ID-TIMS U-Pb geochronology at the 0.1‰ level using 10^{13} Ω amplifiers

Authors: J. Roberts¹, Z. Hu², J.F. Wotzlaw³, H. Vollstaedt¹, M.P. Castellanos Melendez³, C. Bouman¹, C. Chelle-Michou³, N. Lloyd¹

¹ Thermo Fisher Scientific, Bremen, Germany;
² Thermo Fischer Scientific, China;
³ Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich

Keywords: Triton Series TIMS, U-Pb geochronology, zircon dating, 10^{13} Ω amplifiers

Introduction
Uranium-lead geochronology provides valuable insights into the timing and rates of various geological processes throughout Earth’s history. Isotope dilution thermal ionization mass spectrometry is the most precise and accurate technique for U-Pb geochronology. This technique is most commonly applied to single zircon crystals or crystal fragments resulting in small amounts of radiogenic Pb (typically <100 pg) and U (~1 ng) available for analysis. Precise and accurate analysis of such small samples requires sensitive ion detection systems. Here, we document recent advances in U-Pb geochronology using a Thermo Scientific™ Triton™ Plus TIMS equipped with Thermo Scientific™ 10^{13} Ω Amplifier Technology™.

Method
Samples and tracers
The synthetic EARTHTIME 100 Ma solution (Condon et al. 2008) and natural Archean zircon reference material OG-1 (Stern et al. 2009) were used to document the long-term performance and reproducibility of this technique. Both reference materials were spiked with the EARTHTIME 206Pb/205Pb-233U/235U tracer solution (Condon et al., 2015) and processed at ETH Zurich using protocols provided in Wotzlaw et al. (2017).
Measurement protocols

The Triton Plus TIMS at ETHZ is equipped with one axial MasCom SEM and eight 10^{13} Ω amplifiers. Two different measurement protocols for the analysis of Pb isotope ratios were applied:

1. Dynamic peak hopping routine using the axial SEM
2. Static multicollection using 10^{13} Ω amplifiers with only 204Pb measured in the axial SEM

U (UO_2) was always measured using a static multicollection routine using 10^{13} Ω amplifiers. Details of the cup configuration can be found in Table 1.

In the first method, Pb isotopes were collected on the axial SEM by dynamic peak-hopping. After the Pb isotope analysis, the filament was heated up and U isotopes were measured as UO_2 employing a static routine on the 10^{13} Ω amplifiers.

In the second method, all Pb isotopes except for 204Pb were measured statically on 10^{13} Ω amplifiers. The SEM yield was determined daily. U isotopes were measured using the same setup as in the first method. With this instrumental setup, it is possible to work with one cup configuration and a dedicated amplifier assignment.

The detection characteristics were as follows:

- 10^{13} Ω amplifiers
 - Baseline noise (20 min): $\pm 2.8 \times 10^{-18}$ A (2 SD; 0.28 µV, 10^{11} Ω scale)
 - Inter-channel amplifier gain: ± 9.0 ppm (2 RSD)

Ion counting

- SEM yield stability (204Pb): ± 0.4 %/24 h (2 RSD)

Results

ET100

Figure 1 shows how the internal precision of the 206Pb/205Pb isotope ratio evolves during a ET100 measurement as a function of analysis time, comparing the dynamic and static setup.

With dynamic SEM peak hopping, the internal precision approaches ~0.2 ‰ (2 SE) only after approximately two hours of measurement and gets to 0.15 ‰ after five hours (average intensity of 5.9 mV on 206Pb). With the static 10^{13} Ω measurement, the internal precision reaches the 0.1 ‰ level after 10 minutes of measurement time and settles to 0.08 ‰ (2 SE) after 45 minutes (average intensity of 55 mV on 206Pb). This comparison emphasizes the rapidity of high-precision Pb isotope data using the static measurement routine with 10^{13} Ω amplifiers.

Table 1. Cup configuration for Pb and UO_2 isotope measurements on the Triton XT TIMS.

