thermoscientific

Multi-residue analysis of polar anionic pesticides in food samples using a compact ion chromatography system coupled with tandem mass spectrometry (IC-MS/MS)

Authors

Yingchen Li¹, Qilei Guo¹, Fausto Pigozzo², Richard J. Fussell³, and Beibei Huang⁴

¹Thermo Fisher Scientific, Beijing, China; ²Thermo Fisher Scientific, Milan, Italy; ³Thermo Fisher Scientific, Hemel Hempstead, U.K.; ⁴Thermo Fisher Scientific, Sunnyvale, CA

Keywords

Polar pesticides, QuPPe, glyphosate, fosetyl-Al, bialaphos, phosphonic acid, MPPA, glufosinate, chlorate, HEPA, AMPA, *N*-acetyl AMPA, *N*-acetylglufosinate, ethephon, cyanuric acid, *N*-acetyl-glyphosate, perchlorate, wheat flour, leek

Goal

To develop and validate an integrated sample-to-result analytical workflow based on ion chromatography (IC) coupled with triple quadrupole mass spectrometry (MS/MS) for the multi-residue determination of polar anionic pesticides and perchlorate in representative food matrices. The performance of this Thermo Scientific[™] Anionic Pesticides Explorer workflow must be robust in routine analysis and the results compliant with EU SANTE/11813/2017 method validation and ongoing quality control guideline criteria.¹ Also, the analysis should meet the residue definitions and maximum residue levels (MRLs) or tolerance values applicable in the European Union, United States, Japan, and China.

Introduction

Polar anionic pesticides are widely used in agricultural production with the herbicide glyphosate one of the highest usage pesticides in the world. Residues of glyphosate and other anionic pesticides such as glufosinate, fosetyl, ethephon, and their metabolites, have been detected in vegetables, cereals, and processed foods. Also detected are perchlorate, a contaminant in some fertilizers, and chlorate from the use of biocides in food preparation facilities. Despite the high usage and evidence of residues in food, polar

APPLICATION NOTE 73204

pesticides are monitored infrequently, primarily because of the analytical challenges and high costs associated with the analysis. The European Food Safety Authority (EFSA) and the European Commission have highlighted this situation and have requested that the European Reference Laboratories (EURLs) for pesticides develop more effective methods to encourage increased monitoring of polar pesticides in food.

The most popular extraction method for polar pesticides is the Quick Polar Pesticides Extraction (QuPPe) method developed by the European Reference Laboratory for Single Residue Methods (EURL-SRM).² The method is based on extraction with methanol/water, without liquid/liquid partition or solid phase extraction clean-up. Consequently, the extracts can contain high levels of co-extractives that can contaminate the chromatographic and detection systems and suppress the MS response.

Furthermore, polar anionic pesticides have poor retention in reversed-phase LC-MS/MS, which is widely used for multi-residue determination of pesticides in food.³ Pre- or post- column derivatization can increase chromatographic retention and selectivity for glyphosate and glufosinate but is not generally favored because of the limitation on scope (i.e. number of compounds determined), additional labor, and high method variability. Alternatively, more convenient approaches to achieve greater retention of a wider range of polar compounds include the use of ion-pair reversedphase LC, HILIC, graphitized carbon columns, and IC with or without ion suppression of the mobile phase.

Ion chromatography with electrolytic ion suppression coupled to MS (IC-MS) offers a number of advantages for direct analysis of multi-residue polar anionic pesticides and their metabolites.⁴ Ion chromatography provides excellent chromatographic retention and resolution in a wide range of matrices, while triple quadrupole mass spectrometer systems offer high selectivity and therefore low detection limits when operated in the selected reaction monitoring (SRM) mode.

Experimental

Instrumental and method set-up

A Thermo Scientific[™] Dionex[™] Integrion[™] HPIC[™] system, fitted with a Thermo Scientific[™] Dionex[™] electrolytic eluent generator cartridge (EGC) and conductivity cell, was coupled to a Thermo Scientific[™] Dionex[™] AS-AP Autosampler and Thermo Scientific[™] TSQ Altis[™] Triple Quadrupole Mass Spectrometer. Separation was achieved using a Thermo Scientific[™] Dionex[™] IonPac[™] AG19-4µm Guard column, 2 × 50 mm, coupled to a Thermo Scientific[™] Dionex[™] IonPac[™] AS19-4µm Analytical column, 2 × 250 mm, held at 40 °C with elution of polar anionic analytes using a potassium hydroxide gradient at a flow rate of 0.35 mL/min. Details of the IC experimental conditions are presented in Table 1 (part 1).

A Thermo Scientific[™] Dionex[™] ADRS 600 Anion Dynamically Regenerated Suppressor (2 mm) was operated in external water mode using DI water delivered at 0.7 mL/min by an auxiliary Thermo Scientific[™] Dionex[™] AXP pump. The Dionex ADRS device, installed after the column, converted the KOH eluent to water before it flowed through the conductivity detector and mass spectrometer connected in series. Acetonitrile was delivered at a flow rate of 0.2 mL/min by an auxiliary Dionex AXP-MS pump, via a tee junction between the conductivity cell and mass spectrometer. This addition of acetonitrile assists electrospray aerosol desolvation and increases the response of most analytes by three- to four-fold. The injection volume was 25 µL. The system control, data acquisition, and data processing were done using Thermo Scientific[™] Chromeleon[™] Chromatography Data System software, version 7.2.9, or Thermo Scientific[™] TraceFinder[™] software, version 4.1. The MS instrument settings are summarized in Table 1 (part 2) and the IC-MS/MS configuration is illustrated in Figures 1A and 1B.

Table 1 (part 1). Summary of experimental conditions and settings

Conditions for ion	chromatography
IC system:	Dionex Integrion HPIC system
Conductivity monitor:	Conductivity detector
Columns:	lonPac AG19-4µm Guard, 2 × 50 mm (P/N 083225) lonPac AS19-4µm Analytical, 2 × 250 mm (P/N 083223)
Eluent source:	Dionex EGC 500 KOH Eluent Generator Cartridge with Dionex CR-ATC 600
KOH gradient:	20–30 mM (0–2 min) 30 mM (2–8 min) 45-55 mM (8–12 min) 80 mM (12–14 min) 85 mM (14–19 min) 20 mM (19–21 min)
Flow rate:	0.35 mL/min
Injection volume:	25 μL
Temperature:	40 °C (column oven) 20 °C (compartment temperature) 35 °C (conductivity detector cell)
System backpressure	: ~3900 psi (100 psi = 0.6895 MPa)
Suppressor:	Suppressed Conductivity, Dionex ADRS 600 Suppressor (2 mm) operated in constant current mode, AutoSuppression, 74 mA, external water mode via Dionex AXP pump, external water flow rate (0.70 mL/min)
Background conductance:	~0.3 µS/cm
Run time:	21 min
IC-MS interface:	Tee union (PEEK, P/N 00101-18204) to combine the analyte from conductivity detector via Thermo Scientific [™] Viper [™] fitting tubing
Post-suppressor makeup solution:	Acetonitrile at 0.2 mL/min via Dionex AXP-MS pump

Table 1 (part 2). Summary of experimental conditions and settings

Conditions for mass	spectrometric detection
lon s	ource settings
lon source type:	HESI
Spray voltage:	Static
Negative ion: Positive ion:	3250 V 3500 V
Sheath gas:	60 Arbitrary units (Arb)
Aux gas:	13 Arb
Sweep gas:	1 Arb
lon transfer tube temp.:	350 °C
Vaporizer temp.:	250 °C
MS	global settings
Start time:	0 min
End time:	21 min
Ν	laster scan
Scan mode:	SRM
Polarity:	Defined in Table 2
Use cycle time:	True
Cycle time:	1.0 s
Q1 resolution (FWHM):	0.7
Q3 resolution (FWHM):	1.2
CID gas:	2.0 mTorr
Source fragmentation:	0 V
Chromatographic peak width:	6 s
Transition conditions:	Optimized for each compound using TSQ Altis mass spectrometer (Table 2)

