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APPLICATION NOTE 65362

Goal
Use Thermo Scientific™ Compound Discoverer™ 3.0 software to process 
untargeted metabolomics for unknown compound annotation. Demonstrate 
the utility of analyzing multiple analytical measurements from mass spectral 
data to apply a consensus approach across different annotation sources for 
confident annotation assignments. 

Introduction
Untargeted metabolomics aims to comprehensively detect endogenous 
metabolites to generate a metabolic profile of a given biological system. This 
unbiased approach is often without a priori knowledge of the molecular 
make-up of a sample. Untargeted metabolite profiling globally provides the 
potential association of a metabolite or set of metabolites to a biochemical 
phenotype that can be further associated with metabolic pathways and 
biological function. These associations are insightful in an array of research 
and discovery settings such as defining signatures of disease and 
mechanisms of cellular function in human health, defining metabolic response 
in plant and animals resulting from a changing environment, or evaluating 
food composition in a commercial setting. The application of untargeted 
metabolomics plays a critical role in understanding the molecular 
underpinnings in biological systems. 
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One of the greatest challenges in untargeted 
metabolomics analysis by mass spectrometry (MS) is  
the identification of unknown compounds.1-4 The gold 
standard in the metabolomics field is to confirm the 
identification of an unknown analyte by comparing the 
generated mass spectra against that of a purified 
reference standard. Yet, there are numerous instances 
where this is not possible. It could be that the reference 
standard is commercially unavailable, and therefore 
requires chemical synthesis. Another instance may 
require isolation and purification from a select biological 
source. The most challenging scenario is when the 
unknown compound is truly novel and has yet to be 
characterized by researchers. Despite these practical 
setbacks, modern mass spectrometers and data 
processing tools provide the means for confident 
annotation of unknown compounds.5

Specifically, untargeted metabolomics analysis using 
high-resolution accurate-mass (HRAM) tandem Orbitrap™ 
mass spectrometry generates multiple analytical 
measurements that when taken collectively via 
consensus evaluation, builds confidence in the 
compound annotation or compound class association 
(Table 1). These multiple measurements start with the 
acquisition of ultra-high resolution mass spectra to 
distinguish between molecular ions of closely related 
mass and detection of associated adduct ions, isotope 
pattern, and, of particular importance, isotope fine 
structure. This information, combined with accurate mass 
measurements, provides confident elemental 
composition prediction. The elemental formulae are then 
used for chemical structure database searching. 

Next, fragmentation spectra provide an added level of 
knowledge about the unknown compound. Fragmentation 
spectra are used to search against spectral libraries. 
Fragment ions can also be compared against theoretical 
fragments of putative structures by in silico fragmentation 
prediction. Multi-stage fragmentation (MSn) by ion trap 
instruments enables further structural characterization by 
establishing product ion relationships. Lastly, the novel 
mzLogic™ algorithm uses actual fragmentation spectra to 
prioritize putative chemical structure candidates. 
Collectively, this information facilitates the unknown 
annotation process by reducing the number of possible 
candidate compounds determined by the data and 
increases the confidence in annotation assignments. 

The information-rich data generated by Thermo Scientific™ 

Orbitrap™ mass spectrometers must be efficiently 
extracted in a single data processing pipeline that 
streamlines the unknown compound annotation process 
and presents data in an intelligible format. Thermo 
Scientific Compound Discoverer 3.0 software expedites 
the annotation assignment process in untargeted 
metabolic profiling experiments from HRAM Orbitrap data 
using numerous annotation tools to fully integrate multiple 
analytical measurements. To start, the software predicts 
elemental composition using the power of HRAM 
Orbitrap data with isotope fine structure and incorporates 
fragmentation information. The elemental composition 
predicted from spectral data is then used to search 
against a chemical database for matching potential 
structures. The Compound Discoverer software is fully 
integrated with the ChemSpider™ chemical structure 
database providing access to over 250 data sources and 

Data type Measured property Information 

Accurate mass Monoisotopic mass Elemental composition (mass tolerance)

Adducts Accurate mass difference Assignment of molecular species (M+H, M+NH4, 2M+H)

Isotopic pattern Isotope distribution Constrain possible elemental formulas

Ultra-high resolution Isotopic fine structure Separate isobaric species
Direct confirmation of isotopes: 13C, 15N, 34S, 18O, 2H
Confirm elemental formula (isotopes and ratios)

MS2 Product ions
Neutral losses

Sub-structures and their elemental composition
Compound class (signature neutral loss or product ions)

MSn Product ion relationships Mass spectral tree (precursor ion fingerprinting)
Collision energy profile (breakdown curves)

LC-MS Polarity
Hydrophobicity

Retention time order—differentiate isomers
Compared to literature/reference standards

Table 1. Multiple analytical measurements for unknown compound annotation. Data types include MS1, MS2 and MSn mass spectral 
information along with chromatographic separation. 
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68 million chemical structures representing a vast 
chemical space of endogenous and exogenous origin 
(http://www.chemspider.com/). Furthermore, 
corresponding MS2 fragmentation spectra are searched 
against the mzCloud™ spectral library, which hosts an 
extensive array of HRAM MSn fragmentation spectra 
(https://www.mzcloud.org/).

