

Boron isotope ratio measurements in carbonates via LA-ICP-MS

Authors

G. L. Foster, C. D. Standish,J.A. Milton, G. Craig, M. Pfeifer,C. Bouman, J. Roberts, N. Lloyd,J. Schwieters;

¹School of Ocean and Earth Science, University of Southampton, UK

²Thermo Fisher Scientific, Bremen, Germany

Keywords

Carbonates, MC-ICP-MS, Collision/ Reaction Cell, Pre-cell Mass Filter, Boron, Corals, Neoma

Introduction

Boron isotopes are an important proxy used in paleo-climate research, often used to understand ocean acidification in the past, in particular during times of high atmospheric CO₂ (e.g. Paleocene-Eocene Thermal Maximum, PETM^{1, 2}, or during the warming after the last deglaciation³⁻⁵). The fractionation of boron isotopes (¹⁰B and ¹¹B) between borate and boric acid in seawater is pH dependent. Biogenic carbonate (e.g. foraminifera or corals), which are understood to incorporate borate into their skeletons^{6,7}, are therefore a good archive of past ocean pH⁸.

In this field of research, where sample material is unique and limited, laser ablation techniques have become a novel way to map variations in boron isotopic composition across biogenic carbonates⁹⁻¹². However, the precision and accuracy to which boron isotope ratios could be accurately mapped in carbonate materials has previously been affected by the scattering of Ca ions¹⁰.

Here, we show the advantage of using the Thermo Scientific[™] Neoma[™] MC-ICP-MS and the Thermo Scientific[™] Neoma MS/MS[™] MC-ICP-MS for boron LA-ICP-MS analysis of carbonate samples.

thermo scientific

Methods

Instrumentation

An ESL[™] NWR[™] 193 UC laser ablation system equipped with a TwoVol 2 ablation cell was connected to the Neoma and Neoma MS/MS MC-ICP-MS (Figure 1). Both MC-ICP-MS systems were equipped with the Jet Interface using the high sensitivity X-skimmer and Jet-sampler cones.

Figure 1. Neoma MC-ICP-MS connected to ESL NWR 193 LA

A raster ablation of the reference material NIST[®] SRM[®] 610 was used to tune the LA-MC-ICP-MS. The B cup configuration (Table 1) was used and laser conditions (Table 2). The Neoma tune parameters were tuned to achieve high sensitivity.

Table 1. B isotope cup configuration

C. Cup	L5	L4	L3	L2	L1	С	H1	H2	H3	H4	H5
¹⁰ B	⁹ Be					¹⁰ B					¹¹ B
¹¹ B	¹⁰ B					¹¹ B					¹² C
10.5			¹⁰ B						¹¹ B		

Table 2. Laser set-up conditions

Fluence (J/cm ²)	6
Repetition Rate (Hz)	13
Circle spot size (µm)	100
Gas flows:	
He (L/min)	0.75
N ₂ (ml/min)	4

Many laser parameters were controlled via the NWR Laser plugin supplied within the Thermo Scientific[™] Qtegra ISDS[™] Software in Neoma MC-ICP-MS. This allows bi-directional communication between the two platforms, useful for sharing sample lists, triggering and data processing. Similar plugins for Qtegra are available for other laser ablation systems.

The reference material NIST SRM 610 was used to tune and test the overall performance of the LA-MC-ICP-MS. and served as the normalizing standard using published δ^{11} B values¹⁰. Boron isotope analysis was then carried out on a pressed carbonate pellet of JCp-1².

Results

Laser sensitivity

Sensitivity of the Neoma and Neoma MS/MS MC-ICP-MS was determined by measuring 60 repeats of 2 second integration time of a 50 ppm pressed carbonate pellet a total of 5 times. A sensitivity of 0.008 V/ppm (total B) was achieved with the chosen laser settings (See table 3). This is a factor 2 better than previous generations of MC-ICP-MS, where a maximum of 0.004 V/ppm was previously achievable (for the same laser and gas settings).

Boron baseline

On previous generations of MC-ICP-MS, an elevated baseline around ¹⁰B has been observed that extended up to mass 11 (Figure 2 purple line)¹⁰. This elevated baseline was thought to be due to scattering of Ca⁴⁺ ions when ablating carbonate samples ¹⁰. This results in an offset of the δ^{11} B value from the accepted value by > 4‰ (Figure 3).

Table 3. Laser sensitivity of Neoma MC-ICP-MS for 50 ppm pressed carbonate pellet

Label	Туре	¹⁰ B (cps)	SE	¹¹ B (cps)	SE	¹¹ B/ ¹⁰ B	SE
Pellet_01	SMP	4.61E+06	5.37E+04	2.14E+07	2.52E+05	4.6490	0.0009
Pellet_02	SMP	4.83E+06	5.53E+04	2.24E+07	2.54E+05	4.6387	0.0011
Pellet_03	SMP	3.84E+06	4.01E+04	1.78E+07	1.72E+05	4.6408	0.0008
Pellet_04	SMP	4.65E+06	6.83E+04	2.15E+07	3.11E+05	4.6339	0.0015
Pellet_05	SMP	4.29E+06	4.45E+04	1.99E+07	2.03E+05	4.6380	0.0013
	Average (cps)	4.44E+06	5.24E+04	2.06E+07	2.38E+05		
	Average (V)	0.07	0.0008	0.33	0.0038		
	Total B (V)	0.40					
	Sensitivity (V/ppm)	0.008					

Figure 2. Mass scan across ^{10}B and ^{11}B when ablating the carbonate pellet JCp-1

The new geometry and design of the Neoma MC-ICP-MS eliminates the majority of scattered Ca ions interfering with the ¹⁰B peak (Figure 2 yellow line). This is further improved with the pre-cell mass filter of Neoma MS/MS MC-ICP-MS, which filters out the Ca signal before isotopic separation. Through this

technology, the elevated ¹⁰B baseline is completed eradicated (Figure 2 red line). This means that the δ^{11} B value acquired using NIST610 for mass bias correction matches the accepted value of JCp-1 without need for any secondary isotopic correction (Figure 3).

Figure 3. Comparison of boron isotopic composition of carbonate standard JCp-1 measured with the previous generation of MC-ICP-MS and with Neoma MS/MS MC-ICP-MS. All error bars are 2SE. External reproducibility (dash lines) are 2SD.

Thermo Fisher

Conclusion

Boron isotope analysis of carbonate samples via LA-ICP-MS has previously been challenged by elevated ¹⁰B baselines due to the interferences from scattered Ca⁴⁺ ions. The pre-cell mass filter of Neoma MS/MS MC-ICP-MS eliminates this problem by filtering out Ca ions before isotopic separation. This means that measured boron isotope ratios of carbonate samples are accurate and do not require a secondary matrix correction.

By eliminating the interference from scattered Ca ions, the Neoma MS/MS MC-ICP-MS allows for accurate boron isotope analysis of carbonate samples, precluding the requirement for well matched standards. This should allow researchers to investigate a wider range of samples and provide confidence in the accuracy of the boron isotope ratio.

References

- Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. Rapid and sustained surface ocean acidification during the Paleocene-Eocene Thermal Maximum. Paleoceanography 29, 357–369 (2014).
- Gutjahr, M. Ridgwell, A. Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H., Norris, R.D., Thomas E. & Foster, G.L. Very large release of mostly volcanic carbon during the Palaeocene–Eocene Thermal Maximum. Nature 548, 573–577 (2017).
- 3. Rae, J. W. B. et al. Deep water formation in the North Pacific and deglacial CO_2 rise. Paleoceanography 29, 645–667 (2014).
- Shao, J. et al. Atmosphere-Ocean CO2 Exchange Across the Last Deglaciation From the Boron Isotope Proxy. Paleoceanography and Paleoclimatology 34, 1650–1670 (2019).
- Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–22 (2015).
- Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. Earth and Planetary Science Letters 302, 403–413 (2011).
- Foster, G. L., Pogge Von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochemistry, Geophysics, Geosystems 11, Q08015 (2010).
- Foster, G.L., and Rae, J.W.B Reconstructing ocean pH with boron isotopes in foraminifera. Annual Review of Earth and Planetary Sciences, 44, 207-237 (2016).
- Mayk, D., Fietzke, J., Anagnostou, E. & Paytan, A. LA-MC-ICP-MS study of boron isotopes in individual planktonic foraminifera: A novel approach to obtain seasonal variability patterns. Chemical Geology 531, 119351 (2020).
- 10. Standish, C. D. et al. The effect of matrix interferences on in situ boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry. Rapid Communications in Mass Spectrometry 33, 959–968 (2019).
- Chalk, T. B. et al. Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea. Scientific Reports 2021 11:1 11, 1–13 (2021).

Learn more at thermofisher.com/msms

For Research Use Only. Not for use in diagnostic procedures. © 2022 Thermo Fisher Scientific Inc. Elemental Scientific Lasers and NWR are trademarks of Elemental Scientific Inc. NIST and SRM are registered trademarks of the National Institute of Science and Technology. All other trademarks are the property of Thermo Fisher Scientific Inc. or its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. ANO01006 0622

thermo scientific