Figure 1A. Configuration of the fully integrated IC- MS/MS system

Figure 1B. Configuration of the fully integrated IC- MS/MS system

Deionized water delivered by the pump enters the Dionex EGC cartridge,⁵ which automatically generates the eluent, which then exits the cartridge and passes through the Thermo Scientific[™] Dionex[™] Continuously Regenerated Trap Column (CR-TC)⁶ to remove any impurities. The eluent then passes through the EG degas tubing to remove the hydrogen gas produced during KOH generation and then into the injection valve. The sample is loaded into the sample loop and the injection valve is toggled to the Inject position to allow eluent to pass through the loop. The pump pushes the eluent and sample through the guard and analytical columns, and then through the suppressor,⁷ where the cations from both the eluent and the sample are replaced with hydronium ions, effectively neutralizing the high pH eluent and making it compatible with the mass spectrometer. From the suppressor, the eluent flows into the conductivity detector to monitor the background conductivity, which is typically below 1.5 µS/cm before injection of a sample or standard. A Dionex AXP-MS pump was used to add acetonitrile (0.2 mL/min) after the conductivity detector and before the electrospray interface to increase analyte signal intensity.

The make-up flow rate of acetonitrile was 0.2 mL/min, giving a total flow into the source of 0.55 mL/min, which was within the accepted flow rate range of the TSQ Altis mass spectrometer. The backpressure on the suppressor was below the recommended maximum value of 150 psi.^{7,8}

Mass spectrometer

Data acquisition was performed in selected reaction monitoring mode (SRM). The product ions were individually tuned for each target analyte using TSQ Altis 3.1 Tune software by infusing the corresponding standard solution (1 mg/L). The mass spectrometer parameters including the precursorproduct ion transitions monitored are shown in Table 2. Data was acquired using Chromeleon CDS 7.2.9 or Thermo Scientific[™] Xcalibur[™] 4.1 software with SII for Xcalibur and processed using TraceFinder 4.1 software, which allow easy creation of the acquisition and processing methods for high-throughput quantitative analysis along with efficient data review and reporting.

Because the target analytes are small molecules with low mass-to-charge (*m*/*z*) product ions, the mass spectrometer was calibrated using the Thermo Scientific[™] Pierce[™] Triple Quadrupole Extended Mass Range Calibration Solution (P/N 88340), which contains 14 components (mass range from 69 *m*/*z* to 2800 *m*/*z*) for calibration in both positive and negative ionization modes. This solution improves mass accuracy and transmission compared to conventional polytyrosine mass calibration solution, especially in the low *m*/*z* range.

Chemicals and consumables

Deionized (DI) water, ASTM Type I reagent grade, with 18 MΩ·cm resistivity or better, was filtered through a 0.2 µm filter immediately before use. Fisher Chemical Methanol, Optima[™] LC/MS grade, (P/N A456-1) and acetonitrile, Optima[™] LC/MS grade (P/N A955-1), were used.

In addition to calibration of the mass spectrometer, satisfactory performance of instrument modules was tested using the QPP-Lab® Standard Kit QuPPe EURL v.10-1.3 Method Compliance stock solution, obtained from Lab Instruments, Italy (Code: KIT4AC3L016).

Isotopically labeled standards were obtained from various sources: glyphosate- ${}^{13}C_2$, ${}^{15}N$, glufosinate-d₃ hydrochloride and 3-methylphosphinicopropionic acid-d₃ sodium salt from Trc-Canada; potassium chlorate ${}^{18}O_3$, aminomethylphosphonic acid- ${}^{13}C$, ${}^{15}N$, ${}^{2}D$ and perchloric acid sodium salt (${}^{18}O_4$) from Cambridge Isotope Laboratories Inc.; and ethephon-d₄ from A ChemTek, Inc.,

Sample extraction and clean-up

Samples of wheat flour and of leeks were purchased from local retail outlets in Beijing. Wheat flour samples were thoroughly mixed before taking test portions, while leek samples were homogenized using a blender.

