APPLICATION NOTE

Intelligent omics workflow using an Orbitrap Exploris GC 240 mass spectrometer for food characterization

Authors: Giulia Riccardino, Dominic Roberts, and Cristian Cojocariu Thermo Fisher Scientific, Runcorn, UK

Keywords: *Origanum vulgare,* characterization, volatile organic compounds (VOCs), Orbitrap, Orbitrap Exploris GC 240, gas chromatography, GC, high resolution accurate mass mass spectrometry, HRMS, full scan, electron ionization, El, positive chemical ionization, PCI

Goal

The aim of this application note is to demonstrate the performance of the Thermo Scientific[™] Orbitrap Exploris[™] GC 240 coupled to SPME Arrow technology for the assessment of the aroma profile in *Origanum vulgare* samples grown in different geographical areas.

Introduction

Origanum vulgare is widely used as an ingredient and flavoring for culinary purposes because of its organoleptic properties and enjoyable taste.¹

Oregano is a complex matrix with an extremely variable composition of phytosterols, pigments, and essential oils. The differences in the amounts of its major constituents can be used to discriminate between individual plants. For

example, the monoterpene content is strongly affected by the climatic conditions playing an important role in up/downregulating the cymyl-, sabinyl-, and linalool/linalyl acetate pathways.² Plants originating from the Mediterranean climate usually exhibit active cymyland/or linalool pathways, with the first being characterized by a higher content of carvacrol, thymol, and their biosynthetic precursors (γ -terpinene and p-cymene) and the second one characterized by higher concentration of linalool and linalyl acetate. Plants originating from continental climate are usually poorer in monoterpenes, showing a higher content of sesquiterpenes (mainly sabinene and *trans/cis*-sabinene hydrate and their acetates) generated by the sabinyl-pathway.²

Flavor analysis presents some challenges as the number of compounds that must be extracted from the matrix and identified is significant. Moreover, these chemicals usually have different chemical properties (structure, reactivity, polarity, boiling point). Aroma compounds can be present at very low concentrations; therefore, their extraction, identification, and quantitation become critical to obtain reliable results. Oregano aroma compounds can be extracted using different techniques such as distillation, Soxhlet extraction, static-headspace sampling (SHS), and purge and trap (P&T), although they have some limitations. Monoterpenes can undergo chemical changes under the conditions applied for distillation, while volatile compounds can be lost with solvent extraction. Static headspace and purge and trap can result in low sensitivity and risk of cross-contamination. Headspace solid phase microextraction (HS-SPME) has become common in aroma analysis as it is rapid, simple, and allows for the extraction of volatile and semi-volatile compounds with minimal sample preparation, which is a critical point in non-targeted analysis since every manipulation could alter the sample composition.³

Flavor analysis can be carried out using either liquid or gas chromatography coupled to mass spectrometry (LC or GC–MS) or high resolution accurate mass mass spectrometry (LC or GC-HRMS) and the use of effective software tools for data reprocessing and statistical analysis. The high resolution GC approach with the Orbitrap system offers the advantage of full-scan data acquisition combined with high sensitivity, high resolving power (up to 240,000 FWHM at *m/z* 200), and accurate mass (<1 ppm), allowing for targeted, non-targeted, and retrospective data analysis.³

In this study, the Orbitrap Exploris GC 240 system coupled to SPME Arrow technology was used to assess the aroma profile of several *Origanum vulgare* samples grown in different geographical areas with either Mediterranean or continental climate. Data was acquired in full-scan (FS) electron ionization (EI) and positive chemical ionization (PCI) modes, and reprocessed using the streamlined workflows integrated in the Thermo Scientific[™] Compound Discoverer[™] 3.2 software platform.