For compounds lacking direct spectral library matches, 
the mzLogic algorithm takes advantage of actual 
experimental fragmentation data to prioritize candidate 
compounds resulting from the ChemSpider database 
search. The mzLogic algorithm utilizes sub-structure 
annotations from the mzCloud library mapped back to 
the experimental fragment ions to rank the most probable 
chemical structures in the ChemSpider database results 
list. Using actual data to rank chemical structures allows 
users to focus on reasonable compound candidates. 
Additionally, the Fragment Ion Search (FISh) scoring 
algorithm incorporates in silico fragmentation of a 
proposed chemical structure to explain fragment ions 
structures based on literature-defined chemical reactions 
using the HighChem™ Fragmentation Library™. 

Building cumulative evidence across different annotation 
sources for each individual compound enables consensus 
evaluation moving toward greater confidence, which in 
turn gives rise to greater certainty in the subsequent 
metabolic pathway analyses. If a purified standard is 
indeed available, the Compound Discoverer software 
considers chromatographic retention times and spectral 
matching using a customizable, in-house library to confirm 
compound identification. It should be noted that while the 
scope of this application note is to demonstrate unknown 
compound annotation, the Compound Discoverer software 
is a complete data analysis program for untargeted 
metabolomics experiments that operates by first applying a 
data reduction strategy to generate meaningful compounds 
that are experimentally related and subsequently 
providing statistical capabilities geared for differential 
analysis, visualization tools, and pathway analysis.6,7

Here we demonstrate the use of the Compound 
Discoverer 3.0 software for confident annotation of 
unknown compounds using the aforementioned 
annotation tools with an untargeted metabolomics 
analysis. The NIST Standard Reference Material (SRM) 
1950, Metabolites in Frozen Human Plasma, was 

analyzed with a novel, automated acquisition strategy to 
generate more fragmentation spectra using the Thermo 
Scientific™ Orbitrap ID-X™ Tribrid™ mass spectrometer 
coupled to a Thermo Scientific™ Vanquish™ Horizon Ultra 
High Pressure Liquid Chromatograph (UHPLC) system.

Experimental conditions
Sample preparation
SRM 1950 was purchased from the National Institute  
of Standards and Technology (NIST). The plasma sample 
was prepared via protein precipitation with the addition  
of four volumes of 80% methanol. The sample was 
centrifuged, and the supernatant collected. The sample 
extract was evaporated to dryness, then reconstituted in 
water containing 0.1% formic acid, and subsequently 
transferred to a deactivated autosampler vial. The solvent 
blank was prepared using the reconstitution solution with 
direct transfer to a deactivated autosampler vial. A total 
of 2 µL was injected onto the stationary phase. 

Instrument and method setup
The sample was analyzed using the Orbitrap ID-X Tribrid 
mass spectrometer (Table 2) coupled to a Vanquish Horizon 
UHPLC system. Data were acquired using Thermo 
Scientific™ Xcalibur™ 4.2 software and Thermo Scientific™ 
Standard Integration Software (SII) for Xcalibur 1.4. The 
chromatographic separation was obtained with a Thermo 
Scientific™ Hypersil GOLD™ column (1.9 µm, 150 × 2.1 mm). 
The column was eluted isocratically at a flow rate of  
300 µL/min with 100% mobile phase A (0.1% formic acid 
in water) for 3 min followed by a linear gradient to 50% 
mobile phase B (0.1% formic acid in methanol) over  
8 min, and then to 98% mobile phase B over 1 min. The 
column compartment temperature was held at 45 °C. 
Sample analysis was performed using the AcquireX Deep 
Scan setup (Figure 1), an automated, data-informed 
acquisition strategy for real-time determination of ion 
inclusion and exclusion with repeated sample interrogation. 
In brief, full scan MS was acquired first on the solvent 
blank and next on the plasma extract to respectively 
generate an ion exclusion and inclusion list. Data-
dependent acquisition with the automatically generated 
lists was performed on the plasma extract. The plasma 
extract was repeatedly injected with subsequent 
exclusion and inclusion list updates to generate the 
greatest number of unique fragmentation spectra for 
sample-related precursor ions. Detailed instrument 
parameters are provided in Tables 3 and 4. 

