Thermo Físher s c i e n t i f i c

Environmental

A streamlined laboratory workflow for the analysis of common contaminants according to the U.S. EPA 8270E and 8081B methods using GC-MS/MS

Authors

Sarah Crumlett¹, Mark Belmont¹, Terry Jeffers¹, Adam Ladak², Giulia Riccardino³, and Daniel Kutscher⁴

¹Thermo Fisher Scientific, Bannockburn, IL, USA

²Thermo Fisher Scientific, Hemel Hempstead, UK

³Thermo Fisher Scientific, Milan, IT ⁴Thermo Fisher Scientific, Bremen, DE

Keywords

U.S. EPA, semivolatile compounds, pesticides, polycyclic aromatic hydrocarbons (PAHs), U.S. EPA 8270E, U.S. EPA 8081B, gas chromatography, triple quadrupole mass spectrometry, TSQ 9610 mass spectrometer, TriPlus RSH Smart AS, method consolidation

Goal

The goal of this application note is to demonstrate a modernized workflow for the analysis of semivolatile compounds (SVOCs) and pesticide residues according to EPA 8270E¹ and EPA 8081B² methods using a single instrument platform based on gas chromatography coupled to triple quadrupole mass spectrometry (GC-MS/MS). This method could also be expanded to include similar environmental methods, providing users with a simplified analysis workflow that can be applied across a variety of application areas to simplify adoption in high-throughput environmental laboratories.

Introduction

Analytical testing laboratories dealing with environmental analysis must monitor diverse compound classes (SVOCs, pesticides, PCBs, etc.) in multiple matrices (drinking water, surface water, wastewater, soils, sludges) often requiring different instrument configurations and settings. This poses some challenges in terms of reduced productivity and sample throughput as well as increased time and costs for multiple platform maintenance, dedicated consumable usage, as well as staff training. Moreover, staff turnover or reduced laboratory personnel requires analysts to run multiple instrumentation and methods, adding unneeded complexity to their daily work.

thermo scientific

Many U.S. EPA methods for environmental analysis recommend the use of gas chromatography coupled to analog detectors such as electron capture detection (ECD),¹ nitrogen phosphorous detection (NPD),² and photometric detection (FPD)³ because they provide a very specific detection for certain functional classes (e.g., organochlorine or organophosphorus pesticides). Despite their high specificity, extensive sample preparation and adequate chromatographic separation are required to differentiate between the target compounds and other co-eluting compounds or matrix interferences. This can result in sample reanalysis using alternative columns and conditions to confirm results. These reruns are often run by mass spectrometry to provide better identification and confirmations. A more effective approach is the use of triple quadrupole mass spectrometry (MS/MS). The selected rection monitoring (SRM) acquisition mode provides greater selectivity compared to single ion monitoring, allowing for simplified sample preparation protocols. Hundreds of analytes can be monitored within a single chromatographic run as typical ion transitions are monitored for each compound. This allows for confident identification of analytes at sub-ppb level sensitivities even without full chromatographic resolution between compounds. Furthermore, timed-SRM mode (t-SRM) allows the operator to process a specific method's list of target analytes, set an acquisition window around each elution time, and subsequently optimize the mass spectrometers dwell time, leading not only to simpler data with smaller file sizes, but also better sensitivity. The adoption of such a platform that can be used for multiple analytical methods would improve laboratories' sample throughput and productivity while reducing the cost of spare parts inventory and instrument management, streamlining operations.

In this study, the same Thermo Scientific[™] TSQ[™] 9610 GC-MS/MS system configuration was used for analysis of SVOCs and organochlorine pesticides according to the EPA 8270E and EPA 8081B methods. Overall method performance, including linearity, sensitivity, and precision, were evaluated thoroughly for use in a working water testing laboratory.

Key hardware and software for method modernization

As part of workflow modernization and cost reduction, many laboratories investigate automation of the sample preparation procedures to promote a safer work environment (reducing the analyst's exposure to toxic chemicals) and save analyst's valuable time, improve data quality, and reduce possible errors, cross-contamination, and waste. The Thermo Scientific[™] TriPlus[™] RSH Smart autosampler⁴ combines highly versatile sample injection capability (liquid, headspace, and solid-phase microextraction

(SPME)) with automated sample preparation procedures, eliminating typical GC-MS workflow bottlenecks. Daily operations such as dilutions, standard curve generation, and derivatization up to more complex, multi-step sample preparation protocols can be fully automated leading to substantial cost savings, while gaining efficiency and productivity from system's unattended operations.

Containing costs does not mean that laboratories must give up flexibility and advances in technology. The Thermo Scientific™ TRACE[™] 1610 series GC.⁵ the only GC with a user-installable modular concept, is designed to enhance the workflow experience through the use of interchangeable injector and detector modules that allow the analyst to easily modify the instrument configuration in minutes without special tools or training and simplify troubleshooting operations without the need for service calls. The GC's advanced multi-functional touch screen with instrument health monitoring of common maintenance items such as inlet liner or septum changes (among many others) can help avoid unplanned downtime through usersettable alerts on consumables usage and maintenance. The TSQ 9610 GC-MS/MS⁶ system using NeverVent[™] technology allows for column replacement and ion source cleaning without venting the mass spectrometer, increasing uptime. The ultra-sensitive, ultra-robust Thermo Scientific[™] Advanced Electron Ionization[™] (AEI) ion source combined with the Thermo Scientific[™] XLXR[™] electron multiplier detector provide class leading sensitivity and extended dynamic range enables method consolidation for analysis of low- and high-concentrated compounds in a single GC run.

Software is key for a streamlined workflow. The Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS)⁷ provides flexibility and scalability to control chromatography (GC, LC, and IC) instruments, as well as single and triple guadrupole mass spectrometers, and even HRAM mass spectrometry instruments like the Thermo Scientific[™] Orbitrap Exploris[™] GC mass spectrometer with one single software, all while meeting data integrity regulatory requirements of the U.S. Food and Drug Administration Title 21 Code of Federal Regulations Part 11 (21 CFR Part 11). Users can easily switch between instruments, platforms, and methods, managing all the analytical processes and data, from a variety of locations. From instrument control to raw data storage, processing, and generation of the results and approvals, Chromeleon CDS can seamlessly connect multiple sites and worldwide locations to a central data center with the same performance as a fully local operation.

Experimental

In all the experiments described here, a TSQ 9610 triple quadrupole mass spectrometer equipped with NeverVent AEI ion source was coupled to a TRACE 1610 gas chromatograph equipped with a Thermo Scientific[™] iConnect[™] split/splitless (iConnect-SSL) injector and a Thermo Scientific[™] AI/AS 1610 liquid autosampler. The same instrument configuration, chromatographic column, and consumables were used for assessing instrument compliance to EPA 8270E and EPA 8081B methods (Figure 1). A TriPlus RSH SMART autosampler was placed on the bench and used as an off-line sample preparation station for calibration curve dilution and internal standard addition. The use of an automated approach improved analyst's safety by reducing exposure to toxic chemicals such as dichloromethane (DCM).

Chromatographic separation was achieved on a Thermo Scientific[™] TraceGOLD[™] TG-5SilMS capillary column 30 m × 0.25 mm × 0.25 µm (with integrated 5 m SafeGuard column, P/N 26096-1425). The "-Sil" indicates silylarene groups are incorporated in the polymer backbone, ensuring improved thermal stability and reduced susceptibility to oxidation, resulting in low column bleed and outstanding inertness. Additional GC-MS/MS and autosampler parameters as well as a complete list of the target compounds are detailed in Table 1 and Appendix 1, respectively.

Data acquisition, processing and reporting

Data was acquired, processed, and reported using the Chromeleon CDS, version 7.3.2. Integrated instrument control ensures full automation of the analytical workflow combined with an intuitive user interface for data analysis, processing, customizable reporting, and storage in compliance with 21 CFR Part 11. This integrated instrument control enables users to perform in-sequence tuning, and when combined with the scheduling capability of Chromeleon CDS, instruments can be checked automatically at a desired time, so that additional operator time can be saved and used for more productive purposes.

In addition, the Chromeleon Environmental Analysis Extension Pack for U.S. EPA-based environmental applications provides a comprehensive set of instrument methods, processing methods, and reports, designed for quick sequence set-up and reporting to allow rapid implementation of new instruments with ease.

Figure 1. Unified environmental method schematic for analysis of multiple compound classes using a single analytical platform

Table 1. GC-MS/MS and autosampler parameters applied for SVOCs and multi-residue analysis of pesticides according to EPA 8270E and EPA 8081B methods as well as parameters used for DFTPP, tailing and degradation performance verification as per EPA 8270E method

AI/AS 1610 autosampler parameters					
Injection type	Standard				
Sample mode	Standard				
Fill strokes	6				
Air volume (µL)	1				
Sample depth	Bottom				
Injection mode	Fast				
Pre-injection wash cycles	0				
Pre-injection solvent wash volume (µL)	0				
Post-injection wash cycles	6				
Post-injection solvent wash volume (DCM, µL)	5				
Sample wash cycles	3				
Sample wash volume (µL)	1.5				
Injection volume (µL)	1				
Syringe	10 µL Fixed needle, gas tight syringe 26 Gauge, 50 mm, Cone tip, (P/N 365D2977)				

TRACE 1610 GC parameters							
	EPA 8081 / 8270	DFTPP					
Oven tempe	rature program						
Oven equilibration time (min)	0.2	0.2					
Temperature (°C)	40	90					
Hold time (min)	2	1					
Rate (°C/min)	50	30					
Temperature 2 (°C)	125	310					
Rate (°C/min)	12						
Temperature 3 (°C)	150						
Rate (°C/min)	20						
Temperature 4 (°C)	200						
Rate (°C/min)	5						
Temperature 5 (°C)	280						
Rate (°C/min)	30						
Temperature 6 (°C)	330						
Hold time (min)	4.05	5					
GC run time (min)	30	15					
Co	olumn						
Trace GOLD TG-5SilMS with integrated 5 m SafeGuard	30 m, 0.25 mm, 0.25 μm (P/N 26096-1425)						

iConnect-SSL parameters						
	EPA 8081	EPA 8270 and DFTPP				
Injection temperature (°C)	22	25				
Liner	For splitless injection: Thermo Scientific [™] LinerGOLD [™] Splitless liner, Single taper with quart: wool (P/N 453A1925-UI)					
Oven equilibration time (min)	0	.2				
Inlet module and mode	SSL, split with surge	SSL, splitless with surge				
Surge pressure (psi)	35	35				
Surge duration (min)	0.8	0.8				
Splitless time (min)		0.8				
Split flow (mL/min)		60				
Split ratio	5:1					
Septum purge flow (mL/min)	Const	ant 5.0				
Gas saver flow (mL/min)	5	5				
Gas saver time (min)	5	5				
Carrier gas, flow (mL/min)	Ramped, 1.2 mL/min hold 20 min 1.0 mL/min/min to 2.0 mL/min hold 9.20 min	Constant,1.2				

TSQ 9610 mass spectrometer parameters								
	EPA 8081 / 8270	DFTPP						
Transfer line temperature (°C)	300	300						
lon source type and temperature (°C)	NeverVent AEI, 300	NeverVent AEI, 300						
Ionization type	El	EI						
Aquisition mode	Timed SRM	Full Scan, 35–500						
Filament delay (min)		3.5						
Dwell or scan time (s)		0.0988						
Tuning parameters	AEI Smart Tune	AEI Smart Tune						
Collision gas and pressure (psi)	Argon at 70	Argon at 70						
Minimum deisred peak width (s)	3							
Desired scans per peak	20							
Set resolution for each unique transistiion	Enabled (see table in Appendix 1 for individual resolution)							
Use last tune detector gain	X7							
Use specified emission current (µA)	25	25						

Results and discussion EPA Method 8270E

U.S. EPA Method 8270E is used to determine the concentration of semivolatile organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), in many types of solid waste matrices, soils, air, and water samples by using gas chromatography coupled to mass spectrometry (GC-MS). One of the challenges of this method is that multiple analytes spanning wide concentration ranges must be analyzed in one single run, often leading to non-ideal calibration curves. The Thermo Scientific XLXR detector provides an extended dynamic range that allows laboratories to easily overcome this issue and provides wider calibration ranges, with better linearity, leading to more accurate and repeatable results. Moreover, since many diverse pesticides are listed in the EPA 8270E method, high selectivity is mandatory for a confident identification of compounds. The timed-selected reaction monitoring (t-SRM) acquisition mode allows for simultaneous acquisition of multiple characteristic ion transitions for each target analyte, maintaining high sensitivity combined with high selectivity to discriminate between the target compounds and matrix, thus ensuring a reliable and confident identification of analytes.

