Targeted Screening of Fungal and Plant Metabolites in Wheat, Corn, and Animal Feed Using Automated Online Sample Preparation Coupled to Orbitrap LC-MS

Ebru Ates, Michal Godula, and Klaus Mittendorf Food Safety Response Center, Dreieich, Germany

1. Schematic of Method

1. Weigh 5 g of homogenized sample into a 50 mL bottle.

2. Introduction

Mycotoxins are secondary metabolites produced by fungal infection of agricultural crops in the field, during harvest, drying, or subsequent storage. Mycotoxins are very stable compounds that cannot be readily destroyed by heating or during food processing, although there can be reductions in levels during milling of grains, for example. Approximately 400 mycotoxins are known today, but only a few of them are regulated by legislation.^{1–3} Besides the detection of the mycotoxins, it is also important to analyze their biosynthetic precursors, degradation products, and related masked forms, which are indicative of fungal contamination of food and feed. On the other hand, plants themselves can produce toxins as secondary metabolites, such as pyrrolizidine or ergot alkaloids.

It is a big challenge to analyze all these toxins with a single method, as most of the compounds are not commercially available as analytical standards. The only approach that can be employed is to perform targeted screening using databases of accurate masses, aimed at searching in full scan spectra. High-resolution mass spectrometry has the capability of acquiring mass spectrometric data with very high resolving power, in case of Thermo Scientific[™] Orbitrap[™] mass analyzers typically >140,000 (FWHM) and with a mass accuracy of <3 ppm. This enables the separation of compounds with similar accurate masses and helps to distinguish the target compound from matrix interferences. This method is an extension of a previously validated method for the quantification of *fusarium* mycotoxins (DON, T2, HT2, FB₁, FB₂, and ZON) in corn, wheat, and animal feed.⁴ It can be applied, for targeted screening of 21 fungal and plant metabolites with automated online sample cleanup utilizing a Thermo Scientific[™] Transcend[™] system coupled to a Thermo Scientific[™] Exactive[™] high-resolution mass spectrometer. This method has been validated according to current legislation.5,6 Full scan data processing was performed using Thermo Scientific[™] ExactFinder[™]

software enabling targeted screening of toxins. The criteria for compound identification using ExactFinder software is based on detection of accurate mass at a resolving power of 100,000 (FWHM) at m/z 200 with a minimum of one fragment ion at the correct retention time with a mass deviation <5ppm and retention time tolerance of ±2.5% for compound confirmation.³ As this method is intended for screening, no further optimization of peak shapes was performed for the additional 16 compounds.

3. Scope

Extracted samples of corn, wheat, and animal feed can be injected directly into an automated online clean-up system coupled to a high-resolution mass spectrometer. This method also enables rapid targeted screening for possible fungal metabolites employing data analysis with ExactFinder software.

4. Principle

This method uses Thermo Scientific[™] TurboFlow[™] technology for online cleanup of the sample. Finely ground and homogenous sample (5 g) is extracted for 45 min with a mixture of water 0.1% formic acid (FA)/acetonitrile (ACN) (43:57). After filtration with a 0.2 µm nylon filter into an LC-vial, the sample is injected in the Transcend TLX-1 system, an online chromatography–reversed phase chromatography clean-up system coupled with highresolution mass spectrometric (HRMS) detection. Data analysis is performed with ExactFinder software using a fungal metabolite database in positive and negative ionization mode. Criteria for compound confirmation and identification are defined.

5. Reagent List

- 5.1 Acetonitrile Optima, for LC-MS
- 5.2 Water Optima grade, for LC-MS
- 5.3 Methanol Optima grade, for LC-MS
- 5.4 Formic acid (FA), LC-MS grade
- 5.5 Thermo Scientific[™] Pierce[™] LTQ[™] ESI positive ion calibration solution
- 5.6 Pierce LTQ ESI negative ion calibration solution

6. Standards

6.14 Monocrotaline

6.1	Aflatoxin B ₁ (AFB ₁)	Sigma-Aldrich®
6.2	Aflatoxin B_2 (AFB ₂)	Sigma-Aldrich
6.3	Aflatoxin G_1 (AFG ₁)	Sigma-Aldrich
6.4	Aflatoxin G_2 (AFG ₂)	Sigma-Aldrich
6.5	Apicidin	Sigma-Aldrich
6.6	Deoxynivalenol (DON)	Sigma-Aldrich
6.7	Ergocornine	Römer Labs®
6.8	Fumagillin	Sigma-Aldrich
6.9	Fumonisin B ₁ (FB ₁)	Sigma-Aldrich
6.10	Fumonisin B ₂ (FB ₂)	Sigma-Aldrich
6.11	Fusarenone X	Sigma-Aldrich
6.12	HT-2 toxin (HT2)	Sigma-Aldrich
6.13	Malformin A	Sigma-Aldrich

Römer Labs

6.15Ochratoxin A (OTA)Sigma-Aldrich6.16p-AnisaldehydeSigma-Aldrich6.17RetrorsineRömer Labs6.18SterigmatocystinSigma-Aldrich6.19T-2 toxin (T2)Sigma-Aldrich6.20Tenuazonic acidSigma-Aldrich6.21Zearalenone (ZON)Sigma-Aldrich

7. Standard Preparation

Stock standard solutions of mycotoxins (100 μ g/mL) are prepared individually by dissolving in methanol. Solutions are stored at -20° C.