http://www.chemspider.com/
https://www.mzcloud.org
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Figure 1. AcquireX Deep Scan acquisition strategy. A) This approach employs data driven intelligence by first injecting a solvent blank  
(or experimental blank) to generate a three-dimensional matrix of precursor ions (m/z, retention time, and intensity) assigned as background ions that 
are unrelated to the experimental sample. Background ions are automatically added to an ion exclusion list for use in the data-dependent method.  
B) Next, the experimental sample is injected to generate a three-dimensional matrix whereby valid chromatographic peaks are detected and 
assigned as candidate ions for fragmentation by automatic addition to the ion inclusion list. Data generated from these two injections are then 
automatically incorporated into the subsequent data-dependent acquisition method, which is then applied to the sample. C) Upon completion of 
the first data dependent MS2 run, the acquisition process automatically moves ions already selected for fragmentation from the inclusion list to 
the exclusion list. The acquisition method is updated and subsequently applied to a repeat injection of sample. This iterative acquisition reduces 
redundant sampling of reoccurring precursor ions from injection to injection thereby generating more fragmentation spectra of unique compounds. 
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MS conditions

Ion Source Thermo Scientific™ 
OptaMax™ NG ion source

Ionization ESI Positive Mode

Qualitative Acquisition AcquireX Deep Scan

Source conditions

Sheath Gas Flow Rate 40 Arbitrary Units (AU)

Auxiliary Gas Flow Rate 8 AU

Sweep Gas Flow Rate 1 AU

Spray Voltage 3500 V

Ion Transfer Tube 
Temperature

275 °C

RF Lens 35%

Vaporizer Temperature 320 °C

Full Scan acquisition parameters

Scan Range (m/z) 67–1000

Orbitrap Resolution 120,000 FWHM @ 200 m/z

AGC Target 1e5

Max Injection Time 50 msec

Table 2. Mass spectrometer conditions for data acquisition using 
full scan mode and AcquireX Deep Scan setup, an intelligent  
data-dependent acquisition strategy using multiple injections.

Table 3. Instrument method parameters for high-resolution full 
scan mode of the solvent blank and the NIST SRM 1950 human 
plasma to generate MS1 quantitation. 
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Data-dependent Scan Mode Acquisition 
Parameters
Full scan MS

Scan Range (m/z) 67–1000

Orbitrap Resolution 120,000 FWHM @ 200 m/z

AGC Target 1e5

Max Injection Time 50 msec

Data-dependent MS2 Fragmentation

Top-speed Mode 0.6 sec cycle time

Activation HCD

dd-MS2 Resolution 30,000 FWHM @ 200 m/z

AGC Target 5e4

Max Injection Time 54 msec

Quad Isolation Width 1.5 Daltons

Normalized Stepped 
Collision Energy

20, 35, 50%

Intensity Threshold 2e4

Dynamic Exclusion (s) 2.5 sec

Table 4. Instrument method parameters for the high-resolution 
data-dependent MS2 fragmentation of the NIST SRM 1950 human 
plasma using the AcquireX Deep Scan setup for iterative injections 
and real-time dynamic updating of precursor ion exclusion and 
inclusion lists. Data generated with this method exclusively provides 
the fragmentation spectra used for compound annotation in the data 
analysis process. 

Data processing
Data were processed using the Compound Discoverer 
3.0 software. To expedite the data processing setup, a 
pre-defined processing template was used. A modified 
version of the Metabolomics Max ID workflow template 
was employed to provide exhaustive compound 
annotation from multiple measurements following 
unknown peak detection. This template is useful for a 
limited number of raw data files where the peak intensity 
threshold is set to a pre-determined minimum low value, 
and detection filters are turned off to accommodate very 
low abundant compounds. Briefly, the workflow includes 
unbiased unknown compound detection, elemental 
composition prediction, database searching at the 
precursor level against the ChemSpider database, 
application of the mzLogic algorithm to rank putative 
candidates generated from the ChemSpider database, 
searching against a custom-built metabolomics 
database, as well as MS2 spectral matching against the 
mzCloud spectral library. The Compound Discoverer 3.0 
software is fully integrated with the ChemSpider 
database and the mzCloud spectral library for automated 
and expedited data processing. Ten data sources were 
selected via the ChemSpider database comprising both 
endogenous and exogenous entries: Aggregated 
Computational Toxicology Resource (ACToR), BioCyc, 
Drug Bank, EAWAG Biocatalysis/Biodegradation 
Database, Environmental Protection Agency (EPA) 
DSSTox, EPA ToxCast, Federal Drug Administration Unique 
Ingredient Identifier (UNII), FooDB, Human Metabolome 
Database, and the Kyoto Encyclopedia of Genes and 
Genomes™ (KEGG). Data were processed with and 
without mzLogic for comparison purposes. A more 
detailed illustration of the workflow and associated nodes 
is depicted in Figure 2. 
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Figure 2. A workflow tree from the Compound Discoverer 3.0 software displaying select data processing nodes and the associated 
workflow connections. Included are preliminary data processing nodes like Input Files and Select Spectra nodes. Unknown peak detection is 
implemented via the Detect Compounds node. Information across multiple raw data files are integrated through the Group Compounds node. 
Numerous unknown compound annotation nodes are utilized for both MS1 and MS2 spectral data: Predict Compositions node, Search Mass List 
node, Search ChemSpider node, Apply mzLogic node, and the Search mzCloud node. The Assign Compound Annotations node prioritizes the 
annotation source. Lastly, the Mark Background Compounds node incorporates a solvent blank (experimental blank) to indicate compounds arising 
from the sample preparation. 