Instrument performance verification: DFTPP tune, tailing, and degradation

The EPA 8270E method provides a list of performance criteria that need to be assessed to check instrument suitability for sample analysis. A decafluorotriphenylphosphine (DFTPP) tune check standard is used to assess the instrument response in terms of spectral quality. Other test probes such as benzidine and pentachlorophenol are used to assess instrument inertness. specifically in the sample flow path, and yet more compounds like endrin and DDT breakdown products are used to assess sample degradation within the injector. Although not requested when analysis is performed using product ions for quantitation, a quality control sample containing all test analytes was injected at least once daily to ensure that the system fulfilled all method requirements in terms of ion abundance, tailing, and degradation. The TSQ 9610 GC-MS/MS met all ion ratio performance criteria without requiring any adjustments of the default instrument tuning. Moreover, the high inertness of the GC flow path allowed the peak tailing and degradation evaluation criteria to be easily met. The Chromeleon CDS reporting capability allows for customized tune and breakdown reports, and the Chromeleon 7.3.2 Report Designer 2.0 features allow for quick and easy visual review of the performance tests by using conditional formatting with a Pass/Fail indicator as shown in Figure 2.

Chromatography

Structural isomers are compounds having the same molecular formula but different physical arrangement of the atoms in space; therefore, they often elute very closely to each other in pairs. The EPA 8270E method requires calculations of chromatographic resolution for these "critical pairs" to ensure that the fundamental chromatographic separation is adequate for analysis so that, for example, analytical columns can be exchanged before degradation may affect data quality. Typically, if the peaks are separated by at least 50% resolution, they can be considered chromatographically separated. An example of typical chromatograms for a reference standard mix prepared in DCM at a concentration of 500 µg/L (ppb) is shown in Figure 3. The insets show some examples of critical pair resolution achieved for closely eluting isomers. Resolution was calculated as per the EPA method using the formula in Equation 1 and was \geq 50%, thus meeting the method suitability requirements.

Equation 1: Resolution = 1-[valley height]/[average peak height]

Linearity and detection limits

Linearity and detection limits were assessed by preparing multiple calibration curves diluted in solvent (DCM) ranging from $0.5 \ \mu g/L$ to $250 \ \mu g/L$. Linearity was determined using an internal standard method by calculating the relative standard deviation (RSD) of the response factor (RF) for each analyte and comparing the result to the limit specified in the EPA methods. All target analytes showed a linear trend with RF %RSD in agreement to the <20% limit specified in the method, thus confirming that a very wide linear range can be easily achieved with the XLXR detector. Full range calibration curves (0.5–250 μ g/L) for some selected analytes and the quantifier and qualifier ions at 0.5 μ g/L are reported as an example in Figure 4.

Method detection limits (MDLs) are firmly established with many regulatory bodies and can be defined in multiple ways. According to the most recent U.S. Code of Federal Regulations,⁸ MDL is defined as: "the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte." This methodology can be seamlessly transferred when calculating instrument detection limits (IDLs). Unlike MDL, IDL uses solvent based standards containing the test chemical at concentrations that give a consistent response over several repeat injections.

		Thermo S MS Tune Check,	Tailing, and Bre	akdown - US E	PA 8270E			
Tune Check 04/03/2024 10:25 Al		TSQ8120103 DFTPP			20240403 - Calib	ration 3162	20	
08/01/2024 10:23 A		EPA 8270E - DFTF	P & Tailing V30	Analys				
-			_					
DFTPP:	Pass	Tailing:	Test Summ Pass	Breakdown:	Pass			
			Chromatog	ram				
5.0e9	alibration 31620 #4		Tune Che	ck				TIC
counts	6.204	mzidine 7.469 Endrin - 7.879 1024 1001 - 8.468						
4.0e9-	1	i dine - 7.469 adrin - 7.879 4 DDT - 8.158						
		nzidine Endrir 3.024	Q					
3.0e9-	orop		8.50					
2.000	tachi	77 - 4,4-DDE - 7,629	Endrin ketone - 8.506					
2.0e9-	Pen Mpho	E - 7	keto					
1.0e9-	pher 48		ndrin					
	orotri	- 4 -	92 - E					
0.0e0								min
-5.0e8								
3.5 4.0	5.0 6.0	7.0 8.0	9.0	10.0	11.0 12.0	13	.0 1	4.0 15.0
			DFTPP					
	henylphosphine (surr) Scan: #1	1851 AV: 6.58 - 6.59		- 6.56 (3) min SB2	6.63 - 6.64 (3) mi	in NL: 2.74E	+007	
3 %			198					
100 -			190					
								442
75-				255				
50-								
	127							
25-	77 110		206	275				
		186	200					441
		186						441
0		186			t t .	. m. h. i		441
-20					<u>ь т</u>	- 14 k t		441
-	10 10				300	350	400	
-20 10 50	100		200	250				_i m/z 450
-20 10 50 Mass	100 Criteria	150 Raw Value	200 Value	250 Operator	Value 1	350 Value 2	Result	
-20 10 50	100 Criteria < 2% of m/z 69 Present	150 Raw Value 21,657 2,806,230	200 Value 0.77% Present	250 Operator < >	Value 1 2.00% 0		Result Pass Pass	_i m/z 450
-20 10 50 Mass 68 68 69 70	100 Criteria < 2% of m/z 69 Present < 2% m/z 69	150 Raw Value 21,657 2,806,230 8,208	200 Value 0.77% Present 0.29%	250 Operator < > <	Value 1 2.00% 0 2.00%		Result Pass Pass Pass	
-20 10 50	100 Criteria < 2% of m/z 69 Present	150 Raw Value 21,657 2,806,230	200 Value 0.77% Present	250 Operator < >	Value 1 2.00% 0		Result Pass Pass	
-20 10 Mass 68 69 70 197 198 199	100 Criteria < 2% of m/z 69 Present < 2% of m/z 198 Base peak or present 5-9% of m/z 198	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66%	250 Operator < > < < between	Value 1 2.00% 0 2.00% 2.00% 5.00%		Result Pass Pass Pass Pass Pass Pass Pass	
-20 1 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	100 Criteria < 2% of m/z 69 Present < 2% m/z 69 < 2% of m/z 198 Base peak or present 5-9% of m/z 198 > 1% of base peak	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 485,268	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77%	250 Operator < < < < < Operator > < < o	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00%	Value 2	Result Pass Pass Pass Pass Pass Pass Pass Pas	
-20 10 Mass 68 69 70 197 198 199	100 Criteria < 2% of m/z 69 Present < 2% of m/z 198 Base peak or present 5-9% of m/z 198	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66%	250 Operator < > < < between	Value 1 2.00% 0 2.00% 2.00% 5.00%	Value 2	Result Pass Pass Pass Pass Pass Pass Pass	
-20 1 50 50 50 50 50 50 50 50 50 50 50 50 50	100 Criteria < 2% of m/z 69 Present < 2% m/z 69 < 2% of m/z 198 Base peak or present 5-9% of m/z 198 > 1% of base peak < 150% of m/z 443	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 465,268 4,498,581	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37%	250 Operator < < < < < Operator > < < o	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00%	Value 2	Result Pass Pass Pass Pass Pass Pass Pass Pas	
-20 10 Mass 68 69 70 197 198 199 365 441 442	100 Criteria < 2% of m/z 69	150 Raw Value 21.657 2.806,230 8.208 113,379 27,449,497 1.827,621 405,268 4.498,581 22,086,747	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51%	250 Operator < < < between > < between	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00%	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	
-20 10 Mass 68 69 70 197 198 199 365 441 442 443	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 465,268 4,498,581 22,086,747 3,867,497	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che	250 Operator < > < between > < between ck	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00% 15.00%	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	
-20 10 Mass 68 69 70 197 198 199 365 441 442	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 485,268 4,498,581 22,086,747 3,867,497 Area	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51%	250 Operator < < < between > < between	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00%	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	
-20 10 Mass 68 69 70 197 198 199 365 441 442 443	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 465,268 4,498,581 22,086,747 3,867,497	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che	250 Operator < > < between > < between ck	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00% 15.00%	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	
-20 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 485,268 4,498,581 22,086,747 3,867,497 Area counts*min TC 31,314,338	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TIC 1.063	250 Operator < < < < <	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00% 15.00% Result TIC Pass	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass
-20 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 445,268 4,498,581 22,086,747 3,867,497 Area counts*min TC	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor	250 Operator < > < between > ck Limit	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00% 15.00% Result TIC	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu
-20 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 485,268 4,498,581 22,086,747 3,867,497 Area counts*min TC 31,314,338	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TIC 1.063	250 250 Coperator < < < Coperator < < Coperator < Coperator < Coperator Co	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00% 15.00% Result TIC Pass	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu
-20 1 50 50 50 50 50 50 50 50 50 50 50 50 50	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 485,268 4,498,581 22,086,747 3,867,497 Area counts*min TC 31,314,338 62,293,986	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C	250 Operator < < < C C C C C C C C C C C C C	Value 1 2.00% 0 2.00% 2.00% 5.00% 150.00% 150.00% Result TIC Pass Pass	Value 2 9.00% 24.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu
-20 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	100 Criteria < 2% of m/z 69	150 Raw Value 21.657 2,806,230 8,208 113,379 27,449,497 1,827,621 465,268 4,498,581 22,066,747 3,867,497 Area counts*min TC 31,314,338 62,293,986 Peak Area	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 1.7.51% Tailing Che Tailing Factor TC 1.063 1.241	250 250 Coperator < < < > < between > < C between between c c Limit 2.000 2.000	Value 1 2.00% 0 2.00% 2.00% 5.00% 1.00% 150.00% 15.00% Result TIC Pass	Value 2 9.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Overall Resu Pass
-20 10 50 Mass 68 69 70 197 198 199 365 441 442 443 Peakname TIC Peakname TIC	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 465,268 4,498,581 22,086,747 3,867,497 Counts*min TC 31,314,338 62,293,986 Peak Area TIC	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C Peak Type	250 Operator < < < > > > > > > > between > < between > ck Limit 2.000 2.000 beck % Breakdown	Value 1 2.00% 0 2.00% 2.00% 5.00% 150.00% 150.00% Result TIC Pass Pass Pass	Value 2 9.00% 24.00% Result	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass
-20 1 10 50 Mass 68 69 70 197 198 199 365 441 442 443 Peakname TIC Pentachlorophenol Benzidine Peakname TIC 4,4-DDE	100 Criteria < 2% of m/z 69	Area counts*min TC 31,314,338 62,293,986	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C	250 Operator < < < C C C C C C C C C C C C C	Value 1 2.00% 0 2.00% 5.00% 1.00% 150.00% Result Result TIC Pass Pass Pass	Value 2 9.00% 24.00%	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Overall Resu Pass
-20 10 50 Mass 68 69 70 197 198 199 365 441 442 443 Peakname TIC Peakname TIC	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 465,268 4,498,581 22,086,747 3,867,497 Counts*min TC 31,314,338 62,293,986 Peak Area TIC	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C Peak Type Breakdown	250 Operator < < < > > > > > > > between > < between > ck Limit 2.000 2.000 beck % Breakdown	Value 1 2.00% 0 2.00% 2.00% 5.00% 150.00% 150.00% Result TIC Pass Pass Pass	Value 2 9.00% 24.00% Result	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass
-20 10 50 Mass 68 69 70 197 198 199 365 441 442 443 Peakname TIC Pentachlorophenol Benzidine Peakname TIC 4,4-DDE 4,4-DDT	100 Criteria < 2% of m/z 69	Area counts*min TC 31,314,338 62,293,986	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C Preak Type Breakdown Breakdown Native	250 Operator < < < > between > < between > ck Limit 2.000 2.000 2.000 check % Breakdown 3.33%	Value 1 2.00% 0 2.00% 2.00% 1.00% 150.00% Result TIC Pass Pass Pass Ve Breakdown Limit 20.00%	Value 2 9.00% 24.00% Result Pass	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass
-20 1 Mass 68 69 70 197 198 199 365 441 442 443 Peakname TIC Pentachlorophenol Benzidine Peakname TIC 4,4-DDE 4,4-DDE	100 Criteria < 2% of m/z 69	Area counts*min TC 31,314,338 62,293,986	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C Preak Type Breakdown	250 Operator < < < > > > > > > > between > < between > ck Limit 2.000 2.000 beck % Breakdown	Value 1 2.00% 0 2.00% 2.00% 5.00% 150.00% 150.00% Result TIC Pass Pass Pass	Value 2 9.00% 24.00% Result	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass
-20 Mass 68 69 70 197 198 199 365 441 442 443 Peakname IIC Pentachlorophenol Benzidine IC Pentachlorophenol Pentachlorophenol Benzidine IC Peakname IC 4,4-DDE 4,4-DDT Peakname IC IC	100 Criteria < 2% of m/z 69	150 Raw Value 21,657 2,806,230 8,208 113,379 27,449,497 1,827,621 445,268 4,498,581 22,086,747 3,867,497 Counts*min TC 31,314,338 62,293,986 Peak Area TC 40,340 2,042,864 60,463,837 Peak Area TC	200 Value 0.77% Present 0.29% 0.41% Base Peak 8.6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C Peak Type Breakdown Native Peak Type	250 Operator < < > Characteristics > Characteristics > Characteristics Characteri	Value 1 2.00% 0 2.00% 2.00% 5.00% 150.00% 150.00% Result TIC Pass Pass Value 1 C Pass Pass Value 1 20.00% Kesult Kesult C Pass Value 200 Kesult	Value 2 9.00% 24.00% Result Pass Result	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass
-20 10 50 10 10 10 10 10 10 10 10 10 10 10 10 10	100 Criteria < 2% of m/z 69	Area Counts*min TC Area counts*min TC 31,314,338 62,293,986 Peak Area TC 40,340 2,042,864 60,463,837 Peak Area	200 Value 0.77% Present 0.29% 0.41% Base Peak 6.66% 1.77% 20.37% Present 17.51% Tailing Che Tailing Factor TC 1.063 1.241 Breakdown C Preak Type Breakdown Breakdown Native	250 Operator < < < > between > < between > ck Limit 2.000 2.000 2.000 check % Breakdown 3.33%	Value 1 2.00% 0 2.00% 5.00% 1.00% 150.00% Result TIC Pass Pass % Breakdown Limit 20.00% % Breakdown	Value 2 9.00% 24.00% Result Pass	Result Pass Pass Pass Pass Pass Pass Pass Pas	Overall Resu Pass

