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Figure 5. Deep Neural Network 

Architecture

For training the DNN, we used a dataset comprising

281,064 isolation profiles recorded on many different

Thermo Scientific™ Orbitrap Exploris™ instruments

during production for ions with different mass-to-

charge ratios. We filtered some rare cases of

insufficient signal from this dataset. Then, we

augment this data set by shifting and mirroring the

profiles yielding a total of 706,244 isolation profiles.

The main reason for doing this is to make the DNN

robust against rarely occurring edge cases of strongly

shifted isolation profiles. We split the augmented data

set using a ratio of 75 / 25 into a training and a test

set. During training, we used an additional layer

adding random noise to the input data.

To find an initial guess for the parameters of

the piecewise model function, we use a neural

network which takes the normalized isolation

profile as an input, passes it through a series

of fully-connected layers, and finally outputs

the 5 parameters for our model function. The

model was trained using the Adam

optimization algorithm from the Keras library3,

employing the mean squared error between

the fit based on the output parameters (c, w, h,

l, r) and the input data as a loss function.

ABSTRACT

Quadrupole calibration maps a desired m/z-range of isolated ions to the voltages

provided by the control electronics. One method for calibration relies on collection

and analysis of isolation profiles generated by fixing the transmission range while

scanning the isolation center and detecting (with another mass analyzer, e.g., of

Thermo Scientific™ Orbitrap™ type) a single ion species. The analysis of an

isolation profile determines parameters, such as width and center, which inform the

construction of a calibration. Here, we present an isolation profile analysis algorithm1

that reliably models isolation profiles with minimal data collection and is robust to

measurement noise and profile artifacts. For production environments, the

algorithm’s ability to quantify and flag such artifacts provides an actionable measure

for manufacturing quality control.

INTRODUCTION

In common mass spectrometry applications, the user or method (e.g. data-

dependent acquisition) configures a quadrupole isolation of a specific m/z-range of

ions by setting an isolation center m/z and width. These settings must be mapped to

the voltages applied to the quadrupole to result in the desired isolation range. To find

this mapping, many isolation profiles are recorded during calibration. Recording this

data with many steps in the isolation center is time consuming (Figure 1).

Here, we present a new algorithm for analysis of isolation profiles1, which gives

precise estimates of the isolation center and width. This algorithm requires less input

data and thus allows for faster calibration than the prior algorithm (Figure 2). It

additionally enables the flagging of deviations from the model for quality control

purposes.

MATERIALS AND METHODS

As a model, we use a piecewise function that has Gaussian-shaped edges and a

constant plateau in the center (Figure 3):
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A non-linear least-squares fit (Figure 4) gives optimized model parameters for a

given isolation profile. From these parameters, the center 𝑐 +
𝑟
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and the width

𝑤 + 𝑙 + 𝑟 can be extracted to inform the calibration.

However, the non-linear fit2 can only find the global optimum if the initial parameters

are already reasonably close (Figure 7). To find them, a deep neural network has

been trained using the Keras library3 (Figure 5). For model training, many thousands

of isolation profiles recorded during production were used. To enhance the

robustness of the trained network, this data was augmented by applying shift and

mirror operations as well as applying additional noise (Figure 6).

The combination of the DNN to find appropriate initial parameters and the

consecutive non-linear least-squares fit shows superior performance compared to

the prior algorithm (Figure 8). Even with increased step size and, in turn, less sample

points during profile acquisition, it yields accurate results allowing us to reduce the

calibration time.

To evaluate the performance of the different

algorithms, we generated a dataset of

synthetic isolation profiles (n=10,000) with

known width and center mass. Both quantities

are most accurately estimated using the new

algorithm.

Figure 8.  Performance Comparison

CONCLUSIONS

Figure 4.  Least-squares Fit with Default 

Initial Parameters

In a first approach, we normalize the isolation

profile and then perform a non-linear least-squares

fit2 starting from default parameters. While this

works in most cases, the fitting process doesn’t

always find the global optimum in rare cases where

the default parameters are far from the global

optimum. See Figure 7.

Figure 3. Piecewise Model Function

As a heuristic model, we use a piecewise function

that has Gaussian-shaped edges and a constant

plateau in the center. The 5 parameters of this

functions are the height ℎ, the center of the plateau

𝑐, the width 𝑤 of the plateau, and the half-width at

half-maximum of the Gaussian edges 𝑙 and 𝑟. From

these parameters, we can estimate the width of the

isolation profile as 𝑤 + 𝑙 + 𝑟
and the center as 𝑐 + 𝑟/2 − 𝑙/2

RESULTS

Figure 1. Isolation Profile Analysis for 

Quadrupole Calibration

The calibration process to map from center and width

of an isolation window to voltages applied to the

quadrupole is carried out by recording and analyzing

many isolation profiles. Here, we show an improved

analysis algorithm.
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Novel DNN-powered quadrupole isolation profile analysis algorithm for improved speed, 

measurement robustness, and quality control
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Figure 6.  Data Augmentation
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Figure 2. Prior Algorithm

Previously, an edge-detection algorithm was used to

determine the center and width of isolation profiles as

shown in a). However, in rare cases the algorithm

failed due to disturbances in the isolation profiles as

shown in b).

Figure 7.  Corner Case to Demonstrate 

the Robustness of the Algorithm

a)

b)

In summary, the new algorithm robustly estimates the center and width of isolation

profiles, which is an important prerequisite for our calibration procedure. Because the

algorithm still reliably works with isolation profiles recorded with an increased step

size, quadrupole calibration time could be reduced from roughly 30 minutes to about

15 minutes.

Moreover, the residuals of the fitted model function can be analyzed to flag aberrations

(Figure 9). This can be an important tool for quality control and identification of

hardware defects.
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For the rare case of strongly shifted isolation

profiles, the default parameters are far from the

global optimum. In such cases, the non-linear least-

squares fit2 converges to a local minimum. Using

the DNN result as an initial guess improves the

situation and the algorithm reliably finds the global

optimum in many such corner cases.

Figure 9. Flagging Aberrant Isolation 

Profiles in Production

Using the residuals between fit (Deviation 2)

and data on, in this case, the left flank of the

profile, we can flag quadrupole of possibly

poor quality. On closer inspection (inset), the

isolation shapes of the quadrupole indeed

display an artifact on the left edge.