Experimental

In all experiments, an Orbitrap Exploris GC 240 system with a Thermo Scientific[™] Instant Connect split/splitless SSL (equipped with SPME Arrow liner 1.7 mm ID (P/N 453A0415)) was coupled to a Thermo Scientific™ TriPlus[™] RSH autosampler with SPME Arrow configuration. In place of the standard SPME Arrow Conditioning Station, a second IC-SSL injector (equipped with SPME Arrow liner 1.7 mm ID (P/N 453A0415)) was used for fiber conditioning. Chromatographic separation was achieved using a Thermo Scientific[™] TraceGOLD[™] TG-1MS capillary column, 30 m × 0.32 mm × 1.0 µm (P/N 26099-2970). Additional HS-SPME Arrow and Orbitrap Exploris GC 240 system parameters are detailed in Tables 1a and 1b, respectively. The triple coating phase of the DVB/CWR/PDMS fiber (P/N 36SA11T3) allowed for effective extraction of monoterpenes, cyclic and acyclic terpenes, sesquisterpenes, and bornane compounds.

Table 1a. TriPlus RSH-SPME Arrow experimental parameters used for the assessment of the volatile fraction of oregano

TriPlus RSH – HS - SPME Arrow parameters								
Fiber	SPME Arrow DVB/CWR/PDMS (P/N 36SA11T3)							
Coating phase thickness (µm)	110							
Coating phase length (mm)	20							
Incubation temperature (°C)	60							
Incubation time (min)	15							
Incubation speed (rpm)	500							
Extraction temperature (°C)	60							
Extraction time (min)	15							
Stirring speed (rpm)	1500							
Fiber depth in vial (mm)	25							
Fiber depth in injector (mm)	70							
Desorption time (min)	2							
Analysis time (min)	40							
Fiber conditioning								
Inlet temperature (°C)	270							
Liner	SPME Arrow liner 1.7 mm l.D. (P/N 453A0415)							
Inlet module and mode	SSL, splitless							
Fiber pre-conditioning time (min)	0							
Fiber post-conditioning time (min)	15							
Septum purge flow (mL/min)	5, constant							
Carrier gas (mL/min)	He, 6.0							
Fiber depth in injector (mm)	70							

Table 1b. Trace 1310 GC and Orbitrap Exploris GC 240 mass spectrometer experimental parameters used for the assessment of the volatile fraction of oregano

Trace 1310 GC parameters							
Inlet (°C)	220						
Liner	Arrow liner 1.7 mm I.D. (P/N 453A0415)						
Inlet module and mode	SSL, split						
Split ratio	30:1						
Septum purge flow (mL/min), mode	5, constant						
Carrier gas (mL/min)	He, 1.8						
Oven temperature program							
Temperature (°C)	40						
Hold time (min)	2						
Rate (°C/min)	10						
Temperature 2 (°C)	150						
Rate (°C/min)	5						
Temperature 3 (°C)	260						
Rate (°C/min)	25						
Temperature 4 (°C)	300						
Hold time (min)	3						
Column							
TraceGOLD TG-1MS	30 m, 0.32 μm, 1.0 mm (P/N 26099-2970)						
Vials and caps							
Vials	10 mL crimp top HS vials (P/N 10-CV)						
Caps	20 mm magnetic crimp caps (P/N 20-MCBC-ST3)						
Orbitrap Exploris GC 240) mass spectrometer parameters						
Parameters for El							
Transfer line temperature (°C):	280						
Ionization type:	El						
lon source temperature (°C):	280						
Electron energy (eV):	70						
Aquisition mode:	Full Scan						
Mass range (Da):	40-450						
Resolving power (FWHM):	60,000 @ <i>m/z</i> 200						
Lockmass, column bleed:	207.03235						
Parameters for PCI							
Transfer line temperature (°C):	280						
Ionization type:	Cl						
Ionization gas:	Methane						
Ionization gas flow (mL/min):	1.3						
lon source temperature (°C):	190						
Electron energy (eV):	90						
Aquisition mode:	Full Scan						
Mass range (Da):	80–450						
Max resolving power (FWHM):	120.000 @ m/z 200						

Data acquisition, processing, and reporting

Data were acquired using Thermo Scientific[™] Chromeleon[™] 7.3 CDS software and imported in Compound Discoverer 3.2 software for chemometric assessment. Chromeleon CDS integrates instrument control, method development functionality, and quantitation-focused workflows in compliance with Title 21 of the Code of Federal Regulations. Compound Discoverer 3.2 software was used to reprocess El data (spectral deconvolution, compound identification, and multivariate statistical analysis) as well as CI data (elemental composition of the molecular ions and presence of specific adducts confirmation).