Figure 2. Chromeleon CDS browser showing a customized report for an easy and quick review of the instrument performance criteria (DFTPP ion ratios, tailing, and degradation) results fulfilling the EPA 8270E method requirements

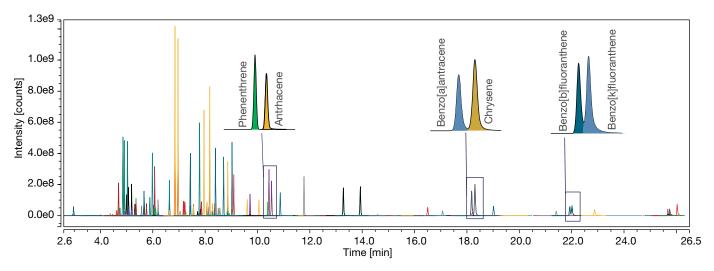


Figure 3. Example of chromatography achieved for a solvent standard spiked at 500 µg/L. The insets show examples of resolution for some critical pairs in compliance with the EPA 8270E method.

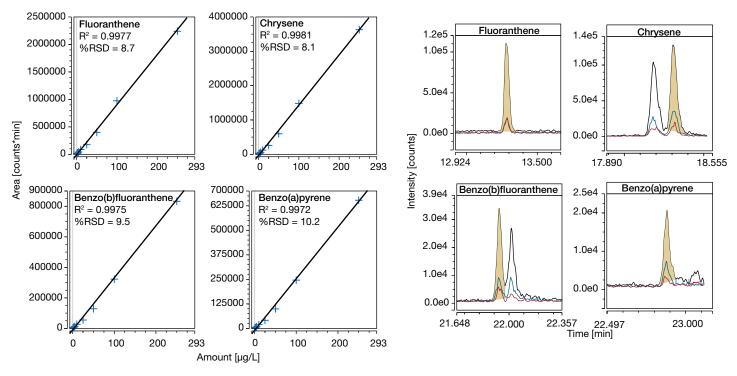


Figure 4. Example of calibration curves prepared in DCM (range: 0.5–250 μg/L) for some selected target analytes as well as quantifier and qualifier ions at 0.5 μg/L. Coefficients of determination (R²) and RF %RSD are annotated.

Therefore, the IDL is a statistically rigorous method that uses the precision of a measurement at low analyte levels and accurately reflects the true detection limit of an instrument, ultimately defining how sensitive an analytical system is.⁹ The IDL was determined for all the target compounds by preparing n=7 solvent standard in DCM at 1 μ g/L. IDLs were calculated using the Students t-test values for the corresponding n-1 degrees of freedom at 99% confidence, the amount of analyte on column, and the absolute peak area %RSD for each analyte as per Equation 2.¹⁰ MDL calculation reports are already available for Chromeleon CDS.

Equation 2: IDL = t * Amount * %RSD

t = Student t-value for one-tailed distribution

Amount = Amount of analyte (on-column)

%RSD = Relative standard deviation of the response

Calculated IDLs for selected compounds covering the entire volatility range are reported as an example in Figure 5. IDLs ranged from 5 to 45 μ g/L with peak area RSD <10% for the majority of the target compounds. Details of the calculations are reported in Appendix 2.

EPA Method 8081B

U.S. EPA Method 8081B provides validated procedures for the determination of organochlorine pesticides (OCPs). OCPs are a group of synthetic chlorinated hydrocarbon derivatives, which were commonly used to protect crops, livestock, buildings, and households from the damaging effects of insects. OCPs have been banned in the United States and many other countries across the world because of their persistent presence in the environment and the threat they pose to food safety and animal health. EPA Method 8081B suggests the use of dual-column gas chromatography with electron capture detector (ECD) as this allows detection and measurement of electronegative chemical compounds (most notably halogens, organohalides, and nitrogen-containing compounds) with extremely high sensitivity. Despite the high sensitivity provided towards electronegative compounds, the ECD poses some concerns in terms of compound identification and laboratory safety and operations due to the use of a 63Ni radioactive source. Because of the complexity of an analog-style chromatographic separation, the second column is still needed to confirm IDs and discriminate between the target analytes and matrix interferents.

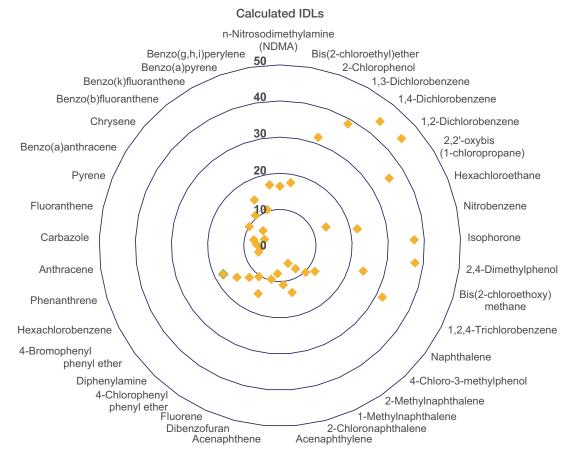
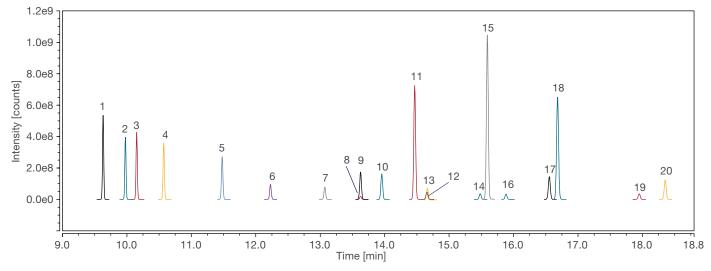


Figure 5. Examples of calculated IDLs for some selected compounds covering the whole volatility range. Calculated IDLs for solvent standard spiked at 1 μ g/L resulted in the range from 5 to 45 μ g/L with peak area %RSD <10 for the majority of the compounds.


The dual-column configuration also requires twice as much carrier gas, as well as an additional analytical column and unions, which makes continued operations costly from a consumable standpoint. Although ECD cells contain a small radioactive Ni63 and are generally considered safe to maintain and handle by trained operators, their use may require certain registrations and licensing fees on a yearly basis to maintain compliance with the radiation safety procedures stated in the regulations of the Nuclear Regulatory Commission (NRC) and state and local guidelines.

The use of GC-MS/MS can overcome challenges associated with using ECD as it is sensitive enough to provide equivalent detection limits but adds the advantage of selectivity, as compounds can be identified based on their unique mass and fragmentation pattern. These two features allow the end user to monitor unique ion transitions for each compound of interest, thus improving confidence in compound identification and quantitation, all while removing safety concerns related to the use of a radioactive source. An example of typical chromatogram for a solvent standard spiked at 1,000 μ g/L obtained using GC-MS/MS with t-SRM is reported in Figure 6. Endosulfan I and γ -chlordane

as well as endrin and dieldrin tend to coelute on the 5% phenyl 95% dimethylpolysiloxane stationary phase used for this application; therefore, the capability of selecting unique mass ions allowed the discrimination between two compounds that are not chromatographically resolved.

Linearity, instrument detection limit (IDL), and limit of detection (LOQ)

The TSQ 9610 NeverVent AEI is equipped with the XLXR detector, which is an electron multiplier that offers extended detector lifetime and dynamic range. Calibration curves in DCM were automatically prepared using an off-line TriPlus RSH autosampler by diluting a pesticide mix in the range from 0.5 to 1,000 µg/L. Linearity was evaluated using the internal standard method by calculating the calibration factor for each analyte at each concentration, the mean calibration factors. The calibration factor RSD were <20% for each analyte, therefore confirming the linear trend and demonstrated in Table 2. The advantage of using internal standard calibration is to account for routine change in response of the chromatographic system as well as variation in the volume of the introduced sample or sample extract.

1=BHC, Alpha; 2=BHC, beta; 3=BHC, gamma; 4=BHC, delta; 5=Heptachlor; 6=Aldrin; 7=Heptachlor epoxide; 8=Endosulfan peak 1; 9=Chlordane gamma-trans; 10=Chlordane alpha-cis; 11=4,4'-DDE; 12=Endrin; 13=Dieldrin; 14=Endosulfan peak 2; 15=4,4'-DDD; 16=Endrin Aldehyde; 17=Endosulfan sulfate; 18=4,4'-DDT; 19=Endrin-Ketone; 20=Methoxychlor

Figure 6. Typical chromatogram for a solvent standard spiked at 1,000 µg/L. The capability of monitoring typical transitions allowed for the confident identification of the coeluting peaks as shown in the insets.

Method detection limit and instrument repeatability were assessed for all the target compounds by preparing n=10 solvent standards at a concentration of 1 μ g/L. IDLs were calculated by using Equation 2 and resulted within 0.10 to 0.68 μ g/L with peak area %RSD for 10 replicated injections <20, with the only exception of endosulfan (peak 1) for which peak area %RSD was 24, as reported in Table 2. Overlaid chromatograms showing peak area repeatability obtained for n=10 replicated injections for aldrin are reported as an example in Figure 7.

The best-in-class t-SRM acquisition mode coupled to the ultrasensitive AEI ion source delivered unprecedent sensitivity with improved S/N ratio. Figure 8 demonstrates the intensity signal obtained for alpha, beta, gamma, and delta BHC at the lowest calibration point (0.5 μ g/L). The calculated S/N resulted in detectability far surpassing the minimum S/N > 3 threshold often reported, therefore suggesting that limits of detection could be potentially lowered even further for future proof analysis.

