

Thermo Fisher SCIENTIFIC

Introduction to UV-based Detection

Jan Pettersson Nordic HPLC & Chromeleon CDS Support Specialist Thermo Fisher Scientific

UV Vis Detectors

The ideal detector?

• Why do we get a signal?

Optics

- Lamps
- Flow cell
- Band and slit width
- Data collection rate and time constant
- Reference
- Stray light, refractive index effects & noise

Thermo Scientific™ Vanquish™ HPLC

UV Vis Detectors – The Ideal Detector?

• A workhorse for detection and quantification of organic compounds

UV Vis Detectors

The ideal detector?

Why do we get a signal?

Optics

- Lamps
- Flow cell
- Band and slit width
- Data collection rate and time constant
- Reference
- Stray light, refractive index effects & noise

Why Do We Get a Signal?

Very simplified:

- The light from the lamp excites the electrons in the sample to a higher state of energy.
- Different molecules absorbs light at different frequencies.
- The shorter the wavelength the higher the energy

Why Do We Get a Signal?

UV Chromophores

UV Spectra

Conjugation Effects

Solvent Effects – Why Water and ACN are Popular

Solvent (nm)	Minimum wavelength
Acetonitrile	190
Water	191
Cyclohexane	195
Hexane	201
Methanol	203
Ethanol	204
Ethoxyethane	215
Dichloromethane	220
Trichloromethane	237
Tetrachloromethane	257

Solvent Effects – Polarity

UV-Visible spectrum of acetone in water

UV-Visible spectrum of acetone in hexane

pH Effects

pH Effects

Temperature Effects

- Expansion of the solvent may change absorbance
- Temperature may affect equilibria
- Changes in refractive index with temperature can be significant
- Convection currents cause different temperatures to occur in different parts of the cell

UV Vis Detectors

The Ideal detector?

• Why do we get a signal?

Optics

- Lamps
- Flow cell
- · Band and slit width
- Data collection rate and time constant
- Reference
- Stray light, refractive index effects & noise

Operating Principle: Variable Wavelength Detector (VWD)

Forward optics design

- Only the selected wavelength passes the flow cell
- A part of the light beam is redirected to the reference diode

Light source → Dispersion device → Flow cell → Sample diode

Operating Principle: Wavelength Diode Array Detctor (DAD)

Reversed optics design

- Light beam passes the flow cell before being diffracted
 - No true reference signal can be obtained
- Any diode or bunch of diodes can be selected as a reference

Light source \rightarrow Flow cell \rightarrow Dispersion device \rightarrow Diode array

Uses of Diode Array Detectors

Peak purity measurement

Dynamic spectral acquisition and identification

Signal deconvolution/ Multiple wavelength acquisition

Operating Principle – 2nd Order Filter

 Light diffraction at a dispersion device results always in different orders of light segmentation

Operating Principle – 2nd Order Filter

 Light diffraction at a dispersion device results always in different orders of light segmentation

UV Vis Detectors

The ideal detector?

- Why do we get a signal?
- Optics
 - Lamps
 - Flow cell
 - · Band and slit width
 - Data collection rate and time constant
 - Reference
 - Stray light, refractive index effects & noise

Source / UV Lamp

Deuterium lamp for UV

Source / Vis Lamp

- Tungsten halogen lamp for the longer wavelengths
- Light from both sources can be mixed to generate a single broadband source

UV Vis Detectors

The Ideal detector?