Sample preparation

Three commercially available O. vulgare samples were purchased at different retailers. Each oregano jar was well mixed to homogenize the matrix. Herb samples were prepared in triplicate by weighing (150 mg) and transferring into 10 mL crimp top headspace vials (vials P/N 10-CV, caps P/N 20-MCBC-ST3) for analysis. A blend was obtained by pooling together the oregano samples and was used for confirmatory purposes. To reduce the bias in the results, the sample vials were analyzed in a randomized order. A retention index (RI) mix (Sigma-Aldrich, C7-C30 saturated alkanes, P/N 49451-U) was injected at the beginning of the sequence and used to derive the RI of chemical components putatively identified by the NIST[™] Mass Spectral Library (NIST20) and the Thermo Scientific™ Orbitrap[™] GC-MS HRAM Metabolomics Library (P/N 1R120400-0080) following spectral deconvolution.

Results and discussion

Workflows to assess the volatile profile in oregano samples

Full scan EI and CI data were processed using Compound Discoverer 3.2 software for chemometric assessment and putative identification of peaks as reported in Figure 1. Multivariate statistical analysis (principal component analysis, PCA and volcano plot, v-plot) was used to select the significant features, defined by their m/zand retention time, contributing to the group differences. Chromatographic peaks were then deconvoluted, aligned, filtered, and putatively identified using mass spectral library match (NIST20 nominal mass library and Orbitrap GC-MS HRAM Metabolomics Library). The PCI workflow in Compound Discoverer software enabled confirmation of the presence of the molecular ion and the adducts and proposal of a chemical formula. These streamlined workflows allowed for a comprehensive characterization of the aroma components in oregano samples.

Figure 1. Workflow used to assess the volatile profile of the oregano samples. FS data was acquired in El and PCI modes: multivariate statistical analysis was performed to identify unique features contributing to the group differences in El data; peak putative identification was made using mass spectral library match (NIST20 and Orbitrap GC-MS HRAM Metabolomics Library); compound identification was confirmed using soft ionization PCI data and the presence of quasimolecular and/or adduct ions.

Multivariate statistical analysis: PCA and V-Plot

Full scan El data were imported in Compound Discoverer software and a multivariate statistical analysis step was carried out to assess the sample differences and to isolate the main features responsible for such variances. PCA is a well-known statistical approach that highlights variation between sample groups and allows visualization of strong patterns in complex datasets. By employing PCA analysis in Compound Discoverer software, significant differences were observed between the volatile profiles of the analyzed oregano samples. The generated PCA plot is reported in Figure 2, highlighting a clear separation between the oregano samples with the blend (pooled samples) centered in-between the groups. To isolate the chemical components responsible for these variances, differential analyses were carried out using the volcano-plots, useful to quickly identify changes in large data sets composed of replicate data. A V-plot obtained by comparing sample A and sample C is shown as an example in Figure 3.

Figure 2. Centered PCA score plot obtained for oregano samples. The PCA plot shows a complete separation between the sample classes with the blend (pooled) samples in the clustered in the center of the plot.

p-value: 0.05, log2 fold change: 1

Figure 3. Volcano-plot scatterplot showing the statistical significance (p-value) versus magnitude of change (fold change) when comparing sample A and C. Significant chemical components that are responsible for sample diversity between two groups are selected (as light blue dots).