Results and discussion 
The role of HRAM in unknown compound 
annotation
High-resolution mass spectrometers increase the ability 
to distinguish between two molecules of closely related 
mass, which is highly advantageous for untargeted 
metabolomics analyses of complex matrices such as 
human plasma extracts. Additionally, information 
obtained from accurate mass lends the ability to apply 
narrow search criteria against theoretical values of exact 
mass and sufficiently high resolution allowing for the 
detection of isotope pattern and isotopic fine structure. 
HRAM obtained with Orbitrap mass spectrometers and 
isotopic fine structure increases confidence in elemental 
composition prediction, which is further aided with 
fragmentation data. Performing database searches using 
elemental formula is preferred over molecular weight or 
m/z due to increased specificity, which in turn reduces 
complexity. Taken together, these attributes are beneficial 
for the annotation of unknown compounds. 

Figure 3A shows a narrow mass range of the full scan 
spectrum displayed in the Compound Discoverer 3.0 
software indicating the monoisotopic peak and respective 
isotope pattern for the expected compound at  

m/z 269.1247. Of particular interest is the isotope fine 
structure achieved with high resolution to differentiate the 
nitrogen 15 isotope from the carbon 13 isotope. Mass 
and intensity tolerances are applied. In the example, the 
measurement reveals the presence of the nitrogen atom, 
which is applied to the elemental composition prediction. 
This confidently eliminates chemical formulas lacking 
nitrogen, thus, reducing the number of candidate 
formulas. The Compound Discoverer software additionally 
considers fragment ions to rank putative chemical 
formulas by confirming fragment ions that match a 
subset of the precursor ion’s elemental composition. 
Figure 3B shows the MS2 spectrum of the isolated 
precursor ion using an isolation window of 1.5 Daltons (Da). 
The presence of the [M+H]+ ion confirms the precursor 
ion isolation. Figure 3C displays the predicted composition 
results for the expected compound, acetylcarnosine. 
Supporting data is provided for each possible candidate 
formula including delta mass, the number of matched 
isotopes, the number of matched fragment ions, spectral 
fit (Sfit) and coverage values. The elemental formula 
predicted for m/z 269.1247 is C11H16N4O4. High resolution, 
accurate mass, and fragmentation data collectively 
contribute increased confidence for the predicted 
chemical formula.
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Figure 3. HRAM and fragmentation data to predict elemental composition. A) MS1 survey scan showing color-coded isotope pattern fit for 
the detected compound of m/z 269.1247. The violet vertical box indicates the monoisotopic protonated molecule of the expected compound, 
acetylcarnosine, matching the centroid. Green boxes represent the theoretical isotope pattern with defined tolerances for mass and relative intensity. 
Inset is the region of the A1 isotope cluster displaying the 13C and 15N isotopes. B) MS2 fragment ion spectrum for the isolated precursor ion of  
m/z 269.1247. C) Predicted composition results table for the selected compound displaying multiple candidates in rank order. Several variables are 
considered including delta mass, the number of matched isotopes, and the number of matched fragment ions.

Database search as a starting point
Chemical structure databases aid in generating putative 
candidate compounds. Public repositories containing 
known, well-defined chemical compounds can be 
searched against for annotation. Information found in 
these databases generally include chemical structure, 
related chemical characteristics, metadata like biological 
activity, associations, and may include fragmentation 
spectra either from actual data or in silico prediction of 
fragmentation. The Compound Discoverer software is 
fully integrated with the ChemSpider database for 
automatic searching specifically for precursor mass 
information. Two search modes can be utilized. The 
searches can be performed either by elemental formula 
or by mass. The advantage of searching by elemental 
formula over mass is that the elemental composition 
prediction incorporates several variables from the mass 
measurement, as described in the previous section for 
more confident formulas. A search by formula can reduce 
the number of possible matches when searching 
databases compared to mass alone. Nevertheless, 
database searching provides a good starting point for 
compound annotation via precursor matching. 