8. Apparatus

- 8.1 Transcend TLX 1 system
- 8.2 Exactive mass spectrometer
- 8.3 Column oven, HotDog 5090 (Prolab GmbH, Switzerland)
- 8.4 Fisher Scientific[™] precision balance
- 8.5 Sartorius[®] analytical balance (Sartorius GmbH, Switzerland)
- 8.6 Thermo Scientific[™] Barnstead[™] EASYpure[™] II water
- 8.7 Elmasonic[®] S 40 (H) ultrasonic bath, (ELMA[®] Hans Schmidbauer GmbH & Co. KG, Germany)
- 8.8 Vortex shaker
- 8.9 Vortex standard cap
- 8.10 IKA[®] HS 501, digital Shaker (IKA-Werke GmbH & Co. KG, Germany)

9. Consumables

- 9.1 Thermo Scientific[™] Hypersil GOLD[™], 50 × 4.6 mm, 5 µm
- 9.2 Thermo Scientific[™] TurboFlow[™] Cyclone[™] MCX column, 50 × 0.5 mm
- 9.3 LC vials
- 9.4 LC vial caps
- 9.5 Thermo Scientific[™] Finnpipette[™] 10–100 μL
- 9.6 Finnpipette 100–1000 μL
- 9.7 Finnpipette 500–5000 μL
- 9.8 Pipette holder
- 9.9 Pipette Pasteur soda lime glass 150 mm
- 9.10 Pipette suction device
- 9.11 Pipette tips 0.5–250 µL, 500/box
- 9.12 Pipette tips 1-5 mL, 75/box
- 9.13 Pipette tips 100–1000 µL, 200/box
- 9.14 Disposable plastic syringe, 1 mL
- 9.15 Nylon filter 0.2 µm

10. Glassware

- 10.1 Beaker, 25 mL
- 10.2 Volumetric flask, 10 mL
- 10.3 Volumetric flask, 100 mL
- 10.4 Volumetric flask, 1000 mL
- 10.5 Amber bottle 50 mL

Table 1. Gradient program table in Aria software for TurboFlow Method coupled with an analytical column

Step	Loading Pump				Cut-in loop		Eluting Pump					
Step	Start [min]	Time [s]	Flow [mL/min]	Grad	A [%]	B [%]	Тее	Loop	Flow [mL/min]	Grad	A [%]	B [%]
1. Loading	0	90	1.5	Step	100	0	===	Out	0.5	Step	99	1
2. Transferring	1:30	1	0.3	Step	85	15	Т	In	0.2	Step	99	1
3. Transferring/HPLC	1:31	59	0.3	Step	85	15	Т	In	0.2	Ramp	80	20
4. Washing/HPLC	2:30	360	1.5	Step	85	15	===	In	0.6	Ramp	0	100
5. Washing/HPLC	8:30	130	1.5	Step	100	0	===	In	0.6	Step	0	100
6. Washing/HPLC	10:40	160	1.5	Step	0	100	===	In	0.6	Step	0	100
7. Loop filling/equilibrating	13:20	120	1.5	Step	10	90	===	In	0.5	Step	99	1
8. Equilibrating	15:20	160	1.5	Step	100	0	===	Out	0.5	Step	99	1

11. Procedure

11.1 Chemical Preparation

The extraction solvent is prepared by mixing 1000 mL of acetonitrile with 750 mL of water containing 0.1% FA.

11.2 Sample Preparation and Spiking

As no blank materials were available, a number of samples of corn, wheat, and animal feed were analyzed to test whether they could be used as blank material for spiking purposes. These samples, with trace levels (below LOD) of target mycotoxins, were used as blank materials for the method validation. Spiking was performed at two different levels (250 and 500 µg/kg) with solutions of standards.

To prepare the spiked sample, 500 g of matrix is homogenized by a laboratory blender and ground to a fine powder using a mortar and pestle. A sample of 5 g $(\pm 0.01 \text{ g})$ is weighed and put into a 50 mL amber flask and spiked with the appropriate amount of standard. Spiked samples are stored for 30 min in the dark for equilibration of the spike. After the addition of 20 mL of extraction solvent, bottles are closed and shaken for 45 min in the laboratory shaker. Samples are filtered through a nylon filter (0.2 µm) and injected into the TLX-HRMS system.