Table 2. Calculated IDLs, peak area %RSD, and average calibration factor %RSD for the investigated pesticides. IDLs ranged from 0.16 to 0.68 µg/L with average RF and peak area %RSD <20%, with the only exception of endosulfan (peak 1) for which peak area %RSD was 24.

Compound	RT (min)	Average RF %RSD	Calculated IDL (µg/L)	Peak area %RSD
BHC, alpha	9.63	5.2	0.18	6.5
BHC, beta	9.98	7.8	0.31	11.4
BHC, gamma	10.15	5.9	0.16	5.8
BHC, delta	10.58	9.1	0.12	4.2
Heptachlor	11.49	9.2	0.35	11.6
Aldrin	12.23	8.6	0.33	11.3
Heptachlor epoxide	13.08	8.7	0.32	11.3
Chlordane, gamma- trans	13.64	7.3	0.18	6.6
Endosulfan, peak1	13.64	17.7	0.68	23.7
Chlordane, alpha- <i>cis</i>	13.94	9.3	0.28	10.0
4,4'-DDE	14.48	9.4	0.1	3.7
Endrin	14.66	8.5	0.18	6.6
Dieldrin	14.68	14.4	0.35	16.4
Endosulfan, peak 2	15.5	15.9	0.43	12.5
4,4'-DDD	15.61	15.7	0.14	4.9
Endrin aldehyde	15.89	19.2	0.5	16.7
Endosulfan sulfate	16.57	9.8	0.16	6.5
4,4'-DDT	16.7	11.7	0.22	7.4
Endrin ketone	17.96	13	0.26	9.2
Metoxychlor	18.36	15.5	0.48	17.0

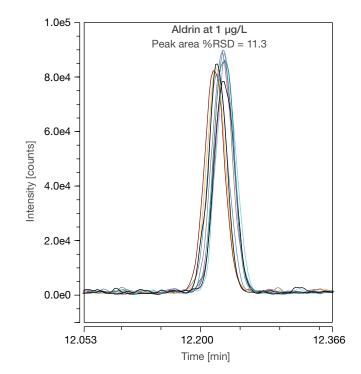


Figure 7. Overlaid chromatograms showing aldrin peak area repeatability obtained for n=10 replicated injections of solvent standard at 1 $\mu g/L$

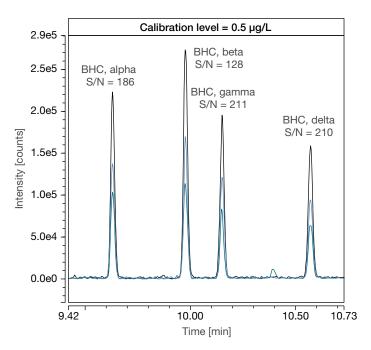


Figure 8. Intensity signal obtained for alpha, beta, gamma, and delta BHC at the lowest calibration point (0.5 μ g/L). The best-in-class t-SRM acquisition mode coupled to the ultra-sensitive AEI ion source allowed for improved S/N ratio. Quantifier ion = black trace. Qualifier ions = blue and red traces.

Conclusions

Modern environmental laboratories benefit greatly from the next generation of gas chromatography-mass spectrometry instrumentation that allows analysts to be more productive with simpler to use, more rugged, and more sensitive instrumentation. Advances in the Thermo Scientific line of GC-MS/MS allow for modernization of common environmental workflows for the analysis of SVOCs and organochlorine pesticides, as well as many more target analytes, all from a single, easy-to-use platform.

Modernizing instrumentation leads to simplified streamlined laboratory operations:

- Using a single hardware platform translates into increased sample throughput and the potential for consolidating multiple methods in a single GC run for streamlined operations.
- Harmonization of consumables and supplies, as well as decreasing the amount of expensive carrier gas, leads to more efficient lab operations and better ROI.
- A single software interface for acquisition, tuning, and reporting that can be used in an enterprise environment provides traceability and simplicity.
- Improved analyst's safety while reducing the risk of errors and cross-contaminations through the use of automated sample preparation benefits all ranges of lab staff.
- Accelerated routine maintenance operation through the NeverVent technology, allows a user to maintain the system without breaking the vacuum, and the modular concept of the TRACE 1610 GC allows for flexible configurations and reduced instrument downtime.
- Future-proof analysis with the GC-MS/MS timed-SRM acquisition and the AEI ion source for lower limits of detection and confident compound identification and quantitation, far surpassing current regulations.

References

- 1. U.S. EPA, SW-846 Test Method 8081B: Organochlorine Pesticides by Gas Chromatography, Rev. 2, February 2007, https://www.epa.gov/sites/default/ files/2015-12/documents/8081b.pdf
- U.S. EPA, SW-846 Test Method 8270E: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC-MS), Rev. 6, June 2018, https://www.epa. gov/sites/default/files/2020-10/documents/method_8270e_update_vi_06-2018_0. pdf
- U.S. EPA, SW-846 Test Method 8141B: Organophosphorus Compounds by Gas Chromatography, Rev. 2, February 2007, https://www.epa.gov/sites/default/ files/2015-12/documents/8141b.pdf
- Thermo Fisher Scientific, BR52235-EN 0921C, TriPlus RSH SMART robotic sampling system, https://www.thermofisher.com/document-connect/document-connect. html?url=https://assets.thermofisher.com/TFS-Assets%2FCMD%2Fbrochures%2Fbr-52235-gc-autosampler-br52235-en-Ir.pdf
- Thermo Fisher Scientific, BR74090-EN 0123S, Stay ahead with measurably more production, https://www.thermofisher.com/document-connect/document-connect. html?url=https://assets.thermofisher.com/TFS-Assets%2FCMD%2Fbrochures%2Fbr-740900-gs-trace-1600-series-br740900-en.pdf
- Thermo Fisher Scientific, BR000161-EN 0422C, Stay ahead with unstoppable confidence, https://www.thermofisher.com/document-connect/document-connect. html?url=https://assets.thermofisher.com/TFS-Assets%2FCMD%2Fbrochures%2Fbr-000161-gc-ms-tsq-9610-br000161-en.pdf
- Thermo Fisher Scientific, BR001975-EN 0723M, Built for stability. Built for performance. Why compromise?, https://www.thermofisher.com/documentconnect/document-connect.html?url=https://assets.thermofisher.com/ TFS-Assets%2FCMD%2Fbrochures%2Fbr-001975-sw-chromeleon-cds-7-3-2br001975-en.pdf
- U.S. Code of Federal Regulations, 49 FR 43430, (Oct. 26, 1984); 50 FR 694, 696 (Jan. 4, 1985), as amended at 51 FR 23703 (June 30, 1986), http://www.ecfr.gov/ cgi-bin/text-idx?SID=efe93db42854f88dffcf66ba8de73 7e6&mc=true&node=ap40 .23.136_17.b&rgn=div9
- Thermo Fisher Scientific, TN 10494, Practical Determination and Validation of Instrument Detection Limit of Thermo Scientific[™] ISQ[™] LT Single Quadrupole GC-MS, https://tools.thermofisher.com/content/sfs/brochures/TN-10494-GC-MS-ISQ-LT-Single-Quadrupole-TN10494-EN.pdf
- International Union of Pure and Applied Chemists (IUPAC), http://www.iupac.org/ publications/analytical_compendium/Cha18sec437.pdf

Appendix 1

Table A1, part 1. List of target analytes, precursor and product ions (m/z), as well as collision energies (eV) and quadrupole resolutions applied for analysis of SVOCs and organochlorine pesticides according to the EPA 8270E and EPA 8081B methods

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
1,4-Dioxane	2.82	88	58	7	Widest	Normal
1,4-Dioxane	2.82	88	57	10	Widest	Normal
n-Nitrosodimethylamine (NDMA)	3.1	74.1	44.1	6	Widest	Normal
n-Nitrosodimethylamine (NDMA)	3.1	74.1	42.1	18	Widest	Normal
Pyridine	3.14	79.1	52.1	14	Widest	Widest
Pyridine	3.14	52.1	50.1	8	Widest	Normal
Pyridine	3.14	52.1	51.1	10	Widest	Normal
2-Picoline	3.65	93.1	66.1	10	Widest	Normal
2-Picoline	3.65	93.1	78	15	Widest	Widest
2-Picoline	3.65	92.1	65.1	10	Widest	Normal
N-Nitrosomethylethylamine (NEMA)	3.7	88	71.1	4	Widest	Widest
N-Nitrosomethylethylamine (NEMA)	3.7	88	42.1	13	Widest	Normal
N-Nitrosomethylethylamine (NEMA)	3.7	88	43.1	6	Widest	Normal
Methyl methanesulfonate	3.89	80	65	8	Widest	Widest
Methyl methanesulfonate	3.89	65	48	20	Widest	Widest
Methyl methanesulfonate	3.89	80	48	28	Widest	Widest
2-Fluorophenol (surr)	4.02	112	64.1	15	Widest	Normal
2-Fluorophenol (surr)	4.02	112	92	8	Widest	Widest
2-Fluorophenol (surr)	4.02	112	63.1	22	Normal	Normal
Ethyl methanesulfonate	4.31	109	79	6	Widest	Widest
Ethyl methanesulfonate	4.31	97	65	28	Widest	Widest
Ethyl methanesulfonate	4.31	97	79	8	Widest	Widest
Benzaldehyde	4.55	106.1	77	14	Normal	Normal
Benzaldehyde	4.55	105.1	77.1	4	Normal	Normal
Benzaldehyde	4.55	106.1	105	2	Normal	Normal
Phenol-d5 (surr)	4.56	99	69	17	Widest	Normal
Phenol-d5 (surr)	4.56	71	69	8	Normal	Normal
Phenol-d5 (surr)	4.56	99	71	10	Widest	Normal
Phenol	4.58	93.6	39	28	Widest	Widest
Phenol	4.58	93.6	65	16	Widest	Normal
Phenol	4.58	93.6	66.1	10	Widest	Normal
Aniline	4.58	93.1	66.1	12	Widest	Normal
Aniline	4.58	93.1	65	18	Widest	Normal
Aniline	4.58	93.1	92.1	12	Normal	Normal
Bis(2-chloroethyl)ether	4.64	93	63	6	Widest	Widest
Bis(2-chloroethyl)ether	4.64	94.9	27.1	22	Widest	Widest
Bis(2-chloroethyl)ether	4.64	94.9	65	6	Widest	Widest
Pentachloroethane	4.64	164.9	129.9	15	Widest	Widest
Pentachloroethane	4.64	117	82	28	Widest	Widest
Pentachloroethane	4.64	166.9	131.9	15	Widest	Widest
Benzonitrile	4.67	103	76	10	Widest	Widest
Benzonitrile	4.67	76	50	10	Widest	Widest
Benzonitrile	4.67	103	50	20	Widest	Widest