Figure 4A shows a narrow mass range from the full scan 
spectrum in the Compound Discoverer 3.0 software for 
the expected compound phenylalanine. The molecular 
ion and associated isotopes for the amino acid are 
detected. Elemental composition is predicted using both 
full scan data and associated fragment ions (Figure 4B) 
resulting in the formula C9H11NO2 (Figure 4C). Applying 
this formula to the ChemSpider database search against 
the selected data sources generates 419 possible 
candidate matches (Figure 4D). DL-phenylalanine was 
ranked highest based on the number of references in the 
ChemSpider database, which is over 13,000 (Figure 5). 
The ChemSpider results table in the Compound 
Discoverer 3.0 software displays an interactive 
ChemSpider ID for easy network access in addition to 
chemical structure, molecular formula, and delta mass. 
While a database search finds putative candidate 
compounds, caution should be used when this is the 
sole annotation source because the search is simply 
based on precursor information only. As shown here, 
over 400 possible annotations were generated for this 
single chemical formula. This results from the fact that 
one molecular formula can represent various possible 
chemical structures, such as structural isomers where 
there is the same number of atoms for each element but 
with different spatial arrangement. 
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Figure 4. Elemental composition for database searching. A) MS1 survey scan showing color-coded isotope pattern fit for the expected 
compound phenylalanine, m/z 166.0863. The inset showing the A2 isotope cluster containing the 13C2 and 18O isotopes. B) MS2 fragment spectrum 
for the isolated precursor ion of m/z 166.0863. C) One candidate elemental formula for the expected compound and associated variables to support 
this: delta mass, the number of matched isotopes, and the number of matched fragment ions. D) Applying the elemental formula, C9H11NO2 to the 
ChemSpider database search resulted in 419 candidate annotations. 
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Searching data sources containing endogenous and 
exogenous substances can be highly useful in an 
untargeted metabolomics experiment, particularly when 
analyzing samples obtained from “free-ranging” 
organisms such as humans and animals. The SRM 1950 
human plasma sample was pooled from a collection of 
100 fasted donors, both male and female.8 A putative 
ChemSpider match for benzoylecgonine, a metabolite of 
the drug compound cocaine, was detected in the sample 
(Figure 6); illustrating the value of comprehensive small 
molecule analysis considering more than just 
endogenous metabolites.
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Figure 5. Top five candidate annotations based on the ChemSpider database search for the expected compound phenylalanine,  
m/z 166.0863. Here, putative candidates are ranked based on the number of references found in the ChemSpider database. Using this logic, the 
phenylalanine isomers, benzocaine, and 3-aminophenylpropionic acid are ranked highest. 

Figure 6. Choosing data sources for endogenous and exogenous compounds. A) Chromatogram of the expected compound, benzoylecgonine. 
B) Searching the elemental formula, C16H19NO4, against the ChemSpider database using data sources containing both endogenous and exogenous 
compounds resulted in a total of 64 candidate annotations. C) The top-ranked candidate hit is benzoylecgonine, a primary metabolite of the drug 
cocaine. Entries listed here are ranked based on the number of references for each compound in the ChemSpider database. 
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The power of fragmentation spectra in parallel 
with a library hosting an immense number of 
spectra
Coupling ion dissociation techniques to HRAM MS 
provides another measurement for compound 
characterization to build confidence toward unknown 
compound annotation. Isolation of the precursor ion 
population via a narrow isolation window improves the 
quality giving purer fragmentation spectra. For this reason, 
a data-dependent acquisition was chosen for the 
analysis and the high-quality fragmentation data was 
then used to search against a spectral library. Unlike a 
database, a spectral library is a collection of actual 
fragmentation spectra. Typically, each compound entry 
contains multiple spectra representing several different 
collision energies. The mzCloud spectral library is a highly 
curated, public library of endogenous and exogenous 
small molecules containing almost 3 million fragmentation 
spectra. Each compound entry in the library generally 
includes two collisional techniques: higher energy 
collision-induced dissociation (HCD) and ion trap 
resonant collision-induced dissociation (CID). For each 
dissociation technique, fragmentation spectra span a 
wide range of collision energies in iterations of 5 or 10%, 
thus generating a complete breakdown curve showing 
the reduction of precursor ion intensity with increasing 
collision energy while fragment ions increase concurrently. 
This systematic collection of spectra eliminates constraints 
in how data are acquired in terms of collision energy for 
subsequent spectral library matching. Furthermore, ion 
trap technology provides MSn with repeated isolation and 
fragmentation of product ions beyond MS2, such as MS3, 
MS4 to MSn, producing spectral trees for each library 
entry. Finally, the mzCloud spectral library was generated 
using actual spectra collected from purified reference 
material. Each spectrum is recalibrated for exact mass 
and noise removed and is further structurally annotated 
making this a very high-quality spectral library. The 
mzCloud library can be searched by uploading individual 
fragmentation spectrum; however, the Compound 
Discoverer 3.0 software is fully integrated with the mzCloud 
library, enabling batch searching for a fully automated 
analysis. Searching against a high-quality, fully curated 
spectral library with ample fragmentation spectra from 
existing compounds provides reinforcing knowledge 
about the molecular makeup of an unknown compound. 