12. TLX-LC conditions

LC Conditions	
TurboFlow column:	Cyclone MCX, 50 \times 0.5 mm
Analytical column:	Hypersil GOLD, 50 × 4.6 mm, 5 µm
Total run time:	18 min
Mobile phase:	A: Water (0.1% formic acid)
	B: Methanol (0.1% formic acid)

The autosampler sample tray temperature is kept at 10 °C. Sample injection volume is 10 μ L with a 100 μ L injection syringe. The injection syringe is rinsed as described in the injector settings. The gradient program is presented in Table 1. Mobile phase composition in loading- and eluting- pump is A) water (0.1% FA) and B) methanol (0.1% FA). Total run time for TLX cleanup and separation on the analytical column is 18 min.

Injector Settings							
Injector:	CTC Analytics (CTC A 100 µL injection syrir	Analytics AG, Switzerland) with nge volume					
Wash sol	vents for the autosamp Wash 1: Methanol Wash 2: 5% Meth	ler anol					
Pre-clear	n syringe with wash 1: >	<2					
Clean inje	ector (TX) with wash 1:	×2					
Get samp	ole (SEQ Tray: SEQ. Inde	ex): SEQ. Volume					
Inject sar	nple (Syringe content) t	o TX					
Clean syr	inge with wash 1: ×7						
Clean inje	ector (TX) with wash 1:	×7					
Clean syr	inge with wash 2: ×7						
Clean injector (TX) with wash 2: ×7							
	Injection volume:	10 µL					
	Tray temperature:	10 °C					
	Column oven.	40 °C					

13. Mass Spectrometric Conditions

MS analysis is carried out using an Exactive Orbitrap high-resolution benchtop mass spectrometer controlled by Thermo Scientific[™] Aria[™] MX software version 1.1. Data acquisition and processing is performed using Thermo Scientific[™] Xcalibur[™] software version 2.1. The Exactive MS was calibrated in positive and negative mode every 48 hours.

Mass Spectrometer Co	onditions
Ionization:	Heated electrospray (HESI II)
Polarity:	Positive/negative switching mode
Sheath gas flow rate:	60 arb
Aux gas flow rate:	20 arb
Spray Voltage:	3.60 kV
Capillary temperature:	260 °C
Capillary voltage:	60 V
Tube lens voltage:	120 V
Skimmer voltage:	25 V
Heater temperature:	250 °C
Scan mode:	Full scan
Scan range:	100–900 <i>m/z</i>
Microscans:	1
Resolution:	100,000 (FWHM) at <i>m/z</i> 200
AGC target:	1e6
Scan events:	Full scan positive mode <i>m/z</i> 100–900 Full scan negative mode <i>m/z</i> 100–900 HCD fragmentation in positive mode <i>m/z</i> 50–500 HCF fragmentation in negative mode <i>m/z</i> 50–500
Collision energy:	35 eV

14. Database

A database containing more than 600 plant and fungal metabolites and other fungal metabolites comprising their empirical formula, exact mass, polarity, fragment ions (max. 5), and retention time is maintained as an Excel® spreadsheet and converted to a comma separated values (.csv) file (Figure 1). The .csv file is uploaded to the ExactFinder as a compound database which is saved as a

.cdb file. The .cdb file is modified by addition of adduct ions of [M+H]⁺ and [M+Na]⁺ (adduct ions can be defined already in the .csv file as well) in positive mode and [M-H]⁺ in negative mode. Additional adducts that can be chosen from the software are [M+K]⁺ and [M+NH₄]⁺. The isotopic pattern match can be defined as an additional identification or confirmation criteria. Two .cdb files are saved, one for data processing in ESI positive mode and one for data processing in ESI negative mode. The sequence is processed once with the database in negative mode and once in positive mode. The database was created based on the work of Senyuva et al.⁷, Nielsen and Smedsgaard⁸, Mol et al.⁹, Cole and Cole¹⁰, and an internal Thermo Scientific database.

14.1 Confirmation and Identification of Toxins

Compound identification criteria by processing the data with the .cdb file database are set to be the accurate mass with a mass tolerance of <5 ppm and a peak threshold of 20,000 units (defined in method development settings screening method in ExactFinder software). Identified compounds are shown as yellow flag in the software. Compound confirmation is deemed as having been achieved with the additional detection of a minimum of one fragment ion at the corresponding retention time with a time tolerance of $\pm 2.5\%$. Confirmed hits are marked with a green flag in the software. An example of data evaluation is demonstