hydroxylamine to the sample and incubate for 15 minutes to quench the reaction.
- Combine samples in a new microcentrifuge tube at equal amounts and speed vacuum to dryness to remove all TEAB
- Aliquot and Store at -80° C.



-80 C

A More Complete Workflow For Better Coverage



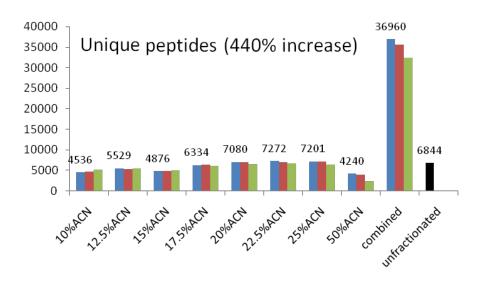
High pH Fractionation Spin Columns

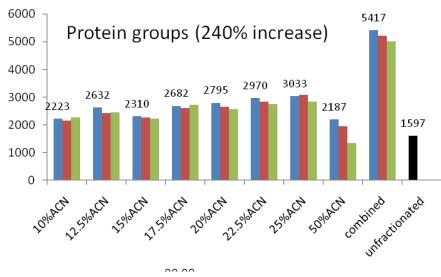
Thermo Poster Note 64606: High pH Reversed-Phase Peptide Fractionation in a Convenient SpinColumn Format; Snovida S. et al Thermo Poster Note 64604: Quantitative peptide assay for optimized and reproducible sample preparations for mass spectrometry applications; Jiang X. et al

High pH Reversed Phase vs SCX Fractionation

High pH Reversed Phase

Digest


Fractionate


LC-MS

- SCX and high pH reversed phase fractionation are both orthogonal to low pH C18 LC separation
- Strong cation exchange (SCX) requires sample desalting after fractionation

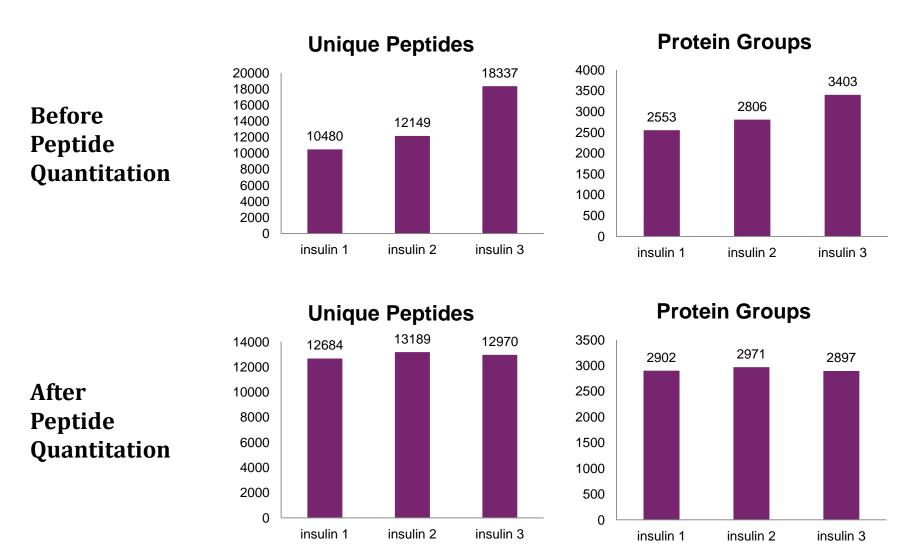
Reproducibly Identify More TMT-labeled Peptides

- Significantly increase the number of proteins identified and quantified
- The percentage and number of peptides observed in only 1 fraction are within 10% between runs