Table A1, part 2.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
2-Chlorophenol	4.7	128	62.9	24	Normal	Normal
2-Chlorophenol	4.7	128	64.2	16	Widest	Normal
2-Chlorophenol	4.7	129.9	62.9	26	Normal	Normal
n-Decane	4.7	71.1	43.1	6	Widest	Widest
n-Decane	4.7	57.1	41.1	6	Widest	Widest
n-Decane	4.7	85.1	43.1	6	Widest	Widest
1,3-Dichlorobenzene	4.8	146	111	14	Widest	Widest
1,3-Dichlorobenzene	4.8	146	74.7	26	Normal	Normal
1,3-Dichlorobenzene	4.8	147.9	74.7	26	Normal	Normal
1,4-Dichlorobenzene-d4 (ISTD)	4.82	150	115	14	Normal	Normal
1,4-Dichlorobenzene-d4 (ISTD)	4.82	115	78	12	Normal	Normal
1,4-Dichlorobenzene-d4 (ISTD)	4.82	150	78	28	Normal	Normal
1,4-Dichlorobenzene	4.86	146	111	14	Widest	Widest
1,4-Dichlorobenzene	4.86	146	74.7	26	Normal	Normal
1,4-Dichlorobenzene	4.86	147.9	74.7	26	Normal	Normal
Benzyl alcohol	4.93	107.1	79.1	8	Normal	Normal
Benzyl alcohol	4.93	108.1	79	12	Normal	Normal
Benzyl alcohol	4.93	79.1	77.1	10	Normal	Normal
1,2-Dichlorobenzene	4.97	146	111	14	Widest	Widest
1,2-Dichlorobenzene	4.97	146	74.7	26	Normal	Normal
1,2-Dichlorobenzene	4.97	147.9	74.7	26	Normal	Normal
o-Cresol (2-methylphenol)	5.02	107	77	13	Normal	Normal
o-Cresol (2-methylphenol)	5.02	108.1	77	23	Normal	Normal
o-Cresol (2-methylphenol)	5.02	108.1	107	12	Normal	Normal
2,2'-Oxybis(1-chloropropane)	5.03	121.1	45.1	6	Widest	Widest
2,2'-Oxybis(1-chloropropane)	5.03	121.1	41.1	16	Widest	Widest
2,2'-Oxybis(1-chloropropane)	5.03	121.1	77.1	8	Widest	Widest
N-Nitrosopyrrolidine (NPYR)	5.13	100	68.1	8	Widest	Widest
N-Nitrosopyrrolidine (NPYR)	5.13	100	55.1	6	Widest	Widest
N-Nitrosopyrrolidine (NPYR)	5.13	100	43.1	8	Widest	Widest
Acetophenone	5.13	120	105.1	6	Widest	Widest
Acetophenone	5.13	105	77	17	Widest	Widest
Acetophenone	5.13	105	51	25	Widest	Widest
n,n-Dimethylaniline	5.13	120.1	77.1	20	Normal	Widest
n,n-Dimethylaniline	5.13	120.1	51.1	34	Normal	Widest
n,n-Dimethylaniline	5.13	121.1	77.1	28	Normal	Widest
N-Nitrosodi-n-propylamine (DPNA or NDPA)	5.14	101.1	70.1	6	Widest	Widest
N-Nitrosodi-n-propylamine (DPNA or NDPA)	5.14	130.1	113.1	6	Widest	Widest
N-Nitrosodi-n-propylamine (DPNA or NDPA)	5.14	70.1	43.1	6	Widest	Widest
3 & 4-Methylphenol (m&p-cresol)	5.14	108.1	77	23	Normal	Normal
3 & 4-Methylphenol (m&p-cresol)	5.14	107	77	13	Normal	Normal
3 & 4-Methylphenol (m&p-cresol)	5.14	108.1	107	12	Normal	Normal
N-Nitrosomorpholine (NMOR)	5.16	86	56.1	6	Widest	Widest

Table A1, part 3.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
N-Nitrosomorpholine (NMOR)	5.16	116	56.1	10	Widest	Widest
N-Nitrosomorpholine (NMOR)	5.16	116	86.1	4	Widest	Widest
2-Toluidine (o)	5.16	107.1	106.1	12	Normal	Widest
2-Toluidine (o)	5.16	106.1	79.1	8	Normal	Normal
2-Toluidine (o)	5.16	106.1	77	14	Normal	Normal
Hexachloroethane	5.26	200.9	165.8	14	Normal	Normal
Hexachloroethane	5.26	117	82	28	Widest	Widest
Hexachloroethane	5.26	200.9	163.9	14	Normal	Normal
Nitrobenzene-d5 (surr)	5.27	82	54	12	Normal	Normal
Nitrobenzene-d5 (surr)	5.27	128	82	12	Widest	Widest
Nitrobenzene-d5 (surr)	5.27	128	54.1	28	Normal	Normal
Nitrobenzene	5.28	123	77.1	10	Widest	Widest
Nitrobenzene	5.28	123	51.1	27	Widest	Widest
Nitrobenzene	5.28	77	51.1	12	Widest	Widest
2-Nitrotoluene (o)	5.33	91	65	10	Normal	Widest
2-Nitrotoluene (o)	5.33	120	92	8	Widest	Widest
2-Nitrotoluene (o)	5.33	92	65	8	Normal	Widest
2-Nitrotoluene (o)	5.33	120	65	14	Widest	Widest
2,6-Dimethylphenol (2,6-Xylenol)	5.37	122.1	107	12	Widest	Widest
2,6-Dimethylphenol (2,6-Xylenol)	5.37	107	77	13	Widest	Widest
2,6-Dimethylphenol (2,6-Xylenol)	5.37	122	77	24	Widest	Widest
N-Nitrosopiperidine (NPIP)	5.41	114.1	84.1	6	Widest	Widest
N-Nitrosopiperidine (NPIP)	5.41	114.1	55.1	17	Widest	Widest
N-Nitrosopiperidine (NPIP)	5.41	114.1	97.1	6	Widest	Widest
Isophorone	5.47	82	39.1	12	Widest	Widest
Isophorone	5.47	82	54.1	6	Widest	Widest
Isophorone	5.47	138.1	82.1	8	Normal	Normal
2-Nitrophenol	5.57	139.1	81	12	Normal	Normal
2-Nitrophenol	5.57	139.1	65	20	Widest	Widest
2-Nitrophenol	5.57	139.1	109	8	Widest	Widest
2,4-Dimethylphenol	5.59	122.1	107	12	Widest	Widest
2,4-Dimethylphenol	5.59	107	77	13	Widest	Widest
2,4-Dimethylphenol	5.59	121.1	77.1	14	Widest	Widest
Benzoic Acid	5.6	122	77	18	Widest	Widest
Benzoic Acid	5.6	105	77	10	Widest	Widest
Benzoic Acid	5.6	105	51.1	25	Widest	Widest
o,o,o-Triethyl phosphorothioate	5.64	121	65	8	Widest	Widest
o,o,o-Triethyl phosphorothioate	5.64	93	65	6	Widest	Widest
o,o,o-Triethyl phosphorothioate	5.64	198	114	12	Widest	Widest
3-Nitrotoluene (m)	5.65	137	91	10	Widest	Widest
3-Nitrotoluene (m)	5.65	65	39	10	Widest	Widest
3-Nitrotoluene (m)	5.65	91	65	10	Widest	Widest
3-Nitrotoluene (m)	5.65	137	65	22	Widest	Widest

Table A1, part 4.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Phentermine (a,a-Dimethylphenethylamine)	5.85	58.1	42.1	22	Widest	Normal
Phentermine (a,a-Dimethylphenethylamine)	5.85	58.1	41.1	10	Widest	Normal
Phentermine (a,a-Dimethylphenethylamine)	5.85	58.1	43.1	13	Widest	Normal
1,2,4-Trichlorobenzene	5.9	180	109	24	Widest	Widest
1,2,4-Trichlorobenzene	5.9	180	144.9	14	Normal	Normal
1,2,4-Trichlorobenzene	5.9	181.9	146.9	14	Normal	Normal
Naphthalene-d8 (ISTD)	5.97	136	108	18	Widest	Widest
Naphthalene-d8 (ISTD)	5.97	136	84.1	20	Widest	Widest
Naphthalene-d8 (ISTD)	5.97	136	134.1	18	Widest	Widest
a-Terpineol	5.97	93.1	77	12	Widest	Widest
a-Terpineol	5.97	93.1	91.1	8	Widest	Widest
a-Terpineol	5.97	136.1	121.1	8	Widest	Widest
4-Nitrotoluene (p)	5.97	137	107	6	Widest	Widest
4-Nitrotoluene (p)	5.97	91	65	10	Widest	Widest
4-Nitrotoluene (p)	5.97	137	77	14	Widest	Widest
4-Nitrotoluene (p)	5.97	137	91	10	Widest	Widest
Naphthalene	5.97	128	102	18	Widest	Widest
Naphthalene	5.97	128	77.7	20	Widest	Widest
Naphthalene	5.97	128	126.9	16	Widest	Widest
4-Chloroaniline	6.03	128.8	65.1	22	Widest	Widest
4-Chloroaniline	6.03	92	65	8	Widest	Widest
4-Chloroaniline	6.03	128.8	91.9	14	Widest	Widest
Sulfolane	6.04	120	55.1	6	Widest	Widest
Sulfolane	6.04	120	39.1	22	Widest	Normal
Sulfolane	6.04	120	41.1	12	Widest	Normal
2,6-Dichlorophenol	6.05	162	63	26	Normal	Widest
2,6-Dichlorophenol	6.05	98	63.1	8	Widest	Widest
2,6-Dichlorophenol	6.05	164	63	25	Normal	Widest
Hexachloropropene	6.08	210.8	116.9	16	Normal	Normal
Hexachloropropene	6.08	212.8	116.9	20	Normal	Normal
Hexachloropropene	6.08	212.8	118.9	24	Normal	Normal
Hexachlorobutadiene	6.1	224.9	189.9	14	Normal	Normal
Hexachlorobutadiene	6.1	222.9	187.9	14	Normal	Normal
Hexachlorobutadiene	6.1	226.8	191.9	14	Normal	Normal
Dichlorvos	6.23	185	93	12	Normal	Widest
Dichlorvos	6.23	109	79	6	Widest	Widest
Dichlorvos	6.23	186.9	93	12	Normal	Widest
Quinoline	6.33	129.1	102.1	15	Widest	Widest
Quinoline	6.33	129.1	76.1	27	Widest	Widest
Quinoline	6.33	129.1	128	15	Widest	Widest
e-Caprolactam	6.37	113.1	85.1	4	Widest	Widest
e-Caprolactam	6.37	113.1	56.1	10	Widest	Widest
· · · · · · · · · · · · · · · · · · ·						

Table A1, part 5.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
N-Nitrosodi-n-butylamine (NDBA)	6.38	116.1	99.1	6	Widest	Widest
N-Nitrosodi-n-butylamine (NDBA)	6.38	84.1	42.1	8	Widest	Widest
N-Nitrosodi-n-butylamine (NDBA)	6.38	158.1	99.1	8	Widest	Widest
Resorcinol	6.41	110	82.1	10	Widest	Normal
Resorcinol	6.41	110	39.1	20	Widest	Widest
Resorcinol	6.41	110	81.1	16	Widest	Normal
1,4-Phenylenediamine (p-Phenylene diamine)	6.45	108.1	80.1	18	Normal	Widest
1,4-Phenylenediamine (p-Phenylene diamine)	6.45	80	53.1	10	Widest	Widest
1,4-Phenylenediamine (p-Phenylene diamine)	6.45	108.1	81.1	10	Normal	Widest
4-Chloro-3-methylphenol	6.55	142.1	107	12	Widest	Widest
4-Chloro-3-methylphenol	6.55	107	77	13	Widest	Widest
4-Chloro-3-methylphenol	6.55	142.1	77	24	Widest	Widest
sosafrole peak 1	6.63	162.1	104.1	13	Normal	Normal
sosafrole peak 1	6.63	161	103.1	15	Normal	Normal
sosafrole peak 1	6.63	161	77.1	27	Widest	Widest
2-Methylnaphthalene	6.75	142.1	141.1	14	Widest	Normal
2-Methylnaphthalene	6.75	115	89	16	Widest	Widest
2-Methylnaphthalene	6.75	142.1	115	30	Widest	Widest
1-Methylnaphthalene	6.89	141.7	141.1	14	Widest	Widest
1-Methylnaphthalene	6.89	142.1	115	30	Widest	Widest
1-Methylnaphthalene	6.89	115	89	16	Widest	Widest
Hexachlorocyclopentadiene	6.95	236.8	142.9	24	Normal	Widest
Hexachlorocyclopentadiene	6.95	234.9	116.9	26	Normal	Widest
Hexachlorocyclopentadiene	6.95	234.9	140.9	22	Normal	Widest
1,2,4,5-Tetrachlorobenzene	6.96	213.9	108	39	Normal	Widest
1,2,4,5-Tetrachlorobenzene	6.96	213.9	178.9	15	Normal	Widest
1,2,4,5-Tetrachlorobenzene	6.96	215.8	108	38	Normal	Widest
sosafrole peak 2	6.99	162.1	104.1	13	Normal	Normal
sosafrole peak 2	6.99	161	103.1	15	Normal	Normal
sosafrole peak 2	6.99	161	77.1	27	Widest	Widest
2,4,6-Trichlorophenol	7.09	196	97	28	Normal	Widest
2,4,6-Trichlorophenol	7.09	132	97	10	Widest	Widest
2,4,6-Trichlorophenol	7.09	197.9	97	28	Normal	Widest
2,3-Dichloroaniline	7.09	161	90	17	Widest	Widest
2,3-Dichloroaniline	7.09	161	63.1	26	Widest	Widest
2,3-Dichloroaniline	7.09	161	99	18	Widest	Widest
2,4,5-Trichlorophenol	7.17	196	97	28	Normal	Widest
2,4,5-Trichlorophenol	7.17	197.9	97	28	Normal	Widest
2,4,5-Trichlorophenol	7.17	132	97	10	Widest	Widest
2-Fluorobiphenyl (surr)	7.19	172.1	171.1	10	Normal	Normal
2-Fluorobiphenyl (surr)	7.19	172.1	151.1	23	Normal	Widest
2-Fluorobiphenyl (surr)	7.19	172.1	170.1	25	Normal	Normal