<table>
<thead>
<tr>
<th>Cup</th>
<th>T [°C]</th>
<th>L4</th>
<th>L3</th>
<th>L2</th>
<th>L1</th>
<th>C</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>-1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>206Pb</td>
<td>204Pb</td>
<td>204Pb</td>
<td>204Pb</td>
<td>204Pb</td>
</tr>
<tr>
<td>UO_2</td>
<td>-1360</td>
<td>233UO$_2$</td>
<td>235UO$_2$</td>
<td>238UO$_2$</td>
<td>238UO$_4$</td>
<td>232U</td>
<td>16O</td>
<td>18O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amp. (Ω)</td>
<td>10^{13}</td>
<td>10^{13}</td>
<td>10^{13}</td>
<td>10^{13}</td>
<td>10^{13}</td>
<td>SEM</td>
<td>10^{13}</td>
<td>10^{13}</td>
<td>10^{13}</td>
<td>10^{13}</td>
</tr>
</tbody>
</table>

Table 2. Total measurement time for dynamic vs. static Pb isotope ratio analysis.

<table>
<thead>
<tr>
<th></th>
<th>Dynamic Pb</th>
<th>Static Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycles/block</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>Blocks</td>
<td>30-40*</td>
<td>12</td>
</tr>
<tr>
<td>Integration time</td>
<td>4,194 s</td>
<td>4,194 s</td>
</tr>
<tr>
<td>Total integration on each isotope ratio</td>
<td>23-31 min</td>
<td>42 min</td>
</tr>
<tr>
<td>Measurement time</td>
<td>330-440 min</td>
<td>45 min</td>
</tr>
</tbody>
</table>

*Dependent on signal stability

Figure 1. Internal precision of the 206Pb/205Pb (2 S.E.) as a function of measurement time, for dynamic (SEM peak hopping) and static (10^{13} Ω) measurements.
Both setups, dynamic and static, yield precise and accurate results for the ET100 synthetic solution (Figure 2). However, the precisions obtained for individual U-Pb dates using the two setups is different.

The static $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{235}\text{U}$ dates obtained with 10^{13} Ω amplifiers are 2-3 more precise than dynamic SEM peak hopping (0.015 $\%_\text{RSD}$ vs 0.03 $\%_\text{RSD}$, 2 SE). Also the external reproducibility is significantly improved using the static 10^{13} Ω amplifier setup (0.025 $\%_\text{RSD}$ vs 0.057 $\%_\text{RSD}$, 2RSD). Figure 3 displays the $^{206}\text{Pb}/^{238}\text{U}$ dates obtained with the two methods, showing the reproducibility and the attainable precision.

Notably, the superior precision of static Pb measurements is most significant for highly radiogenic zircons for which the internal precision of the measurement is the dominant source of uncertainty.

These results show that the precision of $^{207}\text{Pb}/^{206}\text{Pb}$ dates of Archean zircons is now primarily limited by the uncertainty on the $^{238}\text{U}/^{235}\text{U}$ ratio rather than by instrumental limitations.
Conclusions

We conducted a comparison of single SEM and static Pb isotope measurements for high-precision U-Pb geochronology using the Triton series TIMS equipped with \(10^{13}\) \(\Omega\) Amplifier Technology.

The static \(10^{13}\) \(\Omega\) amplifier measurements have some clear advantages over dynamic SEM peak hopping:

- Significant reduction in measurement time (up to a factor of 7)
- An extended dynamic range allows for more convenient measurements
- 3 times better precision for U/Pb and \(^{207}\text{Pb}/^{206}\text{Pb}\) dates
- Higher sample throughput at higher precision

The larger dynamic range, higher duty cycle and higher gain stability of \(10^{13}\) \(\Omega\) amplifiers enables more efficient and more precise measurements.

The significant improvement in analytical precision and our results from OG-1 reference zircon point towards potential new avenues for studying crustal magmatism in Archean terranes at a resolution similar to much younger igneous systems.

References