Thermo Fisher

Sample preparation

Determination of persistent organic pollutants in fish tissues by EXTREVA ASE system and GC-MS/MS

Authors

Giacomo Mosconi³, Fabrizio Galbiati¹, Tiziana Ladisa², Luca Chiesa³, Sara Panseri³; ¹Thermo Fisher Scientific, Sunnyvale, CA, USA; ²Thermo Fisher Scientific, Segrate, Italy; ³University of Milan, Faculty of Veterinary Medicine, Milan, Italy

Keywords

Pressurized fluid extraction, polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers, polycyclic aromatic hydrocarbons, fish tissue, in-line clean up, TSQ 8000 triple quadrupole GC-MS/MS, Xcalibur software, TraceFinder software, POPs

Goal

To demonstrate a method for the determination of persistent organic pollutants (POPs) in fish tissues using a Thermo Scientific[™] EXTREVA[™] ASE[™] Accelerated Solvent Extractor: a fully automated parallel extraction and evaporation system

Introduction

Polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) belong to a broad family of synthetic organic compounds known as halogenated hydrocarbons. These compounds, together with polycyclic aromatic hydrocarbons (PAHs), are part of the larger persistent organic pollutants (POPs) family. PCBs were manufactured in the United States from 1929 until their manufacture was banned in 1979. They have a range of toxicity and vary in consistency from thin, light-colored liquids to yellow or black waxy solids. Due to their non-flammability, chemical stability, high boiling point, and electrical insulating properties, PCBs were used in hundreds of industrial and commercial applications, such as coatings for electrical, heat transfer, and hydraulic equipment; plasticizers in paints, plastics, and rubber products; and in pigments, dyes, and carbonless copy paper. OCPs were widely used as insecticides throughout the 1950s and 1960s until their use was banned in western countries in the 1970s. PBDEs have recently emerged as a major environmental pollutant and have been used as flame retardants in consumer goods such as electrical equipment, construction materials, coatings, textiles, and polyurethane foam (furniture

thermo scientific

padding). Several nations have recently banned PBDEs and introduced legislation that bans the sale of certain products containing PBDEs. Furthermore, based on the recommendation of the European Food Safety Authority (EFSA), the European Commission has asked member states to monitor the presence of PBDEs in food over the next two years. PAHs are derived from both anthropogenic activities (incinerators, industrial processes, motor vehicles, combustion of wood and fossil fuels, oil spills, etc.) and natural sources (incomplete combustion of organic matter and pyrolysis). Many studies have reported the mutagenic and carcinogenic effects of PAHs and chronic metabolite exposure as described by the EFSA. Indeed, the International Agency for Research on Cancer has classified several high molecular weight PAHs as recognized (Class 1), probable (Class 2A), or possible (Class 2B) human carcinogens.¹ The ability of halogenated hydrocarbons and PAHs to bioaccumulate in fatty tissues and biomagnify up the food chain, in combination with their resistance to degradation and their toxicity, make this class of chemicals a serious threat to environmental and human health.

Techniques such as Soxhlet (U.S. EPA Method 3540), sonication (U.S. EPA Method 3550), and microwave extraction (U.S. EPA Method 3546) are currently used for the extraction of POPs from food and environmental samples prior to their analytical determination. Those techniques are, however, very labor intensive, suffer from high solvent consumption, and interfering compounds may be extracted along with the desired analytes. These unwanted co-extractables can cause buildup of nonvolatile materials on the GC injection port and the analytical column, resulting in poor analytical results and high instrument maintenance costs. Gel permeation chromatography (GPC) is often used as a post extraction clean-up for fish and meat tissues prior to determination of POPs like PCBs, OCPs, PAHs, and PBDEs. However, the main disadvantage of the GPC systems is incomplete lipid removal. The remaining lipids must be removed in a second clean-up procedure, e.g., on an additional silica column or by a second GPC step. Additionally, challenges remain with high lipid content in which lipophilic pesticides may remain in the fatty layer even after the extraction.

Accelerated solvent extraction (ASE) was developed to meet the requirements for reducing solvent usage in the preparation of solid samples.² With ASE, extractions can be completed in very short periods of time with minimal amounts of solvent compared to conventional sample extraction techniques. The EXTREVA ASE system (Figure 1) is based on many proprietary technologies including gas-assisted solvent delivery³ and parallel accelerated solvent extraction.⁴ This fully automated system combines the extraction and evaporation capabilities in one instrument, and it can be conveniently used for extracting and concentrating/ evaporating extracts from up to 16 solid and semi-solid samples.

Figure 1. EXTREVA ASE Accelerated Solvent Extractor

The method reported here is applicable for the determination of 29 halogenated hydrocarbons (6 PCBs, 16 OCPs, and 7 PBDEs) and four PAHs in fish tissues. The concentration ranges are 1–50 ng/g for all tested compounds. This also demonstrates an in-line clean up on an EXTREVA ASE system.

Experimental

Sample collection

A total of 30 Mediterranean shad (*Alosa agone*) were selected for this study. All the samples were purchased at a fish market in Milan, Italy. Each sample was stored at -22°C until analysis.

Equipment and consumables

- EXTREVA ASE accelerated solvent extractor (P/N 22184-60101)
- Thermo Scientific[™] TRACE[™] 1310 Gas Chromatography System
- Thermo Scientific[™] TSQ[™] 8000 Triple Quadrupole Mass Spectrometer
- Thermo Scientific[™] Dionex[™] Cellulose Filter (P/N 056780)
- Concentration flask assembly 100 mL (P/N 22184-62235)
- 1.5 mL short thread vial DN9, 32 × 11.6 mm, clear, label (VWR International P/N 548-8012)
- 9 mm PP cap red hole red rubber/PTFE (VWR International P/N 548-3297)
- Fused-silica GC capillary column (RXI-XLB 30 m × 0.25 mm × 0.25 µm Restek[™] P/N 13723)
- Topaz liner, 2 mm baffled PTV, 2.75 × 120 mm for Thermo Scientific GCs (Restek P/N 23438)

Solvents and chemicals

- Hexane (Sigma-Aldrich® P/N 139386)
- Acetone (Sigma-Aldrich P/N 650501)
- PCB calibration mix (AccuStandard® P/N AE-00059-H-2X)
- PBDE calibration mix (AccuStandard P/N BDE-CAE-1)
- OCP calibration mix (Restek P/N 32094)
- PAH calibration mix (Restek P/N 32469)
- Thermo Scientific[™] Dionex[™] ASE[™] Prep Diatomaceous Earth (DE) Dispersant, 1 kg (P/N 062819)
- Supel[™] QuE Z-Sep sorbent (Sigma-Aldrich P/N 55418-U)
- Internal standard 1: PCB 209 (AccuStandard P/N C-209S-TP)
- Internal standard 2: FBDE (AccuStandard P/N FBDE-5002S-0.5X)

Extraction, concentration, and measurement

The PCBs, PBDEs, OCPs, and PAHs standards were diluted with hexane to produce a 10 μ g/mL stock solution. Working solutions were prepared by diluting the stock solution in hexane and then storing at -40°C. Calibration standards with concentrations of 0.1 and 1.0 μ g/mL were prepared by diluting the stock solution. The internal standard solution of PCB209 and FBDE had a concentration of 1 μ g/mL. Thirty microliters were added to each calibration standard.

A cellulose filter was placed on top of a 22 mL extraction cell body and the end cap was hand tightened. Five hundred milligrams of Supel QuE Z-Sep sorbent were added into the extraction cell, followed by another cellulose filter. A representative portion of Mediterranean shad (300 g) was minced and freeze-dried. An aliquot (0.75 g) corresponding to 3 g of wet sample was homogenized in a beaker with 5 g of diatomaceous earth (Dionex ASE Prep DE). The resulting mixture was poured carefully into the extraction cell and spiked with 20 µL of hexane solution containing the two internal standards. Any empty volume was filled with diatomaceous earth while lightly tapping the extraction cell. After placing another cellulose filter on top of the cell body, the second end cap was hand tightened. The extraction cell schematic is depicted in Figure 2. The Dionex ASE Prep DE dispersant plays a key role in preventing sample compaction during the compression phase and in ensuring efficient solvent contact with the sample.

Figure 2. Extraction cell schematic

The instrument was programmed according to the conditions reported in Table 1. Before proceeding to the extraction of the samples, the system was rinsed with 10 mL of hexane. Hexane was also used during evaporation as a rinse solvent and 1.6 mL were added during the concentration phase. After concentration to a final volume of 0.5 mL, the samples were analyzed by GC-MS. The GC-MS conditions are summarized in Table 2.

Table 1. Extraction and evaporation conditions for the EXTREVA ASE system

Extraction	
Cell type	Stainless steel
Cell size	22 mL
Oven temperature	80°C
Purge time	45 s
Nitrogen flow (gas assisted extraction)	10 mL/min per channel
Cell fill volume	70%
Solvent flow rate	0.5 mL/min
Extraction solvent	Hexane-acetone 4:1
Pre-run rinse	10 mL, Hexane
Extraction volume	26 mL (estimated) (22 mL cell, flow rate 0.5 mL/min)
Extraction time (four samples)	20–25 min (22 mL cell, flow rate 0.5 mL/min)
Concentration	
Mode	Fixed volume
Collection flask	2 mL vial assembly
Final volume	0.5 mL
Rinse solvent	Hexane, 1.6 mL
Evaporation temperature	40°C
Nitrogen flow rate	100 mL/min per channel
Vacuum	6 psi (~315 torr/~420 mbar)
Evaporation time (four samples)	75–80 min

Table 2. GC-MS conditions

GC and injector conditions			
Split/splitless injector			
Injector temperature	250°C		
Liner	Topaz, 2 mm baffled PTV, 2.75 × 120 mm		
Injected volume	1 μL		
Splitless time	0.5 min		
Split flow	10 mL/min		
Surge pressure	5 kPa		
GC program and column			
Column	RXI-XLB 30 m \times 0.25 mm \times 0.25 μm		
Carrier gas	Helium, 99.999% purity		
Flow rate	1.0 mL/min, constant		
Initial temperature	80°C (3 min)		
	10°C/min to 170°C		
	3°C/min to 240°C		
	10°C/min to 310°C		
Final temperature	310°C (5 min)		
Mass spectrometer paramete	ers		
Source temperature	250°C		
Ionization	El		
Electron energy	70 eV		
Emission current	50 μΑ		
Q2 gas pressure (Argon)	1.5 mTorr		
Collision energy	10 to 30 eV		
Q1 peak width FWHM	0.7 Da		
Q3 peak width FWHM	0.7 Da		

The monitored selected reaction monitoring (SRM) transitions for PCBs, PBDEs, PAHs, and OCs are given in Tables 3–6.

Table 3. SRM transitions for PCBs

PCB #	Retention time (min)	Nominal mass	Exact mass	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (eV)
28	21.00	258	255.9613	256	186*	20
				258	186	25
50	00.44	292	294.9194	292	222*	25
52	22.41			292	257	10
	27.09	326	325.8804	324	254*	25
101				326	256	25
				328	256	25
138	31.93	361	359.8415	360	290*	25
				360	325	10
153	33.49	361	359.8415	360	290*	20
				360	325	30
180	37.07	395	393.8025	394	324*	25
				394	359	10
				396	324	25

*Quantifier ion

Table 4. SRM transitions for PBDEs

PBDE #	Retention time (min)	Nominal mass	Exact mass	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (eV)
28	30.68	407	405.8027	246	139*	10
				248	139	10
				408	248	10
		407	405.8027	246	139*	30
33	31.07			248	139	30
				406	246	10
		486	485.7111	326	217*	30
47	37.41			328	219	30
				484	326	30
	40.21	565	563.6216	410	297*	30
99				406	294	30
				564	404	20
	40.93	565	563.6216	410	297*	30
100				406	297	30
				564	404	10
150	42.45	644	643.5301	484	377*	25
100				642	482	10
154		644	643.5301	484	324*	30
	43.41			486	326	30
				644	484	20

*Quantifier ion

Table 5. SRM transitions for OCPs

Compound name	Retention time (min)	Nominal mass	Exact mass	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (eV)
а-НСН	16.92			181	145*	10
		297	295.8772	181	146	10
				219	183	10
				284	249*	20
Hexachlorobenzene	17.20	285	283.8102	286	214	30
				286	251	20
		297	295.8772	181	145*	10
β-ΗCΗ	18.36			183	148	10
				219	183	10
			295.8772	181	145*	10
Lindane (y-HCH)	20.01	297		183	145	10
				219	183	10
				272	237*	10
Heptachlor	21.12	373	371.8181	274	237	10
				274	239	10
				261	191*	30
Aldrin	22.52	365	363.8728	263	193	30
				265	193	30
Heptachlor epoxide	25.17	389		353	263*	10
			387.8130	353	282	10
				355	265	10
	27.03	410	409.7919	373	264	20
trans-Chlordane				373	266*	20
				375	266	20
Endosulfan I	27.26	407	405.8139	373	266*	20
				375	266	20
				377	268	20
	28.74	318	317.9351	246	176*	30
pp'-DDE				248	176	30
				328	248	20
	29.95	381	379.8677	245	173	30
Endrin				263	193*	30
				281	245	10
	01.70	107		195	159*	10
Endosulfan II	31.73	407	405.8139	241	206	10
	0/ 70			235	165*	20
pp'-DDD	31.76	320	319.9507	237	165	20
op'-DDT		354		235	165*	20
	30.87		353.9117	237	165	20
		354	353.9117	235	165*	20
pp'-DDT	33.47			237	165	20
				272	237*	10
Endosulfan sulfate	34.14	423	421.8088	274	237	10
				274	239	10

*Quantifier ion

Table 6. SRM transitions for PAHs

Compound name	Retention time (min)	Nominal mass	Exact mass	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	Collision energy (eV)
Chrysene	36.74	228	228.0939	226	224*	30
				228	202	20
				228	226	20
Benz(a)anthracene	36.96	228	228.0939	226	223	30
				226	224*	30
				228	202	20
Benzo(b) fluoranthene	41.33	252	252.0939	250	224	30
				250	248	30
				252	250*	30
Benzo(a)pyrene	42.29	252	252.0939	252	226	30
				252	250*	30
				252	227	20

*Quantifier ion

Results and discussion

Compared to the application note using the Thermo Scientific[™] Dionex[™] ASE 350 Accelerated Solvent Extractor on tuna samples from the same research group, two key improvements were introduced: the freeze drying of the samples and the replacement of the silica gel with Supel QuE Z-Sep sorbent for the in-line clean-up. Freeze drying allows the removal of up to 99% of the water content of the fish tissue samples, therefore avoiding water co-extraction and the need of manual drying with sodium sulphate/moisture absorbing polymer (MAP, P/N 083475) prior to concentration and GC-MS analysis. Supel QuE Z-Sep is a Zirconium-based sorbent recommended for the analysis of hydrophobic analytes in fatty matrices. It increases the robustness of LC-MS and GC-MS methods by effectively removing more fat and pigments than traditional C18 and PSA phase sorbents. To the best of our knowledge, this is the first example of pressurized fluid extraction with in-line clean-up by using this type of sorbent.

The described method was optimized for the multi-residue analysis of 33 POPs. The optimization of the MS/MS method consisted of:

- Acquisition of respective MS spectra in full-scan mode (*m/z* 100–1,000 mass range)
- 2. Selection of precursor ions
- Product ion scans at different collision energies (10, 20, and 30 eV)
- 4. Final tuning of the collision energy in selected reaction monitoring mode.

For each compound, two MS/MS transitions were chosen to fulfill the generally applied identification criteria: according to SANTE 2021 (guidance document on analytical quality control and method validation procedures for pesticides residues

analysis in food and feed), one precursor ion with two product ions, or two precursor ions with one product ion should be available for unbiased identification of the target analyte. An overview of the quantitative and confirmation MS/MS transitions and the collision energies selected for each compound in El mode is given in Tables 3 to 6. In general, MS/MS allows for minimal matrix component interferences, and at the same time, due to the possibility of selecting suitable precursor and product ions, enables identification and quantification of the above-mentioned contaminants even at (ultra) trace concentrations. Notwithstanding that a highly selective triple quadrupole mass spectrometer is used, because GC-MS instruments are generally rather intolerant of non-volatile matrix impurities, the choice of an appropriate sample preparation strategy is also important to avoid poor ionization, background noise, and contamination of the GC-MS system. All results obtained confirm the efficacy of the present method for the determination of multiresidue pollutants in fish tissues. The method showed a good linearity with coefficients of determination equal to or higher than 0.99 for all the compounds investigated, as well as good repeatability, confirming the present method as useful to monitor compounds belonging to different chemical classes (Table 7). Recovery rates and relative standard deviation (RSD) were calculated on six replicates at final concentration of 10 ng/g. Calibration standards were spiked on the real matrix sample. The recoveries ranged from 93 to 100% for PCBs, from 93 to 104% for PBDEs, from 84 to 103% for OCs. and from 99 to 109% for PAHs. The RSDs ranged from 4 to 19%. The one-step accelerated solvent extraction method using Z-Sep as fat retainer is both rapid and cost-effective and minimizes waste generation compared to the classic methods. The time required in the laboratory is reduced 50% by combining the extraction and the two clean-up steps (i.e., GPC and SPE) in one single accelerated solvent extraction step, thus doubling the number of samples that can be analyzed per day.

Table 7. Recoveries rates, RSD, LOD, LOQ, and coefficient of determination (r²)

Compound	LOD ng/g	LOQ ng/g	Recovery (%)	RSD (%)	Coefficient of determination (r ²)		
Polychlorobiphenyls (PCBs)							
PCB 28	0.5	1	93	13	0.9981		
PCB 52	0.5	1	90	13	0.9993		
PCB 101	0.5	1	93	19	0.9937		
PCB 138	0.5	1	93	13	0.9991		
PCB 153	0.5	1	100	19	0.9979		
PCB 180	0.5	1	96	14	0.9994		
Polybrominated Diphen	yl Ethers (PBDEs)	1		1			
PBDE 28	0.5	1	102	9	0.9965		
PBDE 33	0.5	1	103	11	0.9938		
PBDE 47	0.5	1	104	8	0.9972		
PBDE 99	0.5	1	96	12	0.9910		
PBDE 100	0.5	1	93	5	0.9958		
PBDE 153	0.5	1	104	17	0.9946		
PBDE 154	0.5	1	93	12	0.9989		
Organochlorines (OCs)			1				
a-BHC	0.5	1	97	9	0.9975		
Hexachlorobenzene	0.5	1	104	12	0.9959		
β-ΒΗC	0.5	1	95	11	0.9981		
Lindane (γ-BHC)	0.5	1	90	14	0.9970		
Heptachlor	0.5	1	98	15	0.9939		
Aldrin	0.5	1	95	14	0.9949		
Heptachlor epoxide	0.5	1	90	19	0.9939		
trans-Chlordane	0.5	1	91	18	0.9903		
Endosulfan I	0.5	1	91	19	0.9915		
pp'-DDE	0.5	1	101	19	0.9980		
Endrin	0.5	1	100	19	0.9983		
Endosulfan II	0.5	1	88	7	0.9981		
pp'-DDD	0.5	1	84	11	0.9992		
op'-DDT	0.5	1	97	9	0.9957		
Endosulfan sulfate	0.5	1	90	14	0.9984		
pp'-DDT	0.5	1	94	16	0.9901		
Polycyclic Aromatic Hydrocarbons (PAHs)							
Chrysene	0.5	1	99	8	0.9986		
Benz(a)anthracene	0.5	1	101	7	0.9979		
Benzo(b)fluoranthene	0.5	1	109	18	0.9927		
Benzo(a)pyrene	0.5	1	107	18	0.9924		

Representative calibration curves for PCB 138, PBDE 47, pp'-DDD and chrysene are reported in Figure 3.

Figure 3. Calibration curves for PCB 138, PBDE 47, pp'-DDD, and chrysene (1-50 ng/g)

PCBs were detected in all Mediterranean shad samples (Figure 4) and the concentrations ranged between 1.09 and 11.8 ng/g. Among PBDEs, PBDE 47 was detected in 100% of the samples. PBDE 99, 28, and 100 were detected in over 70% of the samples. PBDE 153, 33, and 154 were detected in less than 40% of the samples. The concentrations ranged from 1.05 to 5.72 ng/g (Figure 5). Even though the use of DDT was banned for agricultural uses in the early 70s, it was still detected in 70% of the samples. Moreover, the very persistent reductive dechlorination products of DDT, DDD, and DDE, were detected in all analyzed samples. Hexachlorobenzene and Endosulfan I were the two other more frequently detected OCPs, present in 87% and 70% of samples respectively. The remaining OCPs were detected in between 7 and 57% of the samples. The concentrations ranged from 1.03 to 14.81 ng/g (Figure 6). The most frequently detected PAH was benz(*a*)anthracene (83% of the cases), followed by chrysene (63%), benzo(b)fluoranthene, and benzo(*a*)pyrene (13% and 7% respectively). Fortunately, none of the PAHs was present at a concentration over the LOD.

Figure 4. Average PCBs concentration in samples of Mediterranean shad (n = 30)

Figure 5. Average PBDEs concentration in samples of Mediterranean shad (n = 30)

Figure 6. Average OCPs concentration in samples of Mediterranean shad (n = 30)

Summary

An analytical method was developed and applied to evaluate POP residues in fish samples (Mediterranean shad). The method proved to be simple and rapid (about 1.6 times faster analyte extraction compared to the ASE 350 system), requiring small sample sizes and minimizing solvent consumption (about 1.6 times less compared to ASE 350 system), due to use of gas assisted accelerated solvent extraction combined with an in-cell clean up and concentration step. Detection via MS/MS provides both quantitative information and confirmation of POP residues in fish samples, confirming that the one-step accelerated solvent extraction method is a valid faster alternative to classic extraction methods because the analytical quality is comparable.

Acknowledgments

Special thanks to Professor Luca Chiesa and Professor Sara Panseri for the fruitful collaboration and to Giacomo Mosconi for the method development on the fish samples.

References

- IARC. Overall Evaluations of Carcinogenicity: And Updating of IARC Monographs, Vol. 1 to 42. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Suppl 7; IARC: Lyon, France, 1987; Volume 7, pp. 1–440.
- 2. United States Environmental Protection Agency (U.S. EPA) Method 3545A: https://www.epa.gov/sites/default/files/2015-12/documents/3545a.pdf.
- Kannan Srinivasan and Rahmat Ullah, Method and Device to Extract Analyte from a sample with Gas Assistance (U.S. Patent No. US 9,440,166 B2) Sep 13, 2016.7.
- 4. Kannan Srinivasan and Rahmat Ullah, Apparatus for parallel accelerated solvent extraction (U.S. Patent No. US 11,123,655 B2) Sep 21, 2021.

Learn more at thermofisher.com/extreva

General Laboratory Equipment – Not For Diagnostic Procedures. © 2023 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. VWR International is a trademark of VWR International, LLC. Restek is a trademark of Restek Corporation. Supel and Sigma-Aldrich are trademarks of Merck KGaA. AccuStandard is a trademark of AccuStandard, Inc. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. **CN001959-EN 0423M**

thermo scientific