Table 2. IC-MS/MS parameters for selected reaction monitoring transitions

Preselv.A 2.5 5 Negaha 100 63" 2.8 6.1.944 3.3 Faculy.A 2.5 5 Negaha 100 70" 2.2 6.1.944 3.3 Bilangha 8 9 Postave 3.24 136" 2.4 11.844 4.7 Prosphore acid 5 9 Negaha 131 6.3" 7.4" 15.4 16.142 4.7 Prosphore acid 5 9 Negaha 151 6.3" 17.4" 15.4 16.142 4.8 MPPA 5 6.5 Negaha 161 107 16.4 16.142 4.8 MPPA 6 6.5 Negaha 161 107 16.142 4.8 Culcanata 5 7.8 Negaha 160 161 16.142 4.8 Guidanata 6 7.8 Negaha 160 163 17 18.142 4.8 Guidanata 5 7.8	Compound	Start time (min)	End time (min)	Polarity	Precursor (<i>m/z</i>)	Product (<i>m/z</i>)	Collision energy (V)	Min dwell time (ms)	RF lens (V)
Procent/Al 2.5 5 Negative 109 79" 92 4.594 93 Faced,AL 2.5 3 Negative 100 81 12 6.1944 93 Bilaghoto 5 8 Poatave 924 920" 18 18.142 47 Bilaghoto 5 8 Poatave 924 920" 18 18.142 41 Prosphorin cucid 5 0 Negative 151 65" 18.142 48 MPPA 5 8.5 Negative 151 133" 13 18.142 48 Globarnato 5 7.8 Negative 150 134" 150 151.12 45 Globarnato 5 7.8 Negative 180 134" 160 1812 450 Globarnato 5 7.8 Negative 180 134" 161 1814 451 Globarnato 5.2 7.8 Negative<	Fosetyl-Al	2.5	5	Negative	109	63*	29	81.984	33
FeesolvAl 2.5 5 Negate 100 61 12 61.96 63 Bialgronc 5 8 Proble 0.74 100" 74 61.92 74 Bialgronc 5 8 Proble 62.4 20.7 11.8 11.4 14.1	Fosetyl-Al	2.5	5	Negative	109	79**	22	81.984	33
Balachuo 5 8 Positive 324 138 ¹⁴ 24 18.142 47 Bulachuo 5 8 Positive 324 207 18 18.142 47 Phosphrine and 5 0 Negative 81 63* 18 18.142 41 Phosphrine and 5 8.5 Negative 151 1077 16 18.142 38 MPNA 5 8.5 Negative 151 1077 16 18.142 39 Giddianale 5 8.5 Negative 151 133 13 18.142 451 Giddionich 5 7.8 Negative 180 057 17 18.142 451 Giddionich 5 7.8 Negative 180 134 18 18 18.142 451 Giddionich 5 7.8 Negative 180 134 18 18.142 451 Gididionich 5<	Fosetyl-Al	2.5	5	Negative	109	81	12	81.984	33
Bitaphon S 8 Positive 15/2 90000 16/3 90000 16/3 90000 16/3 90000 16/3 90000 16/3 90000 16/3	Bialaphos	5	8	Positive	324	136**	24	18.142	47
Phosphonic acid 5 9 Negstive 81 63" 27 18,142 41 Phosphonic acid 5 9 Negstive 81 73" 15 18,142 41 MPRA 5 8.5 Negstive 151 63" 44 18,142 48 MPPA 5 8.5 Negstive 151 132" 13 18,142 48 MPPA 5 8.6 Negstive 154 133" 14 18,142 45 Glubarate 5 7.8 Negstive 150 154" 151 138 17 18,142 45 Glubarate 5 7.8 Negstive 150 154" 17 18,142 45 Glubarate 5.2 7.8 Negstive 126 07" 18,142 45 Glubarate 5.2 7.8 Negstive 126 07" 18,142 45 Glubarate 5.2 7.8	Bialaphos	5	8	Positive	324	207*	18	18.142	47
Phosphonic add § 9 Negative 81 79° 15 16.142 41 MPPA 5 8.5 Negative 151 03° 44 16.142 38 MPPA 5 8.5 Negative 151 0107 16 18.142 38 MPPA 5 8.5 Negative 151 0137 13 18.142 38 MPPA 5 7.8 Negative 180 134° 16 18.142 45 Guldsainate 5 7.8 Negative 180 134° 16 18.142 46 Guldsainate_IS 5 7.8 Negative 180 16'' 11 18.142 46 Guldsainate_IS 5 7.8 Negative 80 71 22 18.142 46 Guldsainate_IS 5.2 7.5 Negative 125 69° 21 18.142 42 Guldsainate_IS 5.2 <th7.5< <="" td=""><td>Phosphonic acid</td><td>5</td><td>9</td><td>Negative</td><td>81</td><td>63**</td><td>27</td><td>18.142</td><td>41</td></th7.5<>	Phosphonic acid	5	9	Negative	81	63**	27	18.142	41
MPPA 5 8.5 Negative 181 83" 94 18.142 36 MPPA 5 8.5 Negative 151 107 16 18.142 36 MPPA 5 8.5 Negative 154 136 14 18.142 36 MPA_IS 5 7.8 Negative 154 136 14 18.142 45 Culdenine 5 7.8 Negative 180 95" 17 18.142 45 Culdenine 5 7.8 Negative 180 136 17 18.142 45 Culdenine 5 7.8 Negative 180 136 17 18.142 45 Culdenine 5.2 7.8 Negative 85 69" 21 18.142 66 Chorate 5.2 7.5 Negative 195 79" 21 18.142 42 LFFA 5.2 7.5 Negative 110 79" 20 18.142 62 AMPA 5.5 9 Negative 110 79" 20 18.142 62 AMPA 5.5 7.5 Negative 114 81 <td>Phosphonic acid</td> <td>5</td> <td>9</td> <td>Negative</td> <td>81</td> <td>79*</td> <td>15</td> <td>18.142</td> <td>41</td>	Phosphonic acid	5	9	Negative	81	79*	15	18.142	41
MPPA 5 8.5 Negative 151 107 16 18.142 36 MPPA 5 8.5 Negative 151 133° 13 16.142 36 Glutcainate 5 7.8 Negative 180 96° 17 18.142 45 Glutcainate 5 7.8 Negative 180 96° 17 18.142 45 Glutcainate 5 7.8 Negative 183 98 18 18.142 45 Glutcainate 5 7.8 Negative 183 98 18 18.142 45 Chiorate 5.2 7.5 Negative 83 67° 21 18.142 42 Chiorate 5.2 7.5 Negative 125 79° 21 18.142 42 HEFA 5.2 7.5 Negative 125 96°* 14 18.142 42 AMPA 5.5 9 Negative 125 95°* 14 18.142 42 AMPA 5.5	MPPA	5	8.5	Negative	151	63**	34	18.142	36
MPPA 5 8.5 Negative 151 133" 13 18.142 36 MPPA_LS 5 6.5 Negative 154 130 14 10.142 36 Glubcanata 5 7.8 Negative 180 96" 17 18.142 45 Glubcanata 5 7.8 Negative 180 134" 18 18.142 45 Glubcanata 5 7.8 Negative 180 134" 18 18.142 45 Chiorata 5.2 7.8 Negative 183 67" 21 18.142 66 Chiorata 5.2 7.8 Negative 125 79" 21 18.142 42 HEPA 5.2 7.5 Negative 125 79" 14 18.142 42 HEPA 5.2 7.5 Negative 110 63" 20 18.142 52 AMPA 5.5 7.5 Negative 110 79" 20 18.142 52 AMPA 5.5 7.5 Negative 114 79" 20 18.142 52 AMPA 5.5 7.5 Negative 114	MPPA	5	8.5	Negative	151	107	16	18.142	36
MPPA_US 5 8.6 Negative 154 136 14 18.142 36 Glubsanda 5 7.8 Negative 180 95' 17 18.142 45 Glubsanda 5 7.8 Negative 180 136 17 18.142 45 Glubsanda 5 7.8 Negative 183 98 18 18.142 45 Glubsanda 5.2 7.8 Negative 85 69" 21 18.142 66 Chiorate 5.2 7.8 Negative 85 69" 21 18.142 42 HEPA 5.2 7.5 Negative 125 89 7 18.142 42 HEPA 5.2 7.5 Negative 110 70' 29 18.142 52 AMPA 5.5 9 Negative 110 70' 29 18.142 45 AMPA 5.5 7.5 Negative 152 110'' 13 18.142 45 Asactly AMPA 5.5	MPPA	5	8.5	Negative	151	133*	13	18.142	36
Gluboanate 5 7.8 Negative 180 95' 17 18.142 45 Gluboanate 5 7.8 Negative 180 134''' 16 18.142 45 Gluboanate 5 7.8 Negative 180 136 17 18.142 45 Gluboanate 5.2 7.8 Negative 88 67'' 21 18.142 66 Chorate 5.2 7.8 Negative 88 67'' 21 18.142 66 Chorate 5.2 7.8 Negative 80 71 22 18.142 42 HEPA 5.2 7.5 Negative 110 63'' 20 18.142 52 AMPA 5.5 9 Negative 110 79' 29 18.142 52 AMPA_IS 5.5 9 Negative 114 79' 18 18.142 52 AMPA_IS 5.5 7.5	MPPA_IS	5	8.5	Negative	154	136	14	18.142	36
Gulcanata 5 7.8 Negative 180 134" 16 18.142 45 Gulcanata 5 7.8 Negative 180 136 17 18.142 45 Gulcanata 5.2 7.8 Negative 83 67" 21 18.142 66 Chlorate 5.2 7.8 Negative 85 66" 21 18.142 66 Chlorate 5.2 7.5 Negative 80 71 22 18.142 42 HEPA 5.2 7.5 Negative 125 89 7 18.142 42 HEPA 5.5 9 Negative 110 73" 29 18.142 42 AMPA 5.5 9 Negative 110 73" 29 18.142 45 AMPA IS 5.5 9 Negative 152 110" 13 18.42 45 Nacety MMPA 5.5 7.5 Negati	Glufosinate	5	7.8	Negative	180	95*	17	18.142	45
Glubosinate 5 7.8 Negative 180 136 17 18.142 45 Chubrate_IS 5 7.8 Negative 183 96 18 18.142 45 Chubrate 5.2 7.8 Negative 83 64" 21 18.142 66 Chubrate 5.2 7.8 Negative 89 71 22 18.142 66 HEPA 5.2 7.5 Negative 125 79" 21 18.142 42 HEPA 5.2 7.5 Negative 110 63" 20 18.142 42 AMPA 5.5 9 Negative 110 63" 20 18.142 52 AMPA, IS 5.5 9 Negative 114 79" 29 18.142 52 AMPA, IS 5.5 7.5 Negative 152 110" 13 18.142 45 Amacetty dipuronate 5.5 8	Glufosinate	5	7.8	Negative	180	134**	16	18.142	45