- Why do we get a signal?
- Optics
 - Lamps
 - Flow cell
 - · Band and slit width
 - Data collection rate and time constant
 - Reference
 - Stray light, refractive index effects & noise

Flow Cell

- Response is proportional to the concentration of analyte in the flow cell
- Important to match the flow cell volume to the application

Flow Cell – Signal to Noise

Signal height

Light path should be as long as possible

Flow Cell – Signal to Noise

Signal height

Light path should be as long as possible

Flow Cell Volume

Flow cell volume should not exceed 10% of the peak volume

Smaller cell volume → less light is passing through the flow cell

Flow Cells – Thermo Scientific™ UltiMate™ 3000 HPLC System

Adapter block screw

LightPipe Flow Cells - Fused Silica

Fused silica cells

- Very narrow silica walls (0.05 mm)
- Total reflection at silica air interface

Vanquish Light Pipe Flow Cells – Fused Silica

Thermo Scientific™ Vanquish™ LightPipe™ Flow Cells

Binary UHPLC Gradient Performance

- Vanquish DAD, 2 µl standard flow cell
- DAD-3000RS, 2,5 µl semi-micro flow cell

min

Column: Thermo Scientific™ Hypersil GOLD™,

C18, $2.1 \times 100 \text{ mm}$, $1.9 \mu \text{m}$,

P/N 25002- 102130

System: Binary UltiMate 3000

Mixer vol.: 200 μL

Mobile phase: A - Water B - ACN

Flow rate: 0.7 mL/min Pressure: 630 bar (max)

Temperature: 35 °C Injection: 1 μL

Detection: DAD-3000RS, semi-micro or

analytical flow cell, wide slit (4 nm)

Vanquish DAD with standard flow cell,

4 nm slit

254 nm, 4 nm bandwidth, 20 Hz, 0.2 s

response time

Analytes: 1. Uracil

2. Acetanilide

3. – 10. Homologous Phenones

50 µg/mL each

VDAD: higher (by 30-50%) and narrower peaks (by 30-35%)

Flow Cells

- VWD
- 11µl 10mm standard analytical flow cell
- 2,5µl 5mm semi-micro flow cell
- 45nl 10mm capillary flow cell
- 3nl 10mm nano flow cell
- DAD
- 13µl 10mm standard analytical flow cell
- 5µl 7mm semi-analytical flow cell
- 2,5µl 5mm semi-micro flow cell
- Vanquish
- 2µI 10mm standard analytical LightPipe flow cell
- 13µI 60mm high sensitivity LightPipe flow cell

UV Vis Detectors

The ideal detector?

- Why do we get a signal?
- Optics
 - Lamps
 - Flow cell
 - Band and slit width
 - Data collection rate and time constant
 - Reference
 - Stray light, refractive index effects & noise

Operating Principle – Slit Width

- VWD detector
 - Bandwidth is defined by entrance slit
 - At 254nm the bandwidth is 6nm (254nm +/- 3nm)

Operating Principle – Slit Width

- UltiMate DAD RS modules offer two slit width positions
 - Narrow (default)
 - Wide
- Vanquish DAD offers four slit width positions
 - 1, 2, 4 and 8 nm

 UltiMate SD modules have a fixed slit ('wide' for modules with SN ≥ 8019060; up to that S/N 'narrow' slit was used)

Diode Array Detector

 Slit defines optical resolution and therefore minimal physically meaningful bandwidth

Diode Array Detector

Slit width	Baseline noise	Spectral resolution	Bandwidth	S/N ratio	Spectral resolution
\downarrow	↑	↑	↑	1	\downarrow
↑	\downarrow	\downarrow	\downarrow	\downarrow	↑

Effects of Slit Width

Slit width - 1nm

 $4 \times light > 0.5 \times noise$

Effects of Slit Width

Slit width - 16nm

 $4 \times light > 0.5 \times noise$

Bandwidth

- The light emerging from the exit slit will have a Gaussian distribution of wavelengths
- The 'Spectral bandwidth' is defined as the wavelength range at half height of the distribution
- Important to match the spectral bandwidth (SB) to the natural bandwidth (NB)

SBw/NBw ratio of 0.1 or less will yield measurement with accuracy of 99.5 % or better

Setting Bandwidth

Setting Bandwidth

4 x light = < 0.5 noise

Setting Bandwidth

Influence on Linearity – Bandwidth

Linearity of butylparaben

Influence on Linearity – Slit Width

Linearity of butylparaben

UV Vis Detectors

The ideal detector?

