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INTRODUCTION

Nano-flow liquid chromatography-mass spectrometry (nLC-MS) is often utilized for

bottom-up proteomics of extremely limited samples, down to individual cells. This is

due to the large increase in ionization efficiency achieved at LC flow rates < 300

nL/min. Generating reproducible and timely results at ultra-low flow rates requires

state-of-the-art LC instrumentation and optimization of LC-MS parameters,

particularly with respect to the separation and electrospray ionization (ESI) interface.

Here we present 6 high-throughput nanoLC-MS methods for the bottom-up

proteomics label-free quantitation (LFQ) analysis of limited samples in order to

balance sample throughput and proteome depth. Several data acquisition strategies

were compared including data-dependent (DDA), wide-window (WW-DDA), and

data-independent (DIA) acquisition. Lastly, a modified trap-and-elute method was

applied to single-cell proteomics (SCP) profiling.

MATERIALS AND METHODS

Sample preparation

The Thermo Scientific™ Pierce™ HeLa Digest/PRTC Standard was prepared in

water (0.1% FA, v/v) comprising of 1 ng/μL HeLa digest with 0.5 fmol/μL PRTC.

Sample mass was varied by injecting volumes from 0.25 – 10 µL of HeLa digest onto

the column. Single-cell samples were prepared in a 384 well plate using a label-free,

one-pot workflow.1

Instrument configuration

Method optimization and single-cell measurements were performed on a Thermo

Scientific™ Vanquish™ Neo UHPLC system coupled to a Thermo Scientific™

Orbitrap Exploris™ 480 mass spectrometer equipped with a Thermo Scientific™

FAIMS Pro™ interface. Samples were injected onto a Thermo Scientific™

Acclaim™ PepMap™ 100 C18 50 µm I.D. column and separated at 100 nL/min

(Figure 1). Both direct injection and trap-and-elute workflows were explored for

balancing throughput and sensitivity (Table 1). For the trap-and-elute workflow, a

300 µm x 5 mm trap column was operated in backward flush mode. Mobile phase A

and weak wash liquid were water with 0.1% FA while mobile phase B and strong

wash liquid were 80% acetonitrile with 0.1% FA. The column was heated to 50 oC.

The column outlet was connected to a 10 um µm I.D. x 5 cm emitter (Fossillion

technology, LOTUS).

Figure 1.  nano-flow LC-MS configuration

Figure 1. Optimized fluidic configuration for separations at 100 nL/min.

Table 1. Six nanoLC-MS methods for sample-limited proteomics

Table 1. Method details for the analysis of 250 pg of HeLa digest analyzed using the six nanoLC-MS

methods operated at 100 nL/min. Sample throughput ranged from 24-72 SPD for direct injection, with

an increase to 100 SPD using trap-and-elute. Sample injection/loading required 5.4 min of cycle time

for DI and 1.4 min for D&E.

LFQ-DIA profiling of single-cells

To validate the 100 SPD trap-and-elute workflow for single-cell proteomics, the method

was applied to HeLa and K562 single-cell QC samples followed by individual HeLa

and K562 cells. QC results were compared across multiple sites and provided > 1,200

protein IDs , despite multiple labs, LC-MS systems, operators, columns, etc. (Figure

7A). Performance was then demonstrated on 10 individual HeLa cells where ~1,700

proteins were identified per cell (Figure 7B).

Figure 7. Single-cell profiling performance

Figure 7. Evaluation LFQ-DIA for single-cell QC samples (A) and individual cells (B). For single

cells, each raw file was searched individually.

CONCLUSIONS

We developed a high-sensitivity and high-throughput nano-LCMS platform that affords 

the analysis of 24-100 samples/day with industry leading protein coverage in both 

LFQ-DDA & LFQ-DIA modes. Using a 20 min (72 SPD) label-free direct injection 

method we were able to identify > 800 protein groups (DDA +SEQUEST+INFERYS), 

>1,800 protein groups (DDA+CHIMERYS), and >2,600 (DIA+SN17). Throughput was

further enhanced by utilizing a trap-and-elute workflow for 100 SPD, which provided

>2,200 protein groups (DIA+SN17). Lastly, ~1,700 proteins were identified in individual

HeLa cells using the 100 SPD method.
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Figure 2 shows chromatograms for 250 pg HeLa digest using two of the nanoLC-MS

methods operated at 100 nL/min: 72 samples/day (direct injection) and 100

samples/day (trap-and-elute). Fast sample loading, column washing, and

equilibration enable 55% and 69% mass spectrometer utilization, respectively.