Glubsinate_IS 5 7.8 Nagative 183 98 18 18.142 46 Chiorate 5.2 7.8 Negative 88 67" 21 18.142 66 Chiorate 5.2 7.8 Negative 89 71 22 18.142 66 HEPA 5.2 7.5 Negative 125 70" 21 18.142 42 HEPA 5.2 7.5 Negative 125 99" 7 18.142 42 AMPA 5.5 9 Negative 110 63" 20 18.142 52 AMPA 5.5 9 Negative 110 79" 29 18.142 52 AMPA_IS 5.5 9 Negative 114 81 14 18.142 52 Assaty AdMPA 5.5 7.5 Negative 152 110" 13 18.142 45 Nacety AdMPA 5.5 8 Neg	Glufosinate	5	7.8	Negative	180	136	17	18.142	45
Chlorate 5.2 7.8 Negative 83 67* 21 18.142 66 Chlorate 5.2 7.8 Negative 85 69** 21 18.142 66 Chlorate 5.2 7.5 Negative 89 71 22 18.142 66 HEPA 5.2 7.5 Negative 125 95** 14 18.142 42 HEPA 5.5 9 Negative 110 63** 20 18.142 52 AMPA 5.5 9 Negative 110 79* 29 18.142 52 AMPA 5.5 9 Negative 114 79* 29 18.142 52 AMPA 5.5 9 Negative 152 10* 13 18.142 45 Nacetyl AMPA 5.5 7.5 Negative 152 10* 13 18.142 47 N-acetyl AMPA 5.5 8 Negati	Glufosinate IS	5	7.8	Negative	183	98	18	18.142	45
Chlorate 5.2 7.8 Negative 85 66** 21 18.142 66 Chlorate_JS 5.2 7.8 Negative 89 71 22 18.142 66 HEPA 5.2 7.5 Negative 125 79' 21 18.142 42 HEPA 5.2 7.5 Negative 125 96'' 14 18.142 42 AMPA 5.5 9 Negative 110 63'' 20 18.142 52 AMPA 5.5 9 Negative 110 79' 29 18.142 52 AMPA_JS 5.5 9 Negative 114 81 14 18.142 52 AmeA/JS 5.5 7.5 Negative 122 101' 13 18.142 45 Nacety/AMPA 5.5 7.5 Negative 222 136' 22 18.142 47 Nacety/AMPA 5.5 8	Chlorate	5.2	7.8	Negative	83	67*	21	18.142	66
Chlorate_IS 5.2 7.8 Negative 89 71 22 18.142 66 HEPA 5.2 7.5 Negative 125 79' 21 18.142 42 HEPA 5.2 7.5 Negative 125 89'' 14 18.142 42 AMPA 5.5 9 Negative 110 63'' 20 18.142 52 AMPA 5.5 9 Negative 110 79' 29 18.142 52 AMPA IS 5.5 9 Negative 114 79' 29 18.142 52 AMPA IS 5.5 9 Negative 152 63'' 25 18.142 45 N-acetyl (uboshnate 5.5 7.5 Negative 222 134'' 20 18.142 47 N-acetyl (uboshnate 5.5 8 Negative 222 136' 22 18.142 30 Ethephon 6 9.5 <td>Chlorate</td> <td>5.2</td> <td>7.8</td> <td>Negative</td> <td>85</td> <td>69**</td> <td>21</td> <td>18.142</td> <td>66</td>	Chlorate	5.2	7.8	Negative	85	69**	21	18.142	66
HEPA 5.2 7.5 Negative 125 79* 21 18.142 42 HEPA 5.2 7.5 Negative 125 89 7 18.142 42 HEPA 5.2 7.5 Negative 125 89 7 18.142 42 AMPA 5.5 9 Negative 110 63** 20 18.142 52 AMPA 5.5 9 Negative 114 79* 29 18.142 52 AMPA, IS 5.5 9 Negative 114 79* 29 18.142 52 AMPA, IS 5.5 7.5 Negative 152 63** 25 18.142 45 N-acetri Julinosinate 5.5 8 Negative 222 134* 20 18.142 47 N-acetri Julinosinate 5.5 8 Negative 143 63 55 18.142 47 Hephon 6 9.5	Chlorate IS	5.2	7.8	Negative	89	71	22	18.142	66
HEPA 5.2 7.5 Negative 125 89 7 18.142 42 HEPA 5.2 7.5 Negative 126 95** 14 18.142 42 AMPA 5.5 9 Negative 110 63** 20 18.142 52 AMPA 5.5 9 Negative 114 70* 29 18.142 52 AMPA,IS 5.5 9 Negative 114 81 14 18.142 52 AMPA,IS 5.5 9 Negative 112 63** 25 18.142 45 N-acetyl (MMPA 5.5 7.5 Negative 152 110* 13 18.142 47 N-acetyl (Jufoshate 5.5 8 Negative 222 134** 20 18.142 47 N-acetyl (Jufoshate 5.5 8 Negative 222 134** 20 18.142 30 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethep	HEPA	5.2	7.5	Negative	125	79*	21	18.142	42
HEPA 5.2 7.5 Negative 125 95** 14 18.142 42 AMPA 5.5 9 Negative 110 63** 20 18.142 52 AMPA 5.5 9 Negative 110 79* 29 18.142 52 AMPA, IS 5.5 9 Negative 114 79* 29 18.142 52 AMPA, IS 5.5 9 Negative 114 79* 29 18.142 45 Avactly Jundshate 5.5 7.5 Negative 152 63** 25 18.142 45 A-acctly Jundshate 5.5 8 Negative 222 136* 22 18.142 47 N-acctly Jundshate 5.5 8 Negative 222 178 15 18.142 30 Ethephon 6 9.5 Negative 143 35 20 18.142 30 Cyanuric acid 10	HEPA	5.2	7.5	Negative	125	89	7	18.142	42
AMPA 5.5 9 Negative 110 63** 20 18.142 52 AMPA 5.5 9 Negative 110 79* 29 18.142 52 AMPA, IS 5.5 9 Negative 114 79* 29 18.142 52 AMPA, IS 5.5 9 Negative 114 81 14 18.142 52 AMPA, IS 5.5 7.5 Negative 152 63** 25 18.142 45 N-acetyl AMPA 5.5 7.5 Negative 222 134* 20 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18.142 30 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Cyanuric acid 10 15 </td <td>HEPA</td> <td>5.2</td> <td>7.5</td> <td>Negative</td> <td>125</td> <td>95**</td> <td>14</td> <td>18.142</td> <td>42</td>	HEPA	5.2	7.5	Negative	125	95**	14	18.142	42
AMPA 5.5 9 Negative 110 7.9' 29 18.142 52 AMPA_IS 5.5 9 Negative 114 79' 29 18.142 52 AMPA_IS 5.5 9 Negative 114 81 14 18.142 52 AMPA_IS 5.5 7.5 Negative 152 63" 25 18.142 45 N-acetyl Julfosinate 5.5 8 Negative 222 134" 20 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136" 22 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 178 15 18.142 30 Ethephon 6 9.5 Negative 143 35 20 18.142 30 Ethephon 6 9.5 Negative 143 107" 8 18.142 30 Cyanuric acid 10	AMPA	5.5	9	Negative	110	63**	20	18.142	52
AMPA_IS 5.5 9 Negative 114 79' 29 18.142 52 AMPA_IS 5.5 9 Negative 114 81 14 18.142 52 AmacelyI AMPA 5.5 7.5 Negative 152 63'* 25 18.142 45 N-acelyI AMPA 5.5 7.5 Negative 152 110' 13 18.142 45 N-acelyI Jufosinate 5.5 8 Negative 222 136' 22 18.142 47 N-acelyI-glufosinate 5.5 8 Negative 222 178 15 18.142 47 N-acelyI-glufosinate 6.5 8 Negative 143 35 20 18.142 30 Ethephon 6 9.5 Negative 143 107' 8 18.142 30 Ethephon_IS 6 9.5 Negative 143 107' 8 18.142 30 Cyanuric acid	AMPA	5.5	9	Negative	110	79*	29	18.142	52
AMA_LS 5.5 9 Negative 114 81 14 18.142 52 N-acetyl AMPA 5.5 7.5 Negative 152 63** 25 18.142 45 N-acetyl AMPA 5.5 7.5 Negative 152 110* 13 18.142 45 N-acetyl glufosinate 5.5 7.5 Negative 222 136* 20 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18.142 47 Lehephon 6 9.5 Negative 143 55 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Cyanuric acid 10 15 Negative 147 111 8 18.42 30 Cyanuric acid 10 15 Negative 128 42* 16 44.055 35	AMPA IS	5.5	9	Negative	114	79*	29	18.142	52
N-acetyl AMPA 5.5 7.5 Negative 162 63** 25 18.142 45 N-acetyl AMPA 5.5 7.5 Negative 152 110* 13 18.142 45 N-acetyl glufosinate 5.5 8 Negative 222 134** 20 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 79** 18 18.142 30 Cyanuric acid 10 15 Negative 147 111 8 18.142 30 Cyanuric acid 10 15 Negative 128 45** 10 44.055 35 G	AMPA IS	5.5	9	Negative	114	81	14	18.142	52
N-acetyl AMPA 5.5 7.5 Negative 152 110* 13 18,142 45 N-acetyl glufosinate 5.5 8 Negative 222 134** 20 18,142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18,142 47 N-acetyl-glufosinate 5.5 8 Negative 222 178 15 18,142 47 Ethephon 6 9.5 Negative 143 63 55 18,142 30 Ethephon 6 9.5 Negative 143 63 55 18,142 30 Ethephon 6 9.5 Negative 143 107* 8 18,142 30 Cyanuric acid 10 15 Negative 147 111 8 18,142 30 Cyanuric acid 10 15 Negative 128 85** 10 44,055 35 Glyphosate	N-acetvl AMPA	5.5	7.5	Negative	152	63**	25	18.142	45
N-acety glufosinate 5.5 8 Negative 222 134** 20 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 136* 22 18.142 47 N-acetyl-glufosinate 5.5 8 Negative 222 178 15 18.142 47 Ethephon 6 9.5 Negative 143 35 20 18.142 30 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Ethephon_IS 6 9.5 Negative 128 42* 16 44.055 34 Cyanuric acid 10 15 Negative 128 85** 10 44.055 35 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate_IS	N-acetyl AMPA	5.5	7.5	Negative	152	110*	13	18.142	45
N-acety-glutosinate 5.5 8 Negative 222 136* 22 18.142 47 N-acety-glutosinate 5.5 8 Negative 222 178 15 18.142 47 Ethephon 6 9.5 Negative 143 35 20 18.142 30 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 79** 18 18.142 30 Ethephon_IS 6 9.5 Negative 143 107* 8 18.142 30 Cyanurci acid 10 15 Negative 128 42* 16 44.055 34 Glyphosate 11 17 Negative 128 85** 10 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 <td>N-acetyl glufosinate</td> <td>5.5</td> <td>8</td> <td>Negative</td> <td>222</td> <td>134**</td> <td>20</td> <td>18.142</td> <td>47</td>	N-acetyl glufosinate	5.5	8	Negative	222	134**	20	18.142	47
N-acetyl-glufosinate 5.5 8 Negative 222 178 15 18.142 47 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 79** 18 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Cyanurc acid 10 15 Negative 128 42* 16 44.055 34 Cyanurc acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate_JS 11 17 Negative 168 81 16 44.055 35 Glyphosate_JS 11	N-acetyl-glufosinate	5.5	8	Negative	222	136*	22	18.142	47
International and another and a structure International and a structure International and a structure International and a structure Ethephon 6 9.5 Negative 143 35 20 18.142 30 Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Ethephon_IS 6 9.5 Negative 143 107* 8 18.142 30 Cyanuric acid 10 15 Negative 128 42* 16 44.055 34 Glyphosate 11 17 Negative 188 63* 22 44.055 35 Glyphosate 11 17 Negative 168 63* 23 44.055 35 Glyphosate 11 17 Negative 171 63* 23 44.055 40 N	N-acetyl-glufosinate	5.5	8	Negative	222	178	15	18.142	47
Ethephon 6 9.5 Negative 143 63 55 18.142 30 Ethephon 6 9.5 Negative 143 79** 18 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Ethephon_IS 6 9.5 Negative 143 107* 8 18.142 30 Cyanurc acid 10 15 Negative 128 42* 16 44.055 34 Cyanurc acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 35 Glyphosate_IS 11 <td< td=""><td>Ethephon</td><td>6</td><td>9.5</td><td>Negative</td><td>143</td><td>35</td><td>20</td><td>18.142</td><td>30</td></td<>	Ethephon	6	9.5	Negative	143	35	20	18.142	30
Ethephon 6 9.5 Negative 143 79** 18 18.142 30 Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Ethephon_JS 6 9.5 Negative 147 111 8 18.142 30 Cyanurc acid 10 15 Negative 128 42* 16 44.055 34 Cyanurc acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 171 63* 23 44.055 35 Glyphosate 11 17	Ethephon	6	9.5	Negative	143	63	55	18.142	30
Ethephon 6 9.5 Negative 143 107* 8 18.142 30 Ethephon_IS 6 9.5 Negative 147 111 8 18.142 30 Cyanuric acid 10 15 Negative 147 111 8 18.142 30 Cyanuric acid 10 15 Negative 128 42* 16 44.055 34 Cyanuric acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate_IS 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 40	Ethephon	6	9.5	Negative	143	79**	18	18.142	30
Ethephon_IS 6 9.5 Negative 147 111 8 18.142 30 Cyanuric acid 10 15 Negative 128 42* 16 44.055 34 Cyanuric acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 14** 16 44.055 40 N-acetyl-glyphosate	Ethephon	6	9.5	Negative	143	107*	8	18.142	30
Cyanuric acid 10 15 Negative 128 42* 16 44.055 34 Cyanuric acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 35 Glyphosate_IS 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40	Ethephon IS	6	9.5	Negative	147	111	8	18.142	30
Cyanuric acid 10 15 Negative 128 85** 10 44.055 34 Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 70	Cvanuric acid	10	15	Negative	128	42*	16	44.055	34
Glyphosate 11 17 Negative 168 63* 22 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate_IS 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 99 83* 26 44.055 70 <td>Cvanuric acid</td> <td>10</td> <td>15</td> <td>Negative</td> <td>128</td> <td>85**</td> <td>10</td> <td>44.055</td> <td>34</td>	Cvanuric acid	10	15	Negative	128	85**	10	44.055	34
Glyphosate 11 17 Negative 168 79** 40 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 35 Glyphosate_IS 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 Perchlorate 13 19 Negative 99 83* 26 44.055 70 Perchlorate_IS 13 19 Negative 101 85** 28 44.055 70	Glyphosate	11	17	Negative	168	63*	22	44.055	35
Glyphosate 11 17 Negative 168 81 16 44.055 35 Glyphosate 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 35 N-acetyl-glyphosate 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 N-acetyl-glyphosate 11 17 Negative 99 83* 26 44.055 70 Perchlorate 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055	Glyphosate	11	17	Negative	168	79**	40	44.055	35
Glyphosate 11 17 Negative 168 124 12 44.055 35 Glyphosate_IS 11 17 Negative 171 63* 23 44.055 35 N-acetyl-glyphosate 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 N-acetyl-glyphosate 11 17 Negative 99 83* 26 44.055 70 Perchlorate 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70 Perchlorate_IS 13 19 Negative 109 91 28 44.	Glyphosate	11	17	Negative	168	81	16	44 055	35
Glyphosate_IS 11 17 Negative 171 63* 23 44.055 35 N-acetyl-glyphosate 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 Perchlorate 13 19 Negative 99 83* 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70 Perchlorate_IS 13 19 Negative 109 91 28 44.055 70	Glyphosate	11	17	Negative	168	124	12	44 055	35
N-acetyl-glyphosate 11 17 Negative 210 124* 19 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 Perchlorate 13 19 Negative 99 83* 26 44.055 70 Perchlorate_IS 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70	Glyphosate IS	11	17	Negative	171	63*	23	44.055	35
N-acetyl-glyphosate 11 17 Negative 210 148*** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 148*** 16 44.055 40 N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 Perchlorate 13 19 Negative 99 83* 26 44.055 70 Perchlorate 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70 Perchlorate_IS 13 19 Negative 109 91 28 44.055 70	N-acetyl-glyphosate	11	17	Negative	210	124*	19	44 055	40
N-acetyl-glyphosate 11 17 Negative 210 150 13 44.055 40 Perchlorate 13 19 Negative 99 83* 26 44.055 70 Perchlorate 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 101 89* 28 44.055 70 Perchlorate_IS 13 19 Negative 109 91 28 44.055 70	N-acetyl-glyphosate	11	17	Negative	210	148**	16	44 055	40
Perchlorate 13 19 Negative 99 83* 26 44.055 70 Perchlorate 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70	N-acetyl-glyphosate	11	17	Negative	210	150	13	44 055	40
Perchlorate 13 19 Negative 101 85** 26 44.055 70 Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70	Perchlorate	13	19	Negative	99	83*	26	44.055	70
Perchlorate_IS 13 19 Negative 107 89* 28 44.055 70 Perchlorate_IS 13 19 Negative 109 91 28 44.055 70	Perchlorate	13	19	Negative	101	85**	26	44.055	70
Perchlorate IS 13 19 Negative 109 91 28 44.055 70	Perchlorate IS	13	19	Negative	107	89*	28	44.055	70
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Perchlorate_IS	13	19	Negative	109	91	28	44.055	70

Note: * = quantifier ion and ** = qualifier ion

Extraction of the samples was based on a modification of the QuPPe Method as illustrated for wheat flour in Figure 2.

Figure 2. Flow diagram of the Modified QuPPe Extraction Method

Sub-samples of homogenized leek (10 ± 0.01 g) or wheat flour (5 ± 0.01 g) were weighed into 50 mL polypropylene centrifuge tubes (P/N 339653). DI water (1.5 mL for leek, 10 mL for wheat flour) was added to adjust the water content to 10 mL (the wheat flour samples were allowed to soak for 10 min) followed by addition of methanol (10 mL). The hydrated samples were mixed vigorously for 10 min using a vortex mixer. The extract was placed in a freezer for 15 min and then centrifuged (8000 rpm, for 8 min at 5 °C). The supernatant was diluted 10-fold with DI water and an aliquot (5 mL) placed in a syringe (5 mL) and pushed through a Thermo Scientific[™] Dionex[™] OnGuard[™] II RP cartridge (P/N 057083) coupled to a Thermo Scientific[™] Titan3[™] CA Membrane Syringe Filter (0.2 µm, P/N 42213-CA) connected in series. The Dionex OnGuard II RP cartridge was preconditioned by flushing with 5 mL methanol followed by 10 mL DI water. The first 3 mL of filtrate were discarded, and 1.5 mL collected in a plastic vial (P/N 079812) for IC-MS/MS determination. Plasticware was used throughout to avoid adsorption of the analytes onto glass surfaces.

Matrix-matched standards (MMS) were prepared by spiking the diluted and cleaned-up extract with native standards and ILIS, while procedural standards (PS) were prepared by spiking samples with native standards and ILIS before extraction.

Results and discussion

Wheat flour was selected as a representative of dry commodities (group 5) and leek as a representative of green vegetables (group 1) in the SANTE guidelines.¹

Selectivity and sensitivity

A combination of chromatographic resolution and mass resolution provided satisfactory separation for the 15 pesticides including metabolites of interest in 18 min as shown in Figure 3. The total cycle time was 21 min.

Figure 4 shows the peak shape and sensitivity were satisfactory for most of the anionic polar pesticides at 0.25 ng/mL in wheat flour extract (equivalent to 10 ng/g in sample). Data for leek are shown in Figure 5.

Analyte identification was confirmed based on the presence of the transition ions (quantifier and qualifier) at the retention times corresponding to those of the respective pesticides. Qualifier/quantifier ratios were within $\pm 30\%$ (relative) of average of calibration standards from the same sequence. Ion ratios in wheat flour and leek matrix are shown in Tables 3 and 4.

Figure 3. TIC reconstructed ion chromatogram of SRM transitions for 15 analytes at 200 ng/g in wheat flour

Fosetyl (Rt 3.3	3 min)	Bialaphos (Rt 5.2	24 min)	Glufosinate (Rt 5	5.87 min)	AMPA (Rt 6.01 min)			
<i>m/z</i> 109→81	<i>m/z</i> 109→63	<i>m/z</i> 324→207	<i>m/z</i> 324→136	<i>m/z</i> 180→95	<i>m/z</i> 180→134	<i>m/z</i> 110→79	<i>m/z</i> 110→63		
		Contraction of Marcola A A A A A A A A A A A A A A A A A A A							
N-acetyl-glufos	sinate (Rt 6.02 min)	HEPA (Rt 6.02 mi	in)	N-acetyl-AMPA	(Rt 6.04 min)	Chlorate (Rt 6.12 min)			
<i>m/z</i> 222→136	<i>m/z</i> 222→134	<i>m/z</i> 125→79	<i>m/z</i> 125→95	<i>m/z</i> 152→110	<i>m/z</i> 152→63	<i>m/z</i> 83→67	<i>m/z</i> 85→69		
						The second biometry of			
MPPA (Rt 6.60	min)	Phosphonic acid	(Rt 6.85 min)	Ethephon (Rt 7.6	62 min)	Cyanuric acid (Rt 13.22 min)			
<i>m/z</i> 151→133	<i>m/z</i> 151→63	<i>m/z</i> 81→79	<i>m/z</i> 81→63	<i>m/z</i> 143→107	<i>m/z</i> 143→79	<i>m/z</i> 128→42	<i>m/z</i> 128→85		
Territor Territ				Testing of the second s					
N-acetyl-glypho	osate (Rt 13.63 min)	Glyphosate (Rt 13	3.87 min)	Perchlorate (Rt 1	17.83 min)				
<i>m/z</i> 210→150	<i>m/z</i> 210→124	<i>m/z</i> 168→63	<i>m/z</i> 168→79	<i>m/z</i> 99→83	<i>m/z</i> 101→85				
Non-Balance Left (Jak Agent) (Jak		Exercision of the second secon							

Figure 4. Response for quantification and qualifier product ions for individual anionic pesticides equivalent to 10 ng/g in wheat flour

Figure 5. Response for quantification and qualifier product ions for individual anionic pesticides equivalent to 10 ng/g in leek

Table 3. Ion ratios of analytes at 10 ng/g in wheat flour matrix

Wheat flour	Quantifier ion	Qualifier ion	lon ratios	Range
Fosetyl-Al	81	63	38.88	within ±30%
Bialaphos	207	136	39.42	within $\pm 30\%$
Glufosinate	95	134	75.93	within $\pm 30\%$
HEPA	79	95	36.36	within $\pm 30\%$
N-acetyl AMPA	110	63	54.86	within $\pm 30\%$
N-acetyl-glufosinate	136	134	45.63	within $\pm 30\%$
AMPA	79	63	88.35	within $\pm 30\%$
Chlorate	67	69	36.27	within $\pm 30\%$
MPPA	133	63	36.96	within $\pm 30\%$
Phosphonic acid	79	63	29.83	within $\pm 30\%$
Ethephon	107	79	46.86	within $\pm 30\%$
Cyanuric acid	42	85	73.96	within $\pm 30\%$
N-acetyl-glyphosate	150	124	69.24	within $\pm 30\%$
Glyphosate	63	79	100.73	within $\pm 30\%$
Perchlorate	83	85	31.77	within ±30%

Table 4. Ion ratios of analytes at 10 ng/g in leek matrix

Leek	Quantifier ion	Qualifier ion	lon ratios	Range
Fosetyl-Al	63	79	78.12	within ±30%
Bialaphos	207	136	54.68	within ±30%
Glufosinate	134	95	114.44	within ±30%
HEPA	79	95	28.85	within $\pm 30\%$
N-acetyl AMPA	110	63	47.38	within ±30%
N-acetyl-glufosinate	136	134	48.82	within ±30%
AMPA	79	63	71.27	within $\pm 30\%$
Chlorate	67	69	31.28	within ±30%
MPPA	133	63	42.33	within $\pm 30\%$
Phosphonic acid	79	63	32.82	within $\pm 30\%$
Ethephon	107	79	52.49	within ±30%
Cyanuric acid	42	85	69.39	within $\pm 30\%$
N-acetyl-glyphosate	124	148	84.24	within $\pm 30\%$
Glyphosate	63	79	68.85	within ±30%
Perchlorate	83	85	27.37	within ±30%

Calibration

Matrix-matched calibration curves were linear over the concentration range equivalent to 4–100 ng/g in wheat flour and leek matrices. Residuals (or back-calculated

concentrations) were compliant with SANTE guidelines.¹ The matrix-matched external calibration graphs for wheat are shown in Figure 6.

Figure 6. Matrix-matched calibration curves in wheat flour matrix

Recovery and precision

The optimized system provided excellent results for analytes in both matrices when using matrix-matched standards in combination with ILIS. Results for wheat flour are shown in Table 5. As has been widely reported for some compounds, the use of ILIS did substantially improve the recovery compared to matrix-matched calibration without ILIS as shown in Table 5. For example, the recovery for glyphosate improved from 40% to 111% and for perchlorate from 60% to 100%.

The use of ILIS is effective, but it is also costly and the appropriate labeled standards are not always readily available in some parts of the world. The precision of results for all analytes was excellent, with or without ILIS with RSDs of 0.9–9% and 1–12%, respectively, at 10 ng/g, an indication that the use of procedural standards could be an acceptable alternative.

Therefore, the use of procedural standards (prepared by spiking sub-samples with analytes over a range of known concentrations) was evaluated. In theory these samples will be subject to losses similar to samples and thus correct for recovery losses, and it is an approach permitted in the EU SANTE guidance document.¹

Using procedural standards without ILIS resulted in excellent recoveries for all analytes, in wheat, in the range 84% to 104% with associated RSDs in the range 0.9% to 7%. However, when procedural standards were applied to different individual samples the results were more variable, and not quantitative for all analytes, as shown in Table 6. Although the semi-quantitative results may be considered sufficient for screening, improved accuracy for quantitation will require the use of ILIS or standard addition. When applied to leek, the results were more consistent (Table 7) and the use of ILIS was not necessary, because of lower matrix effects in leek compared to wheat flour.

	Spiked 10 ng/g (n=5)								Spiked 50 ng/g (n=5)							
	MMS n	o ILIS	ммз	+ ILIS	PS no	o ILIS	PS +	ILIS	MMS	no ILIS	MMS	+ ILIS	PS n	o ILIS	PS + ILIS	
	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %
Fosetyl-Al	93	2.7	-	-	96	2.7	-	-	89	1.9	-	-	94.6	1.08	-	-
Bialphos	96	6.4	-	-	95	5.7	-	-	90	3.2	-	-	76	9.5	-	-
Glufosinate	85	12	92	8.6	87	12	92	8.6	76	4.5	94	3.0	95	6.0	111	4.8
AMPA	65	6.6	115	6.1	104	6.5	115	6.1	61	4.9	108	9.0	98	1.5	98	6.1
HEPA	86	2.4	-	-	96	2.6	-	-	80	0.7	-	-	79	2.5	-	-
N-acetyl AMPA	85	1.0	-	-	98	1.1	-	-	81	0.6	-	-	89	1.0	-	-
N-acetyl glufosinate	79	2.4	-	-	87	2.8	-	-	72	2.9	-	-	83	2.4	-	-
Chlorate	77	2.2	96	1.7	100	2.3	96	1.7	73	2.0	92	0.8	89	2.3	96	1.5
MPPA	71	1.0	96	1.4	95	1.1	96	1.4	63	2.5	94	1.9	101	2.3	101	2.0
Phosphonic acid	36	25*	-	-	84	14	-	-	69	3.4	-	-	85	3.5	-	-
Ethephon	79	1.4	97	2.1	100	1.4	97	2.1	74	0.9	92	0.3	99	0.4	99	2.0
Cyanauric acid	87	12	-	-	95	12	-	-	89	1.8	-	-	87	5.0	-	-
N-acetyl-glyphosate	60	2.9	-	-	100	3.0	-	-	53	1.7	-	-	98	1.2	-	-
Glyphosate	40	4.5	111	2.2	104	5.4	111	2.2	34	2.0	100	1.5	100	2.2	101	2.0
Perchlorate	66	4.2	100	0.9	90	5.2	100	0.9	63	3.0	96	0.7	101	0.6	100	0.3

Table 5. Summary of results for recovery and precision using different calibration approaches for wheat flour

Note: PS = procedural standards

* Poor precision to phosphonic acid contribution from blank

Table 6. Wheat flour data summary- procedural standards

Sample No. 7 used as		Spiked level (10 ng/g)													
used as calibration	PS Curve	Sample N	lo. 7 (n=5)	Sample N	lo. 4 (n=3)	Sample N	lo. 6 (n=3)	Sample N	lo. 9 (n=3)						
curve matrix		Rec (%)	RSD (%)	Rec (%)	RSD (%)	Rec (%)	RSD (%)	Rec (%)	RSD (%)						
AMPA	ISTD	108	6.5	114	7.6	86	6.5	111	4.1						
Chlorate	ISTD	98	1.7	84	2.0	87	2.4	77	0.8						
Ethephon	ISTD	97	2.2	103	3.7	100	7.6	103	1.5						
Glufosinate	ISTD	98	8.7	88	8.7	95	5.5	100	7.3						
Glyphosate	ISTD	101	2.4	90	4.1	93	9.9	99	7.3						
MPPA	ISTD	96	1.4	102	3.1	116	2.2	97	1.7						
Perchlorate	ISTD	86	1.0	95	1.1	88	4.0	77	2.0						
Bialaphos	No ILIS	95	5.7	67	0.3	58	4.5	68	2.0						
Fosetyl-Al	No ILIS	96	2.7	85	1.8	75	2.0	49	1.3						
HEPA	No ILIS	95	2.6	85	2.6	80	6.5	87	4.6						
N-acetyl AMPA	No ILIS	97	1.1	95	4.0	79	1.0	91	0.9						
N-acetyl-glufosinate	No ILIS	87	2.8	94	0.9	68	2.4	92	1.6						
N-acetyl-glyphosate	No ILIS	100	3.0	68	3.7	59	2.7	87	2.3						
Phosphonic acid	No ILIS	84	14	87	1.7	79	1.9	93	2.2						

Over-spiking/or standard addition is the only option without availability of ILIS

Table 7. Summary of results for recovery and precision using different calibration approaches for leek

	Spiked 10 ng/g (n=5)							Spiked 50 ng/g (n=5)								
	MMS n	o ILIS	MMS	+ ILIS	PS no	ILIS	PS +	ILIS	MMS	no ILIS	MMS	+ ILIS	PS n	o ILIS	PS + ILIS	
	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %	Rec. %	RSD %
Fosetyl-Al	97	0.8	-	-	93	0.8	-	-	96	1.1	-	-	95	1.1	-	-
Bialphos	122	8.3	-	-	82	9.0	-	-	98	8.2	-	-	76	9.5	-	-
Glufosinate	90	2.9	94	7.1	96	7.5	119	8.0	92	2.9	85	5.1	95	6.0	111	4.8
AMPA	100	7.6	111	8.4	96	8.4	94	9.6	95	2.5	104	6.1	98	1.5	98	6.1
HEPA	99	7.5	-	-	87	6.1	-	-	100	2.4	-	-	79	2.5	-	-
N-acetyl AMPA	91	1.0	-	-	100	0.7	-	-	101	1.0	-	-	89	1.0	-	-
N-acetyl glufosinate	102	1.9	-	-	88	1.6	-	-	105	2.3	-	-	83	2.4	-	-
Chlorate	93	2.6	86	2.1	86	2.6	105	1.8	97	2.2	90	1.5	89	2.3	96	1.5
MPPA	94	1.9	89	1.7	96	1.9	92	1.8	100	2.3	95	2.0	101	2.3	101	2.0
Phosphonic acid*	64	12	-	-	85	8.1	-	-	87	3.6	-	-	85	3.5	-	-
Ethephon	97	2.5	104	2.7	97	2.7	102	2.8	96	0.4	98	1.9	99	0.4	99	2.0
Cyanauric acid	118	4.6	-	-	104	4.4	-	-	100	4.9	-	-	87	5.0	-	-
N-acetyl-glyphosate	93	0.9	-	-	103	0.8	-	-	96	1.2	-	-	98	1.2	-	-
Glyphosate	91	1.6	90	1.5	95	1.6	94	1.6	95	2.2	94	2.0	100	2.2	101	2.0
Perchlorate	93	0.6	89	0.4	95	0.6	98	0.4	96	0.6	90	0.3	101	0.6	100	0.3

*Recovery and precision are less accurate for phosphonic acid because of an incurred residue in the blank.

Robustness of IC-MS/MS system

The inclusion of the Dionex OnGuard II RP cartridge clean-up substantially improved the robustness of the workflow compared to analysis of samples with no clean-up. After 500 injections of matrix extracts, the retention times and peak shapes remained stable as shown in Figure 7 for fosetyl-AI (first peak) and perchlorate (last peak). From the first to the 500th injection there was no change in the retention time for fosetyl and 0.14 min difference for perchlorate. Also, the column and the mass spectrometer source remained clean with no required maintenance, while pressure in the suppressor was consistent.

Conclusion

The new integrated workflow based on the modified QuPPe method and IC-MS/MS supports simultaneous multi-residue analysis for anionic pesticides. All of the chromatographic and mass spectrometer parameters have been carefully optimized so the workflow provides excellent sensitivity to meet EU Maximum Residue Levels and quantitative analysis of parent and metabolite pesticides to meet the EU residue definitions. The

excellent precision and accuracy provides results compliant with the EU SANTE guidelines for method validation and ongoing quality control for pesticides. The excellent precision is due to the inert peek flowpath in the IC system, which negates contamination of the columns or chelation of analytes from metal ions that can leach from stainless steel LC systems. For the analysis of wheat flour, the use of ILIS provides improved accuracy and precision compared to the use of matrix-matched standards but does not correct for any deficiencies in the extraction of incurred residues. In cases where ILIS are not available, the standard addition approach provides accurate quantitation of the residue concentrations in extracts, while the procedural standard approach may be acceptable for screening. Overall, this workflow, which is compliant with EU SANTE guidelines, will supply a sensitive and reliable method for simultaneous multiresidue analysis of polar anionic pesticides in complex samples. Extensive testing over several months and more than 1500 sample injections has demonstrated the Anionic Pesticides Explorer to be reliable, reproducible, and robust and hence suitable for routine analysis.

Fosetyl-Al

Figure 7. Peak shapes comparison of fosetyl-Al and perchlorate after 500 injections of matrix

thermo scientific

References

- SANTE/11813/2017, Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed, https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_ wrkdoc_2017-11813.pdf (accessed September 4, 2019).
- Anastassiades, M.; Kolberg, D. I.; Benkenstein, A.; Eichhorn, E.; Zechmann, S.; Mack, D.; Wildgrube, C.; Sigalov, I.; Dork, D.; Barth, A. Quick method for the analysis of numerous highly polar pesticides in foods of plant origin via LC-MS/MS involving simultaneous extraction with methanol (QuPPe-method), version 9.3; http://www. eurl-pesticides.eu/userfiles/file/EurlSRM/meth_QuPPe-PO_EurlSRM.pdf (accessed September 4, 2019).
- Vass, A.; Robles-Molina, J.; Perez-Ortega, P.; Gilbert-Lopez, B.; Dernovics, M.; Molina-Diaz, A.; Garcia-Reyes, J.F. *Anal. Bioanal. Chem.* **2016**, *408*, 4857–4869. doi:10.1007/s00216-016-9589-6

- Katerina Boušová, Cees Bruggink, Michal Godula. Fast Routine Analysis of Polar Pesticides in Foods by Suppressed Ion Chromatography and Mass Spectrometry. Br. J. Anal. Chem, 2017, 4(17): 66–78.
- Thermo Fisher Scientific. Product Manual for Eluent Generator Cartridges. Doc. No 065018, Revision 05, Sunnyvale, CA, 2014.
- Thermo Fisher Scientific. Product Manual for Continuously Regenerated Trap Columns (CR-TC). Doc. No 031910, Sunnyvale, CA, 2010.
- 7. Thermo Fisher Scientific. Product Manual for Dionex Suppressor. Doc No. 031956 Revision 13, 2018.
- Thermo Scientific Technical Note 72611: Configuring and optimizing an IC-MS system using a compact IC and a single quadrupole mass spectrometer. Sunnyvale, CA, 2018. https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-72611-ic-mssystem-configuring-optimizing-tn72611-en.pdf

Find out more at **thermofisher.com**

©2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. QPP-Lab is a trademark of Lab Instruments S.r.I. Air-Tite and Norm-Ject are trademarks of Air-Tite Products Co. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. **AN73204-EN 1019S**