Two search types were implemented: identity search  
and similarity search. An identity search matches both 
precursor ion and fragment ions, while a similarity search 
only searches for fragment ions, allowing for matches 
indicative of substructure. Figure 7 shows a mzCloud 
library match for the amino acid methionine of the 
chromatographic peak at 2.16 min (Figure 7A) and a 
monoisotopic peak at m/z 150.0584 (Figure 7B). The full 
scan spectrum and the isotope fine structure is in 
complete accord with the elemental formula C5H11NO2S. 
Figure 7C displays the mirror plot for the MS2 spectrum 
of the experimental data (top) and the matching spectrum 
found in the mzCloud library (bottom) where multiple ions 
overlap including the precursor ion and several product 
ions. This identity match further points toward a confident 
annotation of methionine. There are instances when the 
library may not contain an expected compound yet,  
the fragmentation data is still highly informative toward 
annotation, particularly when product ions match 
between the library and experimental data for sub-
structure elucidation. This approach is commonly known 
as Precursor Ion Fingerprinting (PIF),9 which is immensely 
insightful for determining the degree of similarity between 
unknown and candidate compounds. Figure 8 follows this 
evaluation process. A chromatographic peak at 1.20 min 
(Figure 8A) with a predicted chemical composition of 
C12H26N2O5 generated seven ChemSpider database 
matches (Figure 8B). Of the seven candidates, the 
top-ranked entry is 1,4-bis[bis (2-hydroxyethyl)amino]-2-
butanone (Figure 8C) based on the molecular weight of 
the precursor ion. At the same time, taking the 
fragmentation data into account resulted in the mzCloud 
library similarity match to carnitine (Figure 8D) suggesting 
this compound is related to carnitine given that there are 
several overlapping product ions in addition to the 
presence of the precursor ion for carnitine as seen in the 
mirror plot (Figure 8E). Though the molecular weight of 
the expected compound is heavier by 117.0794 Da 
compared to carnitine, the fragmentation data indicates  
a carnitine-like compound rather than the top-ranked hit 
from the ChemSpider database. Fragmentation spectra 
are meaningful to further build confidence toward 
unknown compound annotation. 
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Figure 7. Identity match—MS2 spectral search against the mzCloud spectral library. A) Chromatogram of the expected compound, methionine.  
B) MS1 survey scan showing color-coded isotope pattern fit for the expected compound methionine, m/z 150.0584. The inset shows the A2 isotope 
cluster displaying the 34S, 13C2 and 18O isotopes. C) Mirror plot of the MS2 fragmentation spectrum from the SRM-1950 (top) and matched spectrum 
from the reference library in the mzCloud library (bottom). 
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Figure 8. Similarity match—MS2 spectral search against the mzCloud spectral library. A) Chromatogram of the expected compound, 
1,4-bis[bis(2-hydroxyethyl)amino]-2-butanone. B) Searching the elemental formula, C12H26N2O5, against the ChemSpider database resulted in a total 
of 7 candidate annotations. C) The top ranked candidate compound shows three references, with a delta mass of 1.29 ppm. D) The mzCloud library 
search resulted in a similarity match to carnitine, suggesting that this compound is rather related to carnitine, and thus carnitine-like. The molecular 
weight of the expected compound is 278.1846 Daltons (Da) while the molecular weight of carnitine is 161.1052 Da, a delta mass of 117.0794 Da. The 
caution triangle indicates a naturally positively charged compound. E) Mirror plot of the MS2 fragmentation spectrum from the SRM-1950 (top) and 
the matched spectrum from the reference library in mzCloud (bottom). Several overlapping product ions are displayed including the precursor ion 
and lower molecular weight ions like m/z 103.0397, 85.0284, and 60.0808 (zoomed area). 
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Knowing where to break the chemical bond
Another way to evaluate fragmentation data of an 
unknown compound is to apply an in silico fragmentation 
prediction algorithm to parent structures in order to 
generate potential ion fragments. Applying reaction logic, 
in silico fragmentation prediction in the Compound 
Discoverer 3.0 software is generated based on the 
HighChem Fragmentation Library, which consists of 
31,901 fragmentation schemes and 136,169 decoded 
mechanisms taken from literature publications based on 
mass spectrometry. Erroneous fragmentation 
mechanisms are eliminated using this practical approach 
since reaction mechanisms are rigorously evaluated, both 
manually and automatically, producing a high-quality 
database. The in silico processing method in the 
Compound Discoverer 3.0 software is by the FISh 
scoring algorithm. Incorporating FISh capability in an 
untargeted metabolomics analysis aids to structurally 
explain product ions present in the fragmentation 
spectrum via a proposed chemical structure. Figure 9 
demonstrates the applicability of the FISh processing 
method. An expected compound in the SRM 1950 
extract is proposed as citrulline. Both the ChemSpider 
database and mzCloud library matching support this 
annotation. Taking this one step further, FISh was then 
applied to the chemical structure citrulline (Figure 9A) and 
associated with the fragmentation spectrum generated 
for the corresponding precursor mass of m/z 176.1030. 
Of the possible product ions assessed, more than 75%  
in the spectrum can be structurally related to citrulline 
(Figure 9B). While the selected example illustrates FISh 
applied to MS2, this processing method can be applied 
to any level of MSn data. The ability to define a product 

ion by structural annotation for a proposed compound 
contributes additional knowledge in evaluating 
annotations for unknown compounds. 

The mzLogic algorithm—combining the database 
search with the mzCloud Spectral Library
Real fragmentation data can also be used to rank order 
results from the ChemSpider database search. As 
previously descrww a search against the ChemSpider 
database may result in numerous putative candidate 
compounds in which the number of references prioritizes 
the results list. This is a plausible approach; however, it 
does not take into consideration any structural information. 
Leveraging sub-structural knowledge and the extensive 
spectral fragmentation information in the mzCloud 
spectral library, the new mzLogic algorithm can prioritize 
the list of candidate compounds from the ChemSpider 
database based on the unknown’s fragmentation 
spectra. The mzLogic algorithm first obtains all possible 
parent chemical structures resulting from the 
ChemSpider database search. Next, the results from the 
similarity search against the mzCloud library are included 
to map structural annotations of matched fragment ions 
back to the experimental data. The partial structures are 
overlaid to the parent structures generated from the 
database search to obtain the best fit. The candidate 
structures that can best be explained with the maximum 
common sub-structure and the highest spectral match 
score are then prioritized. The mzLogic score is easily 
viewed in the Compound Discoverer 3.0 software in a 
column format within the ChemSpider database results 
table, or any other result table containing chemical 
structure, such as the Mass List Search results table. 

Figure 9. FISh scoring using in silico prediction. A) The chemical structure for the expected compound citrulline, molecular weight 175.0959 Da. 
B) MS2 fragmentation spectrum for the isolated precursor ion of m/z 176.1030. The FISh coverage score is 77.1% where 27 product ions were 
successfully matched (green) and 8 ions remain unmatched. Structural annotations are displayed for all matched ions when sufficient computer 
monitor display space is allowed. The FISh coverage score is determined by the number of matched centroids divided by the number of used 
(matched and unmatched) centroids multiplied by 100. 
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Figure 10 shows the application of the mzLogic algorithm 
to rank order the ChemSpider database search results to 
generate the annotation of Gly-Phe. The compound was 
top ranked with a score of 45.7 (Figure 10A) out of a total 
of 185 candidates (not shown). The fragmentation 
spectrum (Figure 10B) was used to perform a similarity 
search against the mzCloud library to generate fragment 
structures of similar compounds. The structural 

annotations are used to determine the maximum 
common substructure to rank the ChemSpider database 
search results (Figure 10C). The mzLogic algorithm uses 
fragmentation information for structural explanation via 
the mzCloud library, thus providing another annotation 
tool contributing to confident annotations based on mass 
spectral fragmentation data.

Figure 10. The mzLogic algorithm ranks 
database search results using fragment 
structures obtained via the mzCloud library.  
A) A ChemSpider database search resulted in 185 
matched compounds (not shown) where the top 
match is the dipeptide Gly-Phe. With the mzLogic 
algorithm in place, putative candidates are first 
ranked based on mzLogic scoring followed by 
the number of references in the ChemSpider 
database. B) Fragmentation data were acquired 
for this compound, but spectral library search 
did not result in an identity match. C) Results 
from the mzLogic analysis. The top panel shows 
the top ranked structural candidates based on 
the mzLogic score. The bottom panel shows 
compound structures from the mzCloud library 
where structural similarity overlapping with the 
selected candidate compound is highlighted in 
blue. The black box shows Gly-Phe selected with 
a score of 45.7 and the corresponding structural 
similarity colored in blue.
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Consensus for increased annotation confidence 
and pathway certainty
Confidence in unknown compound annotation increases 
when multiple analytical measurements are collectively 
evaluated.10,11 Several annotation tools were used for the 
analysis of the SRM 1950 human plasma extract. In the 
Assign Compound Annotation processing node, users 
can define the preference order of the annotation source 
for the assigned annotation. For this analysis, annotation 
assignments were based in the following order of data 
sources starting with the most preferred: mzCloud 
spectral library search, predicted elemental composition, 
mass list search, and the ChemSpider database search. 
Accordingly, complete matching across all sources for a 
given annotation using maximum information (full scan 
spectra, fragmentation spectra, and chemical structure) 
increases the confidence in the annotation. The 
consensus approach is easily viewed in the Compound 
Discoverer 3.0 software via a color-coded status 
indicator (Figure 11) illustrating the value of achieving 
agreement across multiple annotation sources. While not 
all compounds detected in the analysis may have full 
matches to all sources, there is still confirmatory 
information contributing to compound annotation as with 
partial matching or chemical relatedness (i.e., similarity 
search). Confidence in an unknown compound 
annotation is essential in untargeted metabolomics 
analysis. Using multiple analytical measurements to gain 
greater compound knowledge increases confidence in 
compound annotation. Confident compound annotations 
facilitate reliable biochemical pathway analyses.

Figure 11. Application of the consensus approach for confident 
compound annotation using results by several annotation sources 
generated from multiple analytical measurements. Shown are five 
compounds listed in the Main Table results. The annotation source 
results are displayed in column format for each compound via colorized 
rectangles representing match status. The color green indicates a full 
match while the color orange is a partial match. The color red represents 
a mismatched mass in the case of the mzCloud library search (similarity 
match) and represents no match in the case of ChemSpider database 
search. The third compound listed is Kahweol, a diterpenoid molecule 
found in the beans of Coffea arabica. This compound matched all 
four sources used in the analysis: elemental composition prediction, 
mzCloud library search, ChemSpider database search, and the mass 
list search. Other compounds listed in the table, 7-methylguanine and 
4-indolecaraldehyde, matched three sources, while the last two entries 
resulted in the mzCloud library similarity search only. 

Conclusion
The SRM 1950 human plasma extract was analyzed 
using the Orbitrap ID-X Tribrid MS and the Compound 
Discoverer 3.0 software. HRAM data were generated for 
MS1 and MS2. Fragmentation spectra were acquired 
using the novel AcquireX Deep Scan acquisition strategy. 
The data-driven, intelligent acquisition approach 
prioritized precursor ion selection for subsequent 
fragmentation using ion inclusion and exclusion lists via 
preliminary full scan analysis of the blank and matrix 
sample. The unknown compounds were annotated using 
multiple annotation sources in the processing workflow  
to increase confidence in the assignment of unknown 
compound annotations. Predicted elemental composition 
from the high-quality mass spectra obtained using the 
HRAM Orbitrap instrument was used to search the 
ChemSpider database. The database provides access  
to several relevant metabolomics databases such as 
HMDB, BioCyc, KEGG, Yeast Metabolome Database in 
addition to chemically relevant sources of synthetic origin 
like ACToR, DrugBank, and EAWAG. Structure 
candidates produced from the ChemSpider database 
search were ranked using the mzLogic algorithm that 
takes into account experimental fragment ions. The 
fragmentation spectra were searched against the 
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mzCloud library using both identity and similarity search. 
For further confirmation, in silico fragmentation of 
proposed chemical structures using the FISh algorithm 
was used to structurally explain fragment ions. 

Results generated from this experiment demonstrate the 
utility of analyzing multiple analytical measurements from 
mass spectral data against different data sources. Both 
endogenous and exogenous compounds were annotated 
in the human plasma extract. Expected endogenous 
metabolites like acetylcarnosine and phenylalanine were 
annotated by the predicted elemental composition and 
ChemSpider database search. Incorporating databases 
of synthetic origin allowed for the annotation of 
benzoylecgonine, a primary metabolite of the drug 
cocaine. The mzCloud library search generated an 
identity match to methionine while the similarity search 
detected carnitine-like compounds. In silico fragmentation 
from the FISh algorithm structurally explained more than 
75% of the fragment ions for citrulline. The mzLogic 
algorithm enabled the Gly-Phe annotation to be prioritized 
out of 185 candidate compounds. In some instances, the 
compound annotation was the same across different 
sources indicating agreement. In other instances lacking 
an identity match, a partial match associated compound 
class. Employing different annotation tools in the 
Compound Discoverer 3.0 software to analyze the SRM 
1950 extract for multiple analytical measurements built 
confidence in the annotation assignments of the 
unknown compounds.
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11. Blaženović , I., Kind, T., Ji, J., and Fiehn, O. (2018). Software tools and approaches for 
compound identification of LC-MS/MS data in metabolomics. Metabolites, 8, 31.

https://www.thermofisher.com/us/en/home/products-and-services/promotions/industrial/compound-discoverer.html