Compound identification based on NIST20 and Orbitrap GC-MS HRAM Metabolomics Library match

Compound Discoverer 3.2 platform includes a streamlined workflow for GC El data, which allows for extraction, deconvolution, and putative identification of the unknowns

based on mass spectral library matching. The software first performed untargeted peak detection within 5 ppm extraction windows. Accurate mass chromatographic deconvolution was then performed by grouping together all extracted ion peaks above a customizable signal to noise (S/N) threshold that maximize at the same retention time. The deconvoluted spectra were then searched against the NIST20 nominal mass spectral library and Orbitrap GC-MS HRAM Metabolomics Library and the hits were scored based on the total score derived from a combination of library search index (SI), high resolution filtering (HRF) value and presence/absence of the molecular ions as well as elemental percentage match. The use of a retention index acquired under the same conditions used for sample analysis helped to boost the confidence in compound identification. An example of this workflow is reported in Figure 4 with the Compound Discoverer 3.2 browser showing the overlaid extracted ion chromatograms (XIC) of the peak eluting at 10.21 min (m/z 119.08563), the result table with the top hit for peak deconvolution and library search (NIST20 and Orbitrap GC-MS HRAM Metabolomics Library), and the El spectrum – measured versus the NIST20 library. According to the NIST20 library, the peak was putatively identified as p-cymene with a total score of 95.2, SI = 796, and HRF = 98.1.

Figure 4. Compound Discoverer software showing peak deconvolution results for the compound eluting at RT = 10.21 min and putatively identified as p-cymene (m/z 119.08563). XIC for p-cymene (A); result table with deconvoluted compound and library search results for NIST20 and Orbitrap GC-MS HRAM Metabolomics Library (B); El spectrum of p-cymene – measured versus NIST20 library (C).

The putative identification was supported by the Orbitrap GC-MS HRAM Metabolomics Library match with a total score of 97.5, SI = 913, and HRF = 99.5. This approach allowed putative identification of most of the detected peaks; however, for some compounds the EI spectral library match resulted inconclusive. In this case, PCI data and accurate mass become essential to discriminate the chemical formula and provide confidence in identification.

Volatile composition of *Origanum vulgare* samples of various geographical origin

The differences in the composition of the aroma profile allowed for the discrimination between samples even with a limited data set as reported in Figure 2. Sample A showed a higher content of cymyl-type compounds such as *p*-cymene (4-fold change), *γ*-terpinene (2-fold change), and thymol (3-fold change). Sample B resulted to be poor in cymyl-type compounds but richer in acyclic compounds such as β-ocimene (4-fold change) with a higher amount of sesquiterpenes such as germacrene D (2-fold change). Sample C resulted to be richer in β-ocimene and sequiterpenes such as germacrene D and β-caryophyllene. The differences in the chemotypes can be representative of the different climate where *O. vulgare* varieties were grown with the predominance of phenolic monoterpenes in plants grown in the Mediterranean area and sesquiterpenes predominant in continental regions, although as reported in literature, oregano characterization is difficult due to the huge diversity in the aroma composition of the existing oregano populations.²

Molecular ion and adduct confirmation using PCI

Further confirmation in the identification of compounds was achieved by assessing the PCI spectra to identify the elemental composition of the parent ion by looking at common adducts. In PCI experiments using methane as the reagent gas, three adducts are typically observed: $[M+H]^+$, $[M+C_2H_2]^+$, and $[M+C_2H_2]^+$. PCI data were imported in Compound Discoverer software and reprocessed to detect the characteristic adducts. As an example, the Compound Discoverer software results showing the PCI spectra of *p*-cymene are reported in Figure 5. The PCI workflow embedded in the software allowed the prediction of the chemical formula for the unknown compounds and assignment of the compound annotation based on multiple sources such as mzCloud[™] or ChemSpider[™]. The presence of the methane adducts in the PCI spectrum confirmed m/z 134.10889 as the molecular ion for p-cymene (RT = 10.20 min) and supported the elemental composition of the proposed molecule.