Table A1, part 6.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Safrole	7.27	161	103.1	15	Widest	Widest
Safrole	7.27	131	77.1	20	Widest	Widest
Safrole	7.27	161	77.1	27	Widest	Widest
1,1'-Biphenyl	7.32	154.1	115	26	Normal	Widest
1,1'-Biphenyl	7.32	151.8	125.8	24	Normal	Normal
1,1'-Biphenyl	7.32	154.1	127.4	30	Normal	Normal
2-Chloronaphthalene	7.36	162	127.1	17	Normal	Widest
2-Chloronaphthalene	7.36	162	77.1	30	Widest	Widest
2-Chloronaphthalene	7.36	164	127.1	17	Normal	Widest
1-Chloronaphthalene	7.38	162	127.1	17	Normal	Widest
1-Chloronaphthalene	7.38	162	77.1	30	Widest	Widest
1-Chloronaphthalene	7.38	164	127.1	17	Normal	Widest
Diphenyl ether (phenyl ether)	7.44	170.1	141.1	15	Normal	Widest
Diphenyl ether (phenyl ether)	7.44	170.1	77.1	20	Normal	Widest
Diphenyl ether (phenyl ether)	7.44	170.1	142.1	10	Normal	Widest
2-Nitroaniline	7.45	138.1	65	22	Widest	Widest
2-Nitroaniline	7.45	92	65	8	Widest	Widest
2-Nitroaniline	7.45	138.1	92	12	Widest	Widest
Mevinphos	7.49	127	109	10	Widest	Widest
Mevinphos	7.49	127	95	14	Widest	Widest
Mevinphos	7.49	192	127	10	Widest	Widest
1,4-Naphthoquinone	7.54	158	102.1	15	Widest	Widest
1,4-Naphthoquinone	7.54	158	130.1	6	Widest	Widest
1,4-Naphthoquinone	7.54	158	76.1	28	Widest	Widest
1,3-Dinitrobenzene	7.62	168.1	75	24	Widest	Widest
1,3-Dinitrobenzene	7.62	122	75	10	Widest	Widest
1,3-Dinitrobenzene	7.62	168.1	122	10	Widest	Widest
Dimethylphthalate	7.7	163.1	77	20	Widest	Widest
Dimethylphthalate	7.7	163	133.1	8	Widest	Normal
Dimethylphthalate	7.7	163	135.1	10	Widest	Normal
1,4-Dinitrobenzene	7.72	168.1	75	24	Widest	Widest
1,4-Dinitrobenzene	7.72	122	75	10	Widest	Widest
1,4-Dinitrobenzene	7.72	168.1	122	10	Widest	Widest
2,6-Dinitrotoluene	7.77	165	63	20	Widest	Widest
2,6-Dinitrotoluene	7.77	165	148	8	Widest	Widest
2,6-Dinitrotoluene	7.77	165	90	12	Widest	Widest
1,2-Dinitrobenzene	7.85	168.1	63.2	38	Widest	Widest
1,2-Dinitrobenzene	7.85	168.1	51.4	12	Widest	Normal
1,2-Dinitrobenzene	7.85	168.1	52.8	32	Widest	Normal
Acenaphthylene	7.87	151.9	150	28	Widest	Widest

Table A1, part 7.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Acenaphthylene	7.87	151.9	101.9	26	Widest	Widest
Acenaphthylene	7.87	151.9	125.8	24	Widest	Widest
3-Nitroaniline	7.98	138.1	92	12	Widest	Widest
3-Nitroaniline	7.98	138.1	65	22	Widest	Widest
3-Nitroaniline	7.98	92	65	8	Widest	Widest
Acenaphthene-d10 (ISTD)	8.04	162.1	160.1	18	Normal	Normal
Acenaphthene-d10 (ISTD)	8.04	160.1	132	24	Widest	Widest
Acenaphthene-d10 (ISTD)	8.04	164	162	16	Normal	Normal
Acenaphthene	8.07	154.1	153.1	16	Normal	Normal
Acenaphthene	8.07	152.8	152.2	18	Normal	Normal
Acenaphthene	8.07	154.1	152.4	24	Normal	Normal
2,4-Dinitrophenol	8.12	184.1	107	10	Widest	Widest
2,4-Dinitrophenol	8.12	184.1	154	6	Widest	Widest
4-Nitrophenol	8.21	139.1	109	8	Widest	Widest
4-Nitrophenol	8.21	108.9	81	8	Widest	Widest
4-Nitrophenol	8.21	139.1	81	14	Widest	Widest
Pentachlorobenzene	8.26	247.9	212.9	17	Normal	Widest
Pentachlorobenzene	8.26	247.9	142	37	Normal	Widest
Pentachlorobenzene	8.26	249.9	142	41	Normal	Widest
2,4-Dinitrotoluene	8.29	165	63	20	Widest	Widest
2,4-Dinitrotoluene	8.29	165	119.1	6	Widest	Widest
2,4-Dinitrotoluene	8.29	89	63.1	10	Widest	Widest
Dibenzofuran	8.3	168.1	139	24	Normal	Normal
Dibenzofuran	8.3	169.1	139.9	24	Normal	Normal
Dibenzofuran	8.3	168	113.1	37	Normal	Widest
Pyrophosphoric acid, tetraethyl ester (TEPP)	8.38	235	179	8	Widest	Widest
Pyrophosphoric acid, tetraethyl ester (TEPP)	8.38	179	99	12	Widest	Widest
Pyrophosphoric acid, tetraethyl ester (TEPP)	8.38	263.1	179	10	Widest	Widest
2,3,5,6-Tetrachlorophenol	8.4	229.9	130.9	26	Normal	Normal
2,3,5,6-Tetrachlorophenol	8.4	231.9	130.9	28	Normal	Normal
2,3,5,6-Tetrachlorophenol	8.4	231.9	132.9	28	Normal	Normal
1-Naphthylamine (1-aminonaphthalene)	8.41	143	115.1	18	Widest	Normal
1-Naphthylamine (1-aminonaphthalene)	8.41	143	89	35	Widest	Normal
1-Naphthylamine (1-aminonaphthalene)	8.41	143	116.1	12	Widest	Normal
2,3,4,6-Tetrachlorophenol	8.49	229.9	130.9	26	Normal	Normal
2,3,4,6-Tetrachlorophenol	8.49	231.9	130.9	28	Normal	Normal
2,3,4,6-Tetrachlorophenol	8.49	231.9	132.9	28	Normal	Normal
2-Naphthylamine (2-Aminonaphthalene)	8.52	143	115.1	18	Widest	Normal
2-Naphthylamine (2-Aminonaphthalene)	8.52	143	89	35	Widest	Normal
2-Naphthylamine (2-Aminonaphthalene)	8.52	143	116.1	12	Widest	Normal

Table A1, part 8.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Diethylphthalate	8.62	149	65	18	Widest	Widest
Diethylphthalate	8.62	177.1	149.1	8	Widest	Widest
Diethylphthalate	8.62	149	93	13	Widest	Widest
Zinophos (thionazine)	8.73	96	68.1	6	Normal	Widest
Zinophos (thionazine)	8.73	97	79	10	Normal	Widest
Zinophos (thionazine)	8.73	143	79.1	10	Widest	Widest
4-Chlorophenyl phenyl ether	8.76	141.1	115	14	Widest	Widest
4-Chlorophenyl phenyl ether	8.76	204.1	77	24	Widest	Widest
4-Chlorophenyl phenyl ether	8.76	204.1	141.1	14	Widest	Widest
Fluorene	8.76	165	163	30	Normal	Normal
Fluorene	8.76	166.1	165.1	16	Normal	Normal
Fluorene	8.76	166.1	115	38	Normal	Normal
4-Nitroaniline	8.77	138.1	108	8	Widest	Widest
4-Nitroaniline	8.77	108	80	10	Widest	Widest
4-Nitroaniline	8.77	138.1	80	16	Widest	Widest
Demeton-O	8.78	88.1	59.8	6	Normal	Normal
Demeton-O	8.78	89.1	61	8	Normal	Normal
Demeton-O	8.78	171.1	115	10	Widest	Widest
5-Nitro-o-toluidine	8.78	152	106.1	10	Widest	Widest
5-Nitro-o-toluidine	8.78	152	77.1	23	Widest	Widest
5-Nitro-o-toluidine	8.78	106.1	77	12	Widest	Widest
4,6-dinitro-2-methylphenol (Dinitro-o-cresol)	8.84	198	121	10	Widest	Widest
4,6-dinitro-2-methylphenol (Dinitro-o-cresol)	8.84	198	52.9	26	Widest	Widest
4,6-dinitro-2-methylphenol (Dinitro-o-cresol)	8.84	198	168	6	Widest	Widest
Diphenylamine	8.92	168.1	167.1	14	Normal	Widest
Diphenylamine	8.92	168.1	139	38	Normal	Widest
Diphenylamine	8.92	169.2	167.1	22	Normal	Widest
Ethoprop (Ethoprophos)	8.95	157.9	96.9	16	Widest	Widest
Ethoprop (Ethoprophos)	8.95	157.9	113.9	6	Widest	Widest
Ethoprop (Ethoprophos)	8.95	200	158	6	Widest	Widest
Azobenzene	9	182.1	77	14	Widest	Widest
Azobenzene	9	105.1	77	6	Widest	Widest
Azobenzene	9	77	51.1	10	Widest	Widest
Naled	9.1	145	109	12	Widest	Widest
Naled	9.1	109	79	6	Widest	Widest
Naled	9.1	145	112.9	16	Widest	Widest
2,4,6-Tribromophenol (surr)	9.11	329.8	141	30	Normal	Normal
2,4,6-Tribromophenol (surr)	9.11	327.7	141	30	Normal	Normal
2,4,6-Tribromophenol (surr)	9.11	331.8	143	32	Normal	Normal
Sulfotep	9.17	202	145.9	10	Widest	Widest

Table A1, part 9.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Sulfotep	9.17	265.9	145.9	15	Widest	Widest
Sulfotep	9.17	322	202	10	Widest	Widest
Monocrotophos	9.21	127	109	10	Widest	Widest
Monocrotophos	9.21	96.9	82	10	Widest	Widest
Monocrotophos	9.21	127	95	16	Widest	Widest
1,3,5-Trinitrobenzene	9.3	120	74	12	Widest	Widest
1,3,5-Trinitrobenzene	9.3	213	74	34	Widest	Widest
1,3,5-Trinitrobenzene	9.3	213	120	18	Widest	Widest
Phorate	9.37	121	65	8	Widest	Widest
Phorate	9.37	75	47	8	Widest	Widest
Phorate	9.37	260	75	8	Widest	Widest
Diallate peak 1	9.39	234.1	150	17	Widest	Widest
Diallate peak 1	9.39	86.1	43.1	6	Widest	Widest
Diallate peak 1	9.39	234.1	192.1	10	Widest	Widest
Phenacetin	9.41	108	80	10	Normal	Widest
Phenacetin	9.41	109.1	80.1	13	Normal	Widest
Phenacetin	9.41	179.1	137.1	8	Widest	Widest
4-Bromophenyl phenyl ether	9.5	248	141.1	16	Normal	Widest
4-Bromophenyl phenyl ether	9.5	249.9	77	26	Normal	Widest
4-Bromophenyl phenyl ether	9.5	249.9	141.1	16	Normal	Widest
BHC, Alpha	9.53	180.9	145	14	Widest	Widest
BHC, Alpha	9.53	218.8	183	8	Widest	Widest
BHC, Alpha	9.53	182.8	146.7	12	Widest	Widest
Diallate peak 2	9.53	234.1	150	17	Widest	Widest
Diallate peak 2	9.53	86.1	43.1	6	Widest	Widest
Diallate peak 2	9.53	234.1	192.1	10	Widest	Widest
Hexachlorobenzene	9.59	283.8	248.8	18	Normal	Normal
Hexachlorobenzene	9.59	283.8	213.8	30	Normal	Widest
Hexachlorobenzene	9.59	285.8	250.8	18	Normal	Normal
Demeton-S (Disulfoton oxon)	9.62	114	81	14	Widest	Widest
Demeton-S (Disulfoton oxon)	9.62	142.5	114.9	6	Widest	Widest
Demeton-S (Disulfoton oxon)	9.62	170	114	8	Widest	Widest
Dimethoate	9.64	87	42.1	8	Widest	Widest
Dimethoate	9.64	87	46	15	Widest	Widest
Dimethoate	9.64	93	63	8	Widest	Widest
Atrazine	9.79	200	122.1	8	Widest	Widest
Atrazine	9.79	200	132	8	Widest	Widest
Atrazine	9.79	215.1	58.1	12	Widest	Widest
BHC, beta	9.85	180.9	145	14	Widest	Widest
BHC, beta	9.85	218.8	183	8	Widest	Widest

Table A1, part 10.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
BHC, beta	9.85	182.8	146.7	12	Widest	Widest
4-Aminobiphenyl	9.94	169.1	141.1	20	Widest	Widest
4-Aminobiphenyl	9.94	169.1	115	33	Widest	Widest
4-Aminobiphenyl	9.94	169.1	151.1	22	Widest	Widest
Pentachlorophenol	9.94	263.9	164.9	26	Widest	Widest
Pentachlorophenol	9.94	267.8	166.9	26	Widest	Normal
Pentachlorophenol	9.94	267.8	168.9	28	Widest	Normal
Pentachloronitrobenzene (quintozene)	9.95	248.8	213.9	14	Widest	Widest
Pentachloronitrobenzene (quintozene)	9.95	213.8	143.9	25	Widest	Widest
Pentachloronitrobenzene (quintozene)	9.95	294.8	236.9	15	Widest	Widest
BHC, gamma	10.04	180.9	145	14	Widest	Widest
BHC, gamma	10.04	218.8	183	8	Widest	Widest
BHC, gamma	10.04	182.8	146.7	12	Widest	Widest
Diazinon	10.09	137.1	84.1	12	Widest	Widest
Diazinon	10.09	137.1	54.1	20	Widest	Widest
Diazinon	10.09	179.1	121.5	26	Widest	Widest
Propyzamide (pronamide)	10.1	172.9	145	20	Widest	Widest
Propyzamide (pronamide)	10.1	172.9	74	40	Widest	Widest
Propyzamide (pronamide)	10.1	172.9	109	25	Widest	Widest
n-Octadecane	10.16	85.1	43.1	6	Widest	Normal
n-Octadecane	10.16	57.1	41.1	6	Widest	Normal
n-Octadecane	10.16	99.1	57.1	6	Widest	Widest
Phenanthrene-d10 (ISTD)	10.25	188	160.1	20	Widest	Widest
Phenanthrene-d10 (ISTD)	10.25	188	158.1	34	Widest	Widest
Phenanthrene-d10 (ISTD)	10.25	188	184.1	28	Widest	Widest
Phenanthrene	10.29	178	152	20	Widest	Normal
Phenanthrene	10.29	178	151	32	Widest	Normal
Phenanthrene	10.29	176	149.9	24	Widest	Normal
Disulfoton	10.3	88	60.1	6	Normal	Normal
Disulfoton	10.3	88	59	10	Normal	Normal
Disulfoton	10.3	89.1	61	6	Normal	Normal
Dinoseb	10.32	211	163	6	Widest	Widest
Dinoseb	10.32	211	117.1	14	Widest	Widest
Dinoseb	10.32	211	147.1	6	Widest	Widest
BHC, delta	10.43	180.9	145	14	Widest	Widest
BHC, delta	10.43	218.8	183	8	Widest	Widest
BHC, delta	10.43	182.8	146.7	12	Widest	Widest
Anthracene	10.44	178	152	20	Widest	Normal
Anthracene	10.44	178	151	32	Widest	Normal
Anthracene	10.44	176	149.9	24	Widest	Normal

Table A1, part 11.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Carbazole	10.75	167.1	165.9	15	Normal	Normal
Carbazole	10.75	167.1	139	25	Normal	Normal
Carbazole	10.75	167.1	140	25	Normal	Normal
Methyl parathion	11.07	263	109	10	Widest	Widest
Methyl parathion	11.07	109	79	8	Widest	Widest
Methyl parathion	11.07	125	79	6	Widest	Widest
Chlorpyrifos-methyl	11.31	125	47	12	Widest	Widest
Chlorpyrifos-methyl	11.31	125	79	6	Widest	Widest
Chlorpyrifos-methyl	11.31	285.9	93	20	Widest	Widest
Fenchlorphos Ronnel	11.31	284.9	270	12	Widest	Normal
Fenchlorphos Ronnel	11.31	284.9	239.9	22	Widest	Normal
Fenchlorphos Ronnel	11.31	287	271.9	12	Widest	Normal
Heptachlor	11.32	271.8	236.9	12	Widest	Widest
Heptachlor	11.32	99.8	39	26	Widest	Widest
Heptachlor	11.32	99.8	65	12	Widest	Widest
Di-n-butylphthalate	11.63	149	65.1	18	Widest	Widest
Di-n-butylphthalate	11.63	149	93.1	15	Widest	Widest
Di-n-butylphthalate	11.63	149	121.1	12	Widest	Widest
Malathion	11.69	173.1	99	12	Widest	Widest
Malathion	11.69	92.8	63	8	Widest	Widest
Malathion	11.69	125	79	8	Widest	Widest
Chlorpyrifos	11.87	313.9	257.9	12	Widest	Widest
Chlorpyrifos	11.87	196.7	107	36	Widest	Widest
Chlorpyrifos	11.87	196.7	168.9	12	Widest	Widest
Fenthion	11.95	278	109	18	Widest	Widest
Fenthion	11.95	245.3	125	12	Widest	Widest
Fenthion	11.95	278	169	14	Widest	Widest
4 Nitroquinoline-N-oxide	11.99	101.1	75.1	10	Widest	Widest
4 Nitroquinoline-N-oxide	11.99	190	160.1	8	Widest	Widest
4 Nitroquinoline-N-oxide	11.99	128	101.1	8	Widest	Widest
Parathion (Ethyl parathion)	12.02	109	81	10	Widest	Widest
Parathion (Ethyl parathion)	12.02	139	109	6	Widest	Widest
Parathion (Ethyl parathion)	12.02	291	109	10	Widest	Widest
Aldrin	12.05	262.7	192.9	32	Widest	Widest
Aldrin	12.05	262.7	191	30	Widest	Widest
Trichloronate	12.27	297	269	12	Widest	Widest
Trichloronate	12.27	268.9	222.9	20	Widest	Normal
Trichloronate	12.27	270.8	224.9	22	Widest	Normal
Methapyrilene	12.33	97	53	15	Widest	Widest
Methapyrilene	12.33	58	42.1	17	Widest	Widest

Table A1, part 12.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Methapyrilene	12.33	97	45	18	Widest	Widest
Isodrin	12.67	192.9	123	27	Normal	Widest
Isodrin	12.67	192.9	157	17	Normal	Widest
Isodrin	12.67	194.9	123	27	Normal	Widest
Chlorfenvinphos	12.81	266.9	159	14	Widest	Widest
Chlorfenvinphos	12.81	266.9	203	10	Widest	Widest
Chlorfenvinphos	12.81	323	266.9	14	Widest	Widest
Heptachlor epoxide	12.89	352.8	262.9	16	Widest	Widest
Heptachlor epoxide	12.89	262.9	192.9	30	Widest	Widest
Merphos	12.89	209.1	153.1	6	Widest	Widest
Merphos	12.89	153	57.1	8	Widest	Widest
Merphos	12.89	153	97	6	Widest	Widest
Fluoranthene	13.1	202	200	32	Normal	Normal
Fluoranthene	13.1	202	152.1	30	Normal	Normal
Fluoranthene	13.1	203	201	32	Normal	Normal
Chlordane gamma-trans	13.43	372.8	265.8	20	Widest	Widest
Chlordane gamma-trans	13.43	374.7	265.8	20	Widest	Widest
Chlordane gamma-trans	13.43	372.7	263.7	20	Widest	Widest
Endosulfan peak 1	13.44	240.6	205.9	14	Widest	Widest
Endosulfan peak 1	13.44	194.7	159.4	8	Widest	Widest
Endosulfan peak 1	13.44	194.7	125	22	Widest	Widest
Stirophos (Tetrachlorvinphos)	13.45	328.9	109	18	Widest	Widest
Stirophos (Tetrachlorvinphos)	13.45	109	79	8	Widest	Widest
Stirophos (Tetrachlorvinphos)	13.45	330.8	109	18	Widest	Widest
Benzidine	13.6	184.1	183.1	13	Widest	Normal
Benzidine	13.6	184.1	156.1	22	Widest	Normal
Benzidine	13.6	184.1	166.1	18	Widest	Normal
Pyrene	13.74	202	200	32	Normal	Normal
Pyrene	13.74	203	201	32	Normal	Normal
Pyrene	13.74	202	152.1	30	Normal	Normal
Chlordane alpha-cis	13.76	372.8	265.8	20	Widest	Widest
Chlordane alpha-cis	13.76	374.7	265.8	20	Widest	Widest
Chlordane alpha-cis	13.76	372.7	263.7	20	Widest	Widest
Tokuthion (Prothiofos)	14.04	267	239	8	Widest	Widest
Tokuthion (Prothiofos)	14.04	267	220.9	16	Widest	Widest
Tokuthion (Prothiofos)	14.04	309	239	14	Widest	Widest
Bisphenol A	14.11	213.1	119.1	13	Widest	Widest
Bisphenol A	14.11	213.1	91.1	23	Widest	Widest
Bisphenol A	14.11	228.1	213.1	8	Widest	Widest
4,4'-DDE	14.27	246	176.1	28	Widest	Widest

Table A1, part 13.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
4,4'-DDE	14.27	317.8	246	20	Widest	Widest
4,4'-DDE	14.27	317.8	248	18	Widest	Widest
p-Terphenyl-d14 (surr)	14.4	244.2	240.2	23	Widest	Normal
p-Terphenyl-d14 (surr)	14.4	244.2	226.2	20	Widest	Normal
p-Terphenyl-d14 (surr)	14.4	244.2	242.2	15	Widest	Normal
Dieldrin	14.45	79	77	10	Widest	Widest
Dieldrin	14.45	79	51	22	Widest	Widest
Endrin	14.45	262.8	192.9	30	Widest	Widest
Endrin	14.45	263	191	28	Widest	Widest
Aramite (peaks 1-4)	14.57	185	63	10	Widest	Widest
Aramite (peaks 1-4)	14.57	135.1	107.1	8	Widest	Widest
Aramite (peaks 1-4)	14.57	319.1	185	6	Widest	Widest
p-Dimethylaminoazobenzene	14.88	225.1	120.1	10	Widest	Widest
p-Dimethylaminoazobenzene	14.88	148.1	120.1	6	Widest	Widest
p-Dimethylaminoazobenzene	14.88	225.1	148.1	6	Widest	Widest
Chlorobenzilate	15.12	251	139	12	Widest	Widest
Chlorobenzilate	15.12	139	111	13	Widest	Widest
Chlorobenzilate	15.12	251	111	24	Widest	Widest
Fensulfothion	15.14	307.9	96.9	26	Widest	Widest
Fensulfothion	15.14	307.9	153.1	12	Widest	Widest
Fensulfothion	15.14	307.9	293	8	Widest	Widest
Endosulfan peak 2	15.26	240.6	205.8	12	Widest	Widest
Endosulfan peak 2	15.26	158.9	123	12	Widest	Widest
Endosulfan peak 2	15.26	194.7	159	8	Widest	Widest
4,4'-DDD	15.38	235	165.1	20	Widest	Widest
4,4'-DDD	15.38	235	199	14	Widest	Widest
4,4'-DDD	15.38	236.8	165	20	Widest	Widest
Endrin Aldehyde	15.66	249.8	214.9	24	Widest	Widest
Endrin Aldehyde	15.66	173	138.1	16	Widest	Widest
Endrin Aldehyde	15.66	344.9	281	8	Widest	Widest
Bolstar Sulprofos	15.81	156	141	14	Widest	Widest
Bolstar Sulprofos	15.81	140.1	125	12	Widest	Widest
Bolstar Sulprofos	15.81	322	156	8	Widest	Widest
Famphur	15.95	218	109	13	Widest	Widest
Famphur	15.95	92.9	63	8	Widest	Widest
Famphur	15.95	218	79	23	Widest	Widest
Kepone (Chlordecone)	16.02	273.8	236.9	12	Widest	Normal
Kepone (Chlordecone)	16.02	271.8	236.9	10	Widest	Normal
Kepone (Chlordecone)	16.02	273.8	238.9	14	Widest	Normal
3,3'-Dimethylbenzidine (o-tolidine)	16.06	212.1	180.1	25	Widest	Widest

Table A1, part 14.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
3,3'-Dimethylbenzidine (o-tolidine)	16.06	212.1	152.1	40	Widest	Widest
3,3'-Dimethylbenzidine (o-tolidine)	16.06	212.1	196.2	15	Widest	Widest
Benzyl butyl phthalate	16.28	149	65.1	20	Widest	Widest
Benzyl butyl phthalate	16.28	206.1	149.1	8	Widest	Widest
Benzyl butyl phthalate	16.28	149	93	13	Widest	Widest
Endosulfan sulfate	16.32	271.7	236.8	12	Widest	Widest
Endosulfan sulfate	16.32	238.7	203.9	12	Widest	Widest
Endosulfan sulfate	16.32	271.7	234.9	12	Widest	Widest
4,4'-DDT	16.45	235	165.1	22	Widest	Widest
4,4'-DDT	16.45	235	199.5	10	Widest	Widest
4,4'-DDT	16.45	236.8	165	22	Widest	Widest
Bis(2-ethylhexyl) adipate	16.85	129	55.1	14	Widest	Widest
Bis(2-ethylhexyl) adipate	16.85	129	83	10	Widest	Widest
Bis(2-ethylhexyl) adipate	16.85	129	101	6	Widest	Widest
2-Acetylaminofluorene	16.94	223.1	181.1	10	Widest	Normal
2-Acetylaminofluorene	16.94	180.1	152.1	23	Widest	Normal
2-Acetylaminofluorene	16.94	223.1	180.1	23	Widest	Normal
Endrin-Ketone	17.7	209.2	138.4	30	Widest	Widest
Endrin-Ketone	17.7	316.8	281	10	Widest	Widest
Endrin-Ketone	17.7	316.8	208.9	28	Widest	Widest
EPN	17.89	169	141	8	Widest	Widest
EPN	17.89	157	77	22	Widest	Widest
EPN	17.89	169	77	22	Widest	Widest
Benzo(a)anthracene	17.93	228	226	28	Normal	Normal
Benzo(a)anthracene	17.93	225.9	223.9	32	Normal	Normal
Benzo(a)anthracene	17.93	229.2	227.1	30	Normal	Normal
Chrysene-d12 (ISTD)	17.97	240.2	236.1	32	Normal	Normal
Chrysene-d12 (ISTD)	17.97	240.2	212.1	28	Normal	Normal
Chrysene-d12 (ISTD)	17.97	236	232	34	Normal	Normal
3,3-Dichlorobenzidine	18.04	252	154.1	28	Normal	Widest
3,3-Dichlorobenzidine	18.04	252	181.1	23	Normal	Widest
3,3-Dichlorobenzidine	18.04	254	154.1	30	Normal	Widest
Chrysene	18.08	228	226	28	Normal	Normal
Chrysene	18.08	225.9	223.9	32	Normal	Normal
Chrysene	18.08	229.2	227.1	30	Normal	Normal
Methoxychlor	18.11	227.1	141.1	32	Normal	Widest
Methoxychlor	18.11	227.1	169.1	22	Normal	Widest
Methoxychlor	18.11	227.1	212.1	12	Normal	Widest
4,4'-Methylene bis(2-chloroaniline)	18.12	231.1	195.2	15	Widest	Normal
4,4'-Methylene bis(2-chloroaniline)	18.12	231.1	196.2	10	Widest	Normal
4,4'-Methylene bis(2-chloroaniline)	18.12	266	195.1	27	Widest	Normal
	18.68	139	111	12	Widest	Widest
Dicofol	18.68	111	74.9	12	Widest	Widest

Table A1, part 15.

Name	RT (min)	Precursor ion	Product ion	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Dicofol	18.68	(<i>m/z</i>) 250,9	(<i>m/z</i>) 139	12	Widest	Widest
Bis(2-ethylhexyl)phthalate	18.79	167	149	8	Widest	Widest
Bis(2-ethylhexyl)phthalate	18.79	149	65	22	Widest	Widest
Bis(2-ethylhexyl)phthalate	18.79	149	93	16	Widest	Widest
Azinphos-methyl	19.02	149	77	10	Widest	Widest
Azinphos-methyl	19.02	160	50.9	34	Widest	Widest
Azinphos-methyl	19.02	160	77	16	Widest	Widest
6-Methylchrysene	19.02	242.1	239.1	35	Normal	Normal
6-Methylchrysene	19.87	242.1	240.1	23	Normal	Normal
6-Methylchrysene	19.87	242.1	241.1	13	Normal	Normal
Mirex	19.93	272	236.8	14	Widest	Widest
Mirex	19.93	236.8	142.9	26	Widest	Widest
Mirex	19.93	273.8	238.8	14	Widest	Widest
Coumaphos	21.02	209.9	182	10	Widest	Widest
Coumaphos	21.02	209.9	119	22	Widest	Widest
Coumaphos	21.02	226	163	18	Widest	Widest
Di-n-octyl phthalate	21.23	149	65	20	Widest	Widest
Di-n-octyl phthalate	21.23	149	121	12	Widest	Widest
Di-n-octyl phthalate	21.23	149	93	15	Widest	Widest
Benzo(b)fluoranthene	21.7	252.1	250.1	32	Normal	Normal
Benzo(b)fluoranthene	21.7	250	248	32	Normal	Normal
Benzo(b)fluoranthene	21.7	252.1	226.1	28	Normal	Normal
7,12-Dimetylbenz(a)anthracene	21.76	256.1	241.1	13	Normal	Normal
7,12-Dimetylbenz(a)anthracene	21.76	241.1	239.1	23	Normal	Normal
7,12-Dimetylbenz(a)anthracene	21.76	256.1	239.1	35	Normal	Normal
Benzo(k)fluoranthene	21.83	252.1	250.1	32	Normal	Normal
Benzo(k)fluoranthene	21.83	250	248	32	Normal	Normal
Benzo(k)fluoranthene	21.83	252.1	226.1	28	Normal	Normal
Benzo(a)pyrene	22.65	252.1	250	34	Normal	Normal
Benzo(a)pyrene	22.65	250	248	32	Normal	Normal
Benzo(a)pyrene	22.65	253.3	251.1	34	Normal	Normal
Perylene-d12 (ISTD)	22.84	264.2	260.1	36	Normal	Normal
Perylene-d12 (ISTD)	22.84	132.2	118.1	12	Normal	Normal
Perylene-d12 (ISTD)	22.84	260.1	256.1	34	Normal	Normal
3-methylcholanthrene	23.83	268.1	252.1	30	Normal	Normal
3-methylcholanthrene	23.83	253.1	252.1	16	Normal	Normal
3-methylcholanthrene	23.83	268.1	253.1	13	Normal	Normal
Dibenz(a,h)acridine	25.21	279.1	278.1	22	Normal	Normal
Dibenz(a,h)acridine	25.21	139.3	124.1	25	Normal	Normal
Dibenz(a,h)acridine	25.21	279.1	250.1	46	Normal	Normal
Dibenz(a,h)acridine	25.21	279.1	276.1	40	Normal	Normal
Dibenz(a,h)acridine	25.21	279.1	276.1	32	Normal	Normal
Dibenz[a,j]acridine	25.29	279.1	277.1	30	Normal	Normal

ted IDL /L)

Table A1, part 16.

Name	RT (min)	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (EV)	Precursor (Q1) resolution	Product (Q3) resolution
Dibenz[a,j]acridine	25.29	279.1	250.1	42	Normal	Normal
Dibenz[a,j]acridine	25.29	279.1	278.2	20	Normal	Normal
Indeno(1,2,3-cd)pyrene	25.53	274	272	35	Normal	Normal
Indeno(1,2,3-cd)pyrene	25.53	276	274	38	Normal	Normal
Indeno(1,2,3-cd)pyrene	25.53	138.1	124.6	15	Normal	Normal
Dibenzo(a,h)anthracene	25.62	278.1	276	34	Normal	Normal
Dibenzo(a,h)anthracene	25.62	276	274	38	Normal	Normal
Dibenzo(a,h)anthracene	25.62	276	275.1	26	Normal	Normal
Benzo(g,h,i)perylene	25.93	276	274	38	Normal	Normal
Benzo(g,h,i)perylene	25.93	137.7	136.8	16	Normal	Normal
Benzo(g,h,i)perylene	25.93	276	275.1	26	Normal	Normal

Appendix 2

Table A2. Calculated IDLs for some selected compounds included in the U.S. EPA 8270E method. IDLs were calculated based on n=7 solvent standard spiked at 1 μ g/L and resulted in the range from 5 to 45 μ g/L with peak area %RSD < 10 for the majority of the compounds.

Compound	RT (min)	Peak area %RSD (at 1 μg/L)	Calculated IDL (µg/L)	Compound	RT (min)	Peak area %RSD (at 1 μg/L)	
n-Nitrosodimethylamine	2.97	5.2	16	Acenaphthylene	7.96	3.5	
(NDMA)				Acenaphthene	8.18	2.5	
Bis(2-chloroethyl)ether	4.70	5.6	18	Dibenzofuran	8.40	3.1	
2-Chlorophenol	4.75	10.1	32	Fluorene	8.86	4.7	
1,3-Dichlorobenzene	4.87	12.3	39	4-Chlorophenyl phenyl ether	8.87	3.3	
1,4-Dichlorobenzene	4.92	14	44	Diphenylamine	9.03	3.9	
1,2-Dichlorobenzene	5.04	14.3	45	4-Bromophenyl phenyl ether	9.62	4.7	Ì
2,2'-oxybis(1-chloropropane)	5.10	11.3	36	Hexachlorobenzene	9.72	5.6	Ì
Hexachloroethane	5.32	4.4	14	Phenanthrene	10.44	2	
Nitrobenzene	5.36	7	22	Anthracene	10.54	1.8	Ì
Isophorone	5.58	11.8	37	Carbazole	10.88	2.1	ĺ
2,4-Dimethylphenol	5.67	12	38	Fluoranthene	13.29	2.4	Ì
Bis(2-chloroethoxy) methane	5.77	7.7	24	Pyrene	13.99	1.5	ĺ
1,2,4-Trichlorobenzene	5.99	10.1	32	Benzo(a)anthracene	18.19	3.2	1
Naphthalene	6.08	3.8	12	Chrysene	18.32	2	
4-Chloro-3-methylphenol	6.64	3.3	10	Benzo(b)fluoranthene	21.94	3.4	Ì
2-Methylnaphthalene	6.85	2.5	8	Benzo(k)fluoranthene	22.02	4.6	ſ
1-Methylnaphthalene	6.97	1.7	5	Benzo(a)pyrene	22.89	3.4	
2-Chloronaphthalene	7.44	4.3	13	Benzo(g,h,i)pervlene	26.04	5.4	Ī

Learn more at thermofisher.com/triple-quadrupole-gc-ms

General Laboratory Equipment – Not For Diagnostic Procedures. © 2024 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **AN003362-EN 1024S**

thermo scientific