- Why do we get a signal?
- Optics
 - Lamps
 - Flow cell
 - · Band and slit width
 - Data collection rate and time constant
 - Reference
 - Stray light, refractive index effects & noise

Recommended Parameters: Data Acquisition

- Too few data points effect peak form, reproducibility and area precision
- A minimum of 20, ideally 30-40 data points/peak is required

Data Collection Rate

Time Constant

The rise time (response time) is closely related to the time constant:
 Rise time = 2,2 x Time constant

Sampling and Rise Time

- The same instrument, back pressure loop, eluent and sample. The area is the same – the peakshape is very different.
- 2,5 Hz 2s response time
- 10 Hz 0,5s response time

Data Collection Rate and Time Constant

 Noise is much more influenced by time constant than by data collection rate

Automated Settings

 The program wizard of Thermo Scientific[™] Chromeleon[™] 7.2 CDS has a dedicated step for setting the correct 'Data collection rate' and 'Time constant'

In initial experiments, we recommend to acquire data with RefWavelength set to Off.									
Data Collection	3D Field								
Specify the width of the narrowest expected peak at half height in your chromatogram:			Min. Wavelength:	190,0	()	[190,0800,0 nm]			
			Max. Wavelength:	0,008	(i)	[190,0800,0 nm]			
Peak Width:	0,3	[0,002min]	Bunchwidth:	1	(i)	[1400 nm]			
	✓ Use Recommended Values		All Channels						
Data Collection Rate:	2 v	[1200 Hz]	Slit Width:	Narrow		▼ ③			
	2 [Hz] recommend	ed							
Response Time:	5,000 🔻 🕠	[0,00020,000 s]							
	5,000 [s] recomme	ended							

UV Vis Detectors

The ideal detector?

- Why do we get a signal?
- Optics
 - Lamps
 - Flow cell
 - Band and slit width
 - Data collection rate and time constant
 - Reference
 - Stray light, refractive index effects & noise

Operating Principle – Reference on a DAD

- Light beam passes the flow cell before being diffracted No true reference signal can be obtained
- Any diode or bunch diodes can be selected as a reference

Operating Principle – Reference on a DAD

- A reference can compensate for
 - Fluctuations in lamp intensity
 - Changes in absorbance/refractive index during gradient analysis

Issues with Reference Wavelength

- Wavelength: 254 nm
- Both the UV and Vis lamps turned on
- Reference wavelength set to 600 nm (80 nm bandwidth)

Blue chromatogram: Without reference

Black chromatogram: With reference

Issues with Reference Wavelength

- First, always try to develop a method without a reference wavelength
- Do not use narrow bandwidth with high reference wavelengths
- If you experience intense noise in your UV detection try without the reference wavelength
- Sometimes the problems are caused by the Vis lamp
- If only the UV lamp is on, do not use high reference wavelength settings
- Always run the sample with and without reference during method development

UV Vis Detectors

The Ideal detector?

• Why do we get a signal?

Optics

- Lamps
- Flow cell
- Band and slit width
- Data collection rate & time constant
- Reference
- Stray light, refractive index effects & noise

Stray Light

- Stray light is radiation emerging from the monochromator of all wavelengths other than the bandwidth at the selected wavelength
- Arise from imperfections in the grating, optical surfaces, diffraction effects as well as wider bandwidth and slit width settings

$$A = \varepsilon lc$$

 $\varepsilon = \text{Molar absorption coefficient (dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$

I = Path length (cm)

c = Concentration (mol dm⁻³)

Stray Light

Refractive Index Effects

- Eluents have different refractive index (RI)
- The flow profile within the flow cell causes RI gradients

Noise: Definition

- Short term (Statistical) signal changes
- Defined in ASTM
- Defines LOD and detection accuracy

Noise

- Effects measurements on analytes with low absorbance
- Also affects high absorbance samples

Thank You for Your Attention! Any Questions?