Table 2. Table of fold change of main volatile compounds constituents of *O. vulgare* samples with different geographical provenances. In particular, sample A showed a significantly higher level of cymyl-type compounds such p-cymene (4-fold change), γ -terpinene (2-fold change), and thymol (3-fold change). Sample B had lower levels of cymyl-type compounds but was higher in acyclic compounds such as β -ocimene (4-fold change) and sesquiterpenes (such as germacrene D (2-fold change)). Sample C had significantly higher concentrations of β -ocimene and sequiterpenes (such as germacrene D).

Name	RT [min]	Chemical Formula	Reference m/z	EI		PCI			Tetel	Log2 Fold Change			
				Measured <i>m/z</i>	Theoretical m/z	Mass error (±5	[M+H] ⁺	$[M+C_2H_5]^+$	$\left[M+C_3H_5\right]^+$	Score	Sample A / Sample C	Sample B / Sample C	Sample B / Sample A
α-Thujene	8.64	C10H16	91.05417	136.12463	136.12465	-0.1	137.13254	165.16379	177.16380	93.4	4.0	3.3	-0.7
α-Pinene	8.79	C10H16	91.05423	136.12469	136.12465	0.3	137.13252	165.16377	177.16377	93.4	3.4	3.0	-0.4
p-Cymene	10.21	C10H14	119.0856	134.10892	134.10900	-0.6	135.11688	163.14818	175.14815	96.2	3.7	2.8	-0.9
γ-Terpinene	10.84	C10H16	91.05424	136.12457	136.12465	-0.6	137.13234	165.13659	177.16353	95.2	2.3	2.6	0.3
β-Ocimene	11.40	C10H16	93.06971	136.12466	136.12465	0.1	137.13266	165.16393	177.16391	90.2	-4.4	-0.6	3.9
Camphor	12.09	C10H16O	95.08548	152.11957	152.11957	0.0	153.12727	181.15852	193.15848	96.6	0.6	1.1	0.5
Thymoquinone	13.54	C10H12O2	149.0596	164.08311	164.08318	-0.4	165.09077	193.12198	205.12195	94.4	0.1	0.4	0.3
Methyl thymyl ether	13.61	C11H16O	149.0962	164.11960	164.11957	0.2	165.12726	193.15863	205.15863	97.4	1.5	2.0	0.4
Thymol	14.23	C10H14O	135.0804	150.10382	150.10392	-0.6	151.11169	179.14310	191.14310	96.1	2.8	-0.3	-3.1
Carvacrol	14.42	C10H14O	135.0805	150.10384	150.10392	-0.5	151.11163	179.14302	191.14294	95.7	0.3	0.2	0.0
Eugenol	15.36	C10H12O2	164.0831	164.08321	164.08318	0.2	165.09100	193.12228	205.12231	96.9	-1.5	0.2	1.7
Methyleugenol	16.02	C11H14O2	178.0989	178.09885	178.09883	0.1	179.10660	207.13788	219.13788	96.2	-2.6	0.2	2.9
γ-Elemene	17.00	C15H24	189.1639	204.18726	204.18725	0.0	205.19524	233.22658	245.22647	92.1	0.5	0.2	-0.3
β-Caryophyllene	17.15	C15H24	91.05417	204.18721	204.18725	-0.2	205.19489	233.22615	245.22627	95.3	0.5	-0.1	-0.6
Humulene	17.76	C15H24	93.06991	204.18729	204.18725	0.2	205.19513	233.22646	245.22649	94.5	1.8	-0.1	-1.9
Isoledene	18.06	C15H24	105.0699	204.18713	204.18725	-0.6	205.19519	233.22652	245.22665	96.2	1.2	0.9	-0.3
Germacrene D	18.22	C15H24	147.1167	204.18727	204.18725	0.1	205.19514	233.22649	245.22647	95.5	-0.9	0.9	1.7
Alloaromadendrene	18.58	C15H24	91.05424	204.18716	204.18725	-0.4	205.19485	233.22614	245.22618	95.8	-0.6	0.7	1.3
y-Muurolene	18.78	C15H24	161.1327	204.18719	204.18725	-0.3	205.19499	233.22635	245.22636	93.6	-0.3	0.2	0.5
Isospathulenol	19.94	C15H24O	91.05419	220.18230	220.18217	0.6	221.19000	249.22171	261.22125	94.5	-1.3	0.0	1.3
Caryophyllene oxide	20.10	C15H24O	91.05419	220.18199	220.18217	-0.8	221.18999	249.22130	261.22129	94.7	-0.2	-0.3	-0.1