Two New Peptide Quantitation Assays

Colorimetric Peptide Quantitation (CPQ) TMT compatible

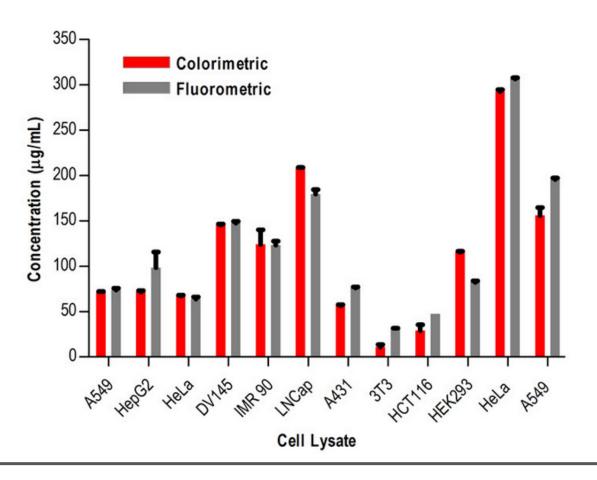
Fluorimetric Peptide Quantitation (FPQ)


Assay	CPQ assay	FPQ assay
Chemistry	Indirect Cu-reduction and chelation	Direct N-terminal labeling induced fluorescence
Time	30 mins	5 mins
Measurement	Abs 480nm	Ex. 390nm/Em. 475nm
Linearity	15-1000 μg/mL	5-1000 μg/mL
Sensitivity	15 μg/mL	5 μg/mL
Minimum sample	0.3 μg	0.05 μg
Not recommended for	Single peptides	TMT Reagent-labeled samples

Colorimetric peptide assay is more sensitive than BCA

Thermo Poster Note: Quantitative Peptide Assays for Mass Spectrometry Applications; Haney P. et al

Peptide Quantitation Improves MS Reproducibility



Thermo Poster Note 64604: Quantitative peptide assay for optimized and reproducible sample preparations for mass spectrometry applications; Jiang X. et al

Peptide Assays Provide Consistent Quantification

"We really like those peptide quant kits. We find that peptide mass quantitation is directly relevant for determining the amount of analyte we use for LC-MS/MS analyses, phosphopeptide enrichments, and for TMT labeling.

Instrument Configuration

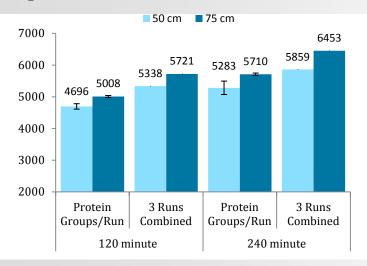
Introducing A New Powerful Combination

Unlock the performance of your MS with incredibly easy chromatography

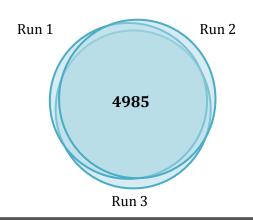
[EASY-nLC™ 1200 HPLC System]

- •Industry leading 1200 bar system pressure
- •Improved system robustness and easier maintenance
- •Temperature control of EASY-Spray columns
- •Effortless ultra-high performance for every user, every time

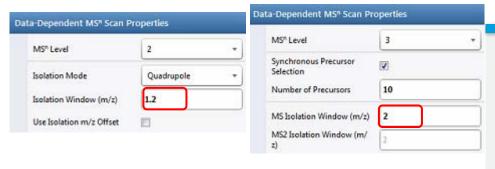
[75cm EASY-Spray™ Column]

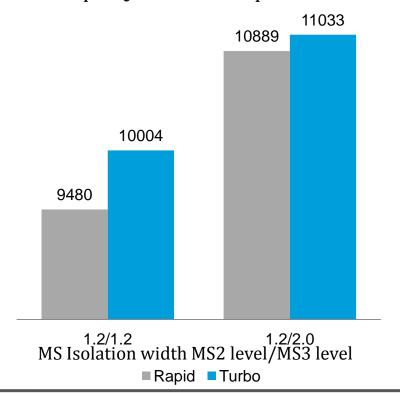

- •Increased peak capacity
- Even more identifications
- •Excellent retention time consistency
- •Improved quantitative reproducibility

Extend The Performance Of Your MS with 75cm Columns


Improved Protein Identifications

- Peak capacity exceeding 800.
- Deeper proteome coverage with a consistent
 5700 protein groups per run.
- 9% increase in protein groups over 3 combined runs compared to 50 cm column.
- Identify more proteins per hour comparable identifications in 120 minutes to a 50 cm column in 240 minutes.


Increased Quantitative Reproducibility


- Less run-to-run variability 91% identification overlap run to run
- More quantifiable proteins 50% increase in the number of quantifiable proteins with CVs <5%

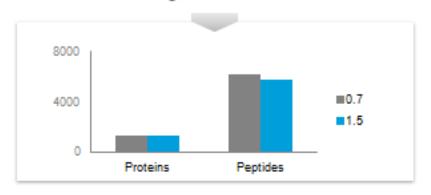
SPS TMT Method Development- What is New on Lumos

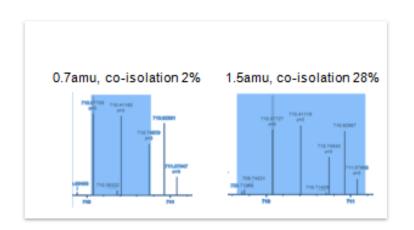
Unique Quantifiable Peptides

TMT Quantification Improved!

- Turbo Scan MS2
- Single Charge State per Precursor Selection
- Variable Isolation Width MS2/MS3, available in Fusion Lumos and Fusion Tune 2.0

TMT10 HeLa cell lysate (500 ng, 2 hr gradient) was analyzed using different SPS MS3 methods on Fusion with Tune 2.0.


Best results were obtained using all featured settings.



Multiplexing On the Benchtop Orbitrap System (Q Exactive Series)

- Take advantage of segmented quadrupole (QE Plus and HF), for more efficient isolation in narrow windows
- Suited for the analysis of low and medium complexity samples
- Pre-fractionation recommended for high complexity samples to improve quantification accuracy and precision (Pierce Spin Column)

Yeast 100 ng, TMT6, 120 min run

Data Analysis

Proteome Discoverer 2.1

- New method TMT quantification
 - TMT correction factors (for all TMT reagents) with new user interface
 - Use of "Razor" peptides for protein quantification
 - Modified form of Gygi group's S/N-based approach to TMT quantification
 - Custom ratio generation
 - New heat map-like coloring of ratios and scaled abundances

Note that almost of all these changes are also applied to isotope-labeled quantification (e.g. SILAC)

Proteome Discoverer 2.1

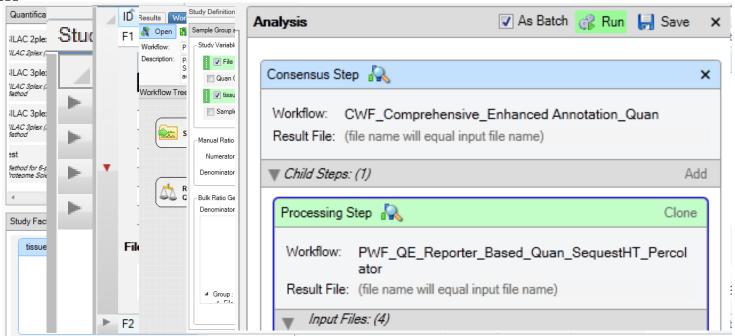
 Copyright 2008-2015 Thermo Fisher Scientific Inc. All rights reserve: This program is protected by copyright law and international treates as described in Mon.

TMT Correction Factor Setup

TMT correction factor certificate for each manufacturing lot

Mass Tag	Reporter Ion	-2	-1	Monoisotopic	+1	+2	
TMT ¹⁰ -126	126.127726	0.0%	0.0%	100%	5.0% (127C)	0.0% (128N)	
TMT ¹⁰ -127N	127.124761	0.0%	0.4%	100%	5.0% (128N)	0.0% (128C)	
TMT ¹⁰ -127C	127.131081	0.0%	0.2% (126)	100%	4.6% (128C)	0.3% (129N)	
TMT ¹⁰ -128N	128.128116	0.0%	0.9% (127N)	100%	4.7% (129N)	0.2% (129C)	
TMT ¹⁰ -128C	128.134436	0.0% (126)	0.5% (127C)	100%	3.2% (129C)	0.0% (130N)	
TMT ¹⁰ -129N	129.131471	0.0% (127N)	0.7% (128N)	100%	3.3% (130N)	0.0% (130C)	
TMT ¹⁰ -129C	129.137790	0.0% (127C)	1.3% (128C)	100%	2.5% (130C)	0.0% (131)	
TMT ¹⁰ -130N	130.134825	0.0% (128N)	1.2% (129N)	100%	2.8% (131)	2.7%	
TMT ¹⁰ -130C	130.141145	0.0% (128C)	1.5% (129C)	100%	1.8%	0.0%	
TMT ¹⁰ -131	131.138180	0.0% (129N)	2.1% (130N)	100%	2.0%	0.0%	

Edit Quantification Method


Certificate of Analysis (CoA) can be found at

<u>http://www.thermofisher.com/order/catalog/product/90110?ICID=search-product</u> using the lot number displayed on the reagents packages.

Study Management Setup

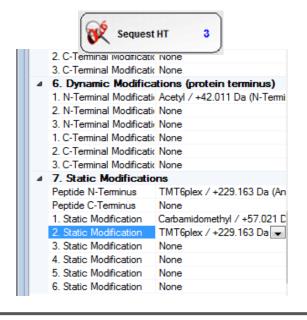
- Select quan method and assign study factors
- Input data
- Specify Quan method, match data files and Quan Channels with study factors
- Select processing and consensus workflows and make modifications
- Specify how to group quantification results
- Run

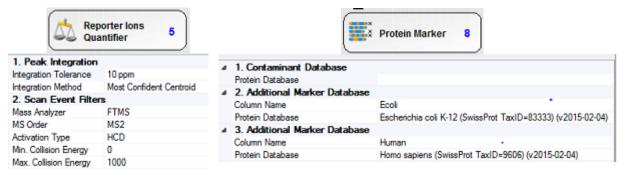
Accommodates the most complex study designs

Select Workflows and Modify Parameters

Processing Workflow:

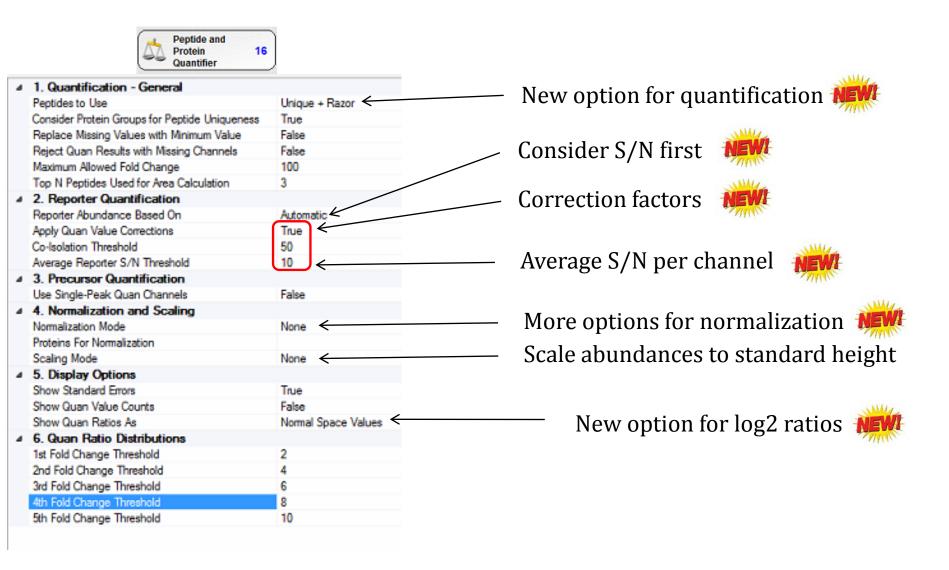
• 😿 Sequest HT 🔞 : Protein database, enzymes, and modifications

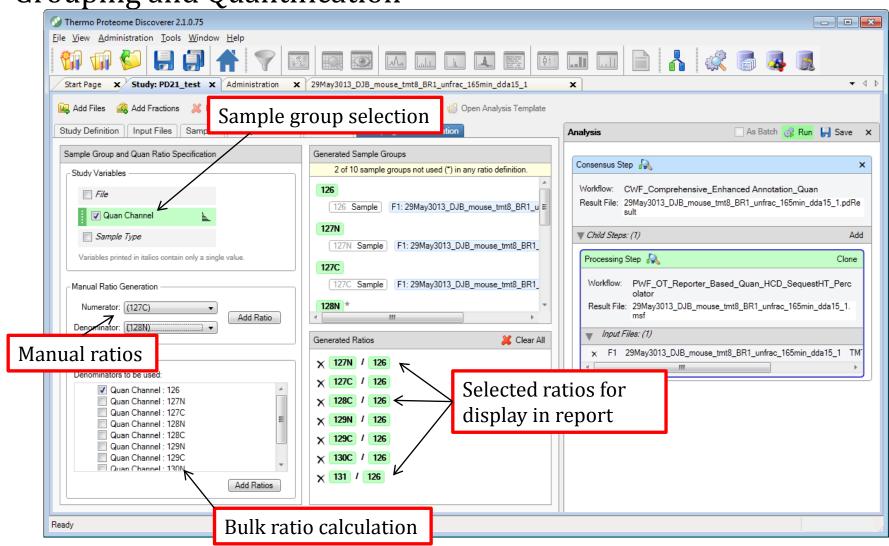

Reporter lons 5: MS3 (SPS)


Consensus Workflow:

Protein Marker

: Specify each proteome


Peptide and Protein Protein Quantifier 16 : next slide



Select Workflows and Modify Parameters (Con'd)

New Custom Ratio Calculation in PD 2.1

Grouping and Quantification

Results From Biological Replicate Search

Replicates grouped into ratios + standard errors

Zoomed Ratios and Scaled Abundances

Abundance	Ratios					=	Abundances (Scaled)									
*(127N) / (12G)	(127C) / (126)	(128C) / (126)	(129N) / (126)	(129C) / (126)	(130C) / (126)	(131) / (126)	F1: 126, Sample *	F1: 127N, Sample	F1: 127C, Sample	F1: 128N, Sample	F1: 128C, Sample	F1: 129N, Sample	F1: 129C, Sample	F1: 130N, Sample	F1: 130C, Sample	F1: 131, Sample
3.030	1.007	1.017	0.943	1.139	1.553	1.030	69.3	210.0	69.8	195.2	70.5	65.3	78.9	61.9	107.6	71.4
3.350	0.890	0.920	1.018	1.386	6.531	0.950	8.0	170 1	45.2	164.6	46.7	51.7	70.4	20.5	331.7	48.2
9.198	0.866	0.939	1.017	1.053	1.040	0.938	39.2	360.9	34.0	337.1	36.9	39.9	41.3	33.1	40.8	36.8
4.880	0.879	0.964	0.879	1.164	1.064	0.989	59.1	288.6	52.0	252.7	57.0	52.0	68.8	48.4	62.9	58.5
6.631	0.913	0.911	0.755	1.246	0.946	1.340	47.6	315.8	43.5	305.8	43.4	36.0	59.3	39.7	45.1	63.8
4.913	1.153	0.991	1.004	1.266	0.861	1.515	54.7	268.7	63.1	279.0	54.2	54.9	69.2	26.3	47.1	82.9
0.570	612	1.544	0.791	1.169	0.744	0.886	104.5	59.6	168.5	46.1	161.4	82.7	122.1	84.7	77.7	92.6
0.637	0.855	1.015	8.416	1.162	0.936	0.984	43.4	27.7	37.1	89.0	44.1	365.4	50.5	259.5	40.6	42.7
4.549	0.639	0.603	1.466	0.889	1.457	0.509	57.9	263.2	37.0	275.8	34.9	84.8	51.4	81.3	84.3	29.5
0.465	0.696	0.765	0.752	1.330	0.729	1.900	106.3	49.4	74.0	47.6	81.3	80.0	141.4	140.7	77.5	201.9
0.511	1.280	1.472	0.766	0.920	0.732	0.844	114.7	58.6	146.8	42.7	168.8	87.8	105.4	94.5	84.0	96.7
0.542	1.349	1.463	0.857	1.353	0.809	1.004	102.9	55.8	138.8	43.0	150.6	88.2	139.3	94.7	83.3	103.3
0.546	0.526	0.483	0.640	2.331	1.213	1.052	108.4	59.2	57.0	62.3	52.4	69.3	252.6	93.4	131.5	114.0
5.056	0.796	0.833	0.922	1.187	3.598	1.083	49.7	251.4	39.6	246.8	41.4	45.9	59.0	33.4	178.9	53.9
2.663	1.267	154	1.046	1.057	2.363	0.903	68.1	181.5	86.4	171.1	78.7	71.3	72.0	48.4	161.0	61.5
6.018	0.994	0.947	1.209	1.080	0.909	0.937	51.0	307.0	50.7	276.1	48.3	61.7	55.1	55.9	46.4	47.8
0.263	0.652	0.805	0.542	1.873	0.606	2.041	110.5	29.0	72.1		88.9	59.9	206.9	140.4	66.9	225.5
0.518	1.985	2.006	0.746	0.843	0.658	0.595	104.7	54.3	207.8	49.8	210.1	78.1	88.3	75.5	69.0	62.3
0.536	0.741	0.690	0.755	0.543	1.297	0.508	139.4	74.8	03.3	81.0	96.2	105.2	75.8	72.4	180.9	70.9
3 191	0 923	0.912	1 171	1 159	1 180	1 060	RQ 2	220.8	43.8	190.7	63.1	81.0	80.2	76 1	R1 6	73.5

126 scaled abundance = 69.3, 127N scaled abundance = 210.0

127N/126 = 210.0/69.3 = 3.030

Summary

Comprehend

the fundamentals of isobaric labelling and the dramatically increased throughput enabled by multiplexed quantitation as well as the ease of sample preparation

Configure

an LCMS method for the high accuracy quantitation of TMT labeled samples using the Orbitrap Fusion Lumos with SPS MS3 with the ideal settings

Quantify

peptides labeled with TMT using Proteome Discoverer 2.1 using SequestHT and MS3 quantitation.

Advocate

the complete workflow from sample preparation to data analysis for the multiplexed quantitation of complex samples using TMT and the highly differentiated SPS MS3 on the Orbitrap Fusion Series Instruments

Additional Resources

Online Resources

- http://portal.thermo-brims.com/ (Software, Manuals, Tutorial Help Videos, Discussion Forum.)
- http://planetorbitrap.com/ (Published Articles, Posters, Brochures, Product Support Bulletins, Technical Guides, Webinars, Protocols, Application Workflows.)

Some More Publications

Relative Quantitation of TMT-Labeled Proteomes - Focus on Sensitivity and Precision Viner R, Scigelova M, Zeller M, Oppermann M, Moehring T, Zabrouskov V.
Application Note 566

Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, Kuhn K, Pike I, Grothe R, Blethrow JD, Gygi SP. Anal Chem. 2012 Sep 4;84(17):7469-78.

MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics Ting L, Rad R, Gygi SP, Haas W.
Nat Methods. 2011 Oct 2;8(11):937-40.

Evaluating multiplexed quantitative phosphopeptide analysis on a hybrid quadrupole mass filter/linear ion trap/orbitrap mass spectrometer

Erickson BK, Jedrychowski MP, McAlister GC, Everley RA, KUNZ R, Gygi SP

Anal Chem.2015 Jan 20;87(2):1241-9.

Contact: Dr. Xiaoyue Jiang(<u>xiaoyue.jiang@thermofisher.com</u>)
Or Dr. Rosa Viner (<u>rosa.viner@thermofisher.com</u>)

Acknowledgements

- Thermo-Life Sciences
 - Ryan Bomgarden
 - Sergei Snovida
 - Paul Haney
 - John Rogers
- Thermo-LSMS
 - Rosa Viner
 - Xiaoyue Jiang
 - Michael Blank
 - Andreas Huhmer
 - Graeme McAllister
 - Tabiwang Arrey
 - Vlad Zabrouskov
 - Michaela Scigelova
 - David Horn
 - Torsten Ueckert

- TMT Collaborators
 - Steve Gygi, Harvard Medical School
 - Josh Coon, University of Wisconsin, Madison
 - Jennifer Van Eyk, Johns Hopkins School of Medicine
 - Zezong Gu, University of Missouri-Columbia
 - Kay-Hooi Khoo, Academia Sinica
 - Bernhard Kuster, Technische Universität München
 - Somi Afiuni & Tim Griffin, University of Minnesota