Figure 2.  Example Chromatograms for 72 and 100 samples/day 

Figure 2. Total ion chromatograms and pressure traces for 250 pg HeLa digest using 72 (A)

and 100 (B) samples/day methods in the direct injection and trap-and-elute workflows,

respectively. Both methods were operated at a separation flow rate of 100 nL/min.

Data analysis

DDA and WW-DDA datasets were processed with Thermo Scientific™ Proteome

Discoverer™ 2.5 software using a 2-step SEQUEST™ HT search algorithm and

INFERYS™ rescoring node. DDA chimeric spectra were searched using the

CHIMERYS™ algorithm in Proteome Discover 3.0 while DIA files were submitted to

Spectronaut 17 (SN17) for peptide and protein ID and quantification. The false

discovery rates (FDR) were all set below 1% at both the peptide and the protein

levels.

Results

New benchmark in LFQ-DDA

Using LFQ-DDA in the direct injection workflow with a 2-step SEQUEST search +

INFERYS rescoring, a linear increase was observed in protein IDs from 250 pg to 5

ng HeLa digest (Figure 3), suggesting method suitability for sample-limited analysis

(e.g., SCP). We confidently ID ~1,500 protein groups from 250 pg HeLa digest

without match-between-runs, which to the authors knowledge, represent the most

comprehensive DDA data to date.2

Figure 3. LFQ-DDA Low Sample Input Evaluation

Figure 3. HeLa digest

samples from 0.25 - 5 ng

were analyzed in the

direct injection workflow

at 100 nL/min by varying

the injection volume (n =

3). Mass spectrometer

MS1 and MS2 resolution

were set to 120K and 6K,

respectively.
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Figure 4. Evaluation of WW-DDA acquisition window sizes from 2-12 m/z for 10 and 30-min

gradients (n = 3).

DDA Chimeric spectral deconvolution

CHIMERYS, an AI-driven algorithm

for chimeric spectral deconvolution,

was employed in order to explore the

effect of MS1 acquisition window

width on proteome depth for the 10-

min and 30-min gradient methods.

This WW-DDA strategy enabled the

identification of up to ~1,800 protein

groups from 250 pg HeLa digest

using the 20-min method while the

40-min method yielded 2,000 protein

group IDs (Figure 4). Results indicate

an optimal isolation window of 10-12

m/z for both method lengths

Figure 4. WW-DDA  window evaluation

LFQ-DIA performance

A systematic evaluation of the MS1 open window in DIA yielded as much as 3,000 protein

IDs from 250 pg HeLa digest using the 20 min method (Figure 5A), covering > 4 orders of

magnitude of the protein abundance dynamic range (Figure 5B).

Figure 5. Proteome coverage (A) and dynamic range (B) in the direct injection workflow using LFQ-

DIA when varying the MS1 isolation window. SN17 was used for data analysis (n = 3).

*100 samples/day using trap-and-elute workflow
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Figure 5. Proteome coverage in LFQ-DIA: Direct injection

Increasing sample throughput for LFQ-DIA profiling

To accelerate sample loading and eliminate the potential negative impact of impurities

and detergent on electrospray ionization, we employed a trap column operated in a

backward flush mode to maintain peak shape, successfully decreasing the method cycle

time to 14.4 min (100 samples/day) for a 10-min gradient at 100 nL/min (~70% MS

utilization, Figure 6). Method performance enabled identification of >2,200 protein groups

in 250 pg and >1,100 protein groups in a little as 60 pg.Samples/Day
Cycle Time 

(min)

Elution Window 

(min)

Sample Injection 

& Loading (min)*

MS utilization 

(%)
100 14.4 10 1.4 69%

72 20 11 5.4 55%

60 24 15 5.4 63%

48 30 21 5.4 70%

36 40 31 5.4 78%

24 60 51 5.4 85%

*
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Figure 6. Proteome coverage in LFQ-DIA: Trap-and-Elute

Figure 6. Proteome coverage in

LFQ-DIA using a trap-and-elute

workflow for increased sample

throughput (100 samples/day).

Mass was varied from 0.06 - 10 ng

by adjusting the injection volume

(n=3).
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