Figure 5. Compound Discoverer software results showing the PCI spectrum for p-cymene (RT = 10.15 min) (A) and the results table (B). The typical adducts formed when methane gas is used are labeled in the spectrum plot in green. The annotation sources (ChemSpider and Mass List) used to propose the chemical formula for p-cymene, as well as the number of adducts found, the mass accuracy (in ppm), the molecular weight and the reference m/z, are listed in the table.

Conclusions

The results presented in this study demonstrate that the Thermo Scientific Orbitrap Exploris GC 240 mass spectrometer in combination with SPME Arrow technology and Compound Discoverer 3.2 software represents an integrated omics approach for the characterization of the volatile fraction of food samples.

- Flavor profiling is a challenging analysis as the sample matrices encountered are chemically complex, the compounds are present over a wide dynamic range, and profiling requires sensitive and stable systems.
- Significant differences in the oregano chemotypes were detected and these can be representative of the different climate where *O. vulgare* varieties were grown with the predominance of phenolic monoterpenes in plants grown in the Mediterranean area and sesquiterpenes predominant in continental regions.
- Cymyl-type compounds (*p*-cymene, *γ*-terpinene, and thymol) were predominant in sample A, whereas other samples had high levels of acyclic compounds and sequiterpenes (such as germacrene D and β-caryophyllene).

thermo scientific

- The high resolving power and consistent sub-1 ppm mass accuracy as well as the wide linear and dynamic range lead to fast and confident characterization of a large number of compounds regardless of their concentration or matrix complexity.
- Automated headspace sampling with the SPME Arrow eliminates the need of sample preparation and speeds up the analysis.
- The streamlined GC-EI/PCI data processing workflow integrated in Compound Discoverer 3.2 software allows for multivariate statistical analysis, extraction, deconvolution, and putative identification of the unknown compounds. The EI data obtained can be used for candidate compound identification against existing commercial libraries. Importantly, as often the chemicals detected are not included in such libraries,

the consistent sub-ppm mass accuracy measurements as well as the retention index information will greatly aid in the determination of the elemental composition and subsequent structural elucidation of unknown chemicals. Moreover, softer ionization such as positive chemical ionization with methane can be used to confirm the elemental composition of the molecular ion of a chemical.

References

- Black C.; Haughey S.A.; Chevallier O.P.; Galvin-King P.; Elliott C.T. A comprehensive strategy to detect the fraudulent adulteration of herbs: the oregano approach, *Food Chemistry* 2016, *210*, 551–557.
- 2. Lukas B.; Schmiderer C.; Novak J. Essential oil diversity of European *Origanum vulgare* L. (Lamiaceae), *Phytochemistry* **2015**, *119*, 32–40.
- Cavanna D.; Righetti L.; Elliot C.; Suman M. The scientific challenges in moving from targeted to non-targeted mass spectrometric methods for food fraud analysis: A proposed validation workflow to bring about a harmonized approach, *Trends in Food Science & Technology* **2018**, *80*, 223–241.

Find out more at thermofisher.com

©2020 Thermo Fisher Scientific Inc. All rights reserved. SPME Arrow is a trademark of Restek. NIST is a trademark of the National Institute of Standards and Technology. mzCloud is a trademark of HighChem LLC, Slovakia. ChemSpider is a trademark of the Royal Society of Chemistry. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **AN65914-EN 0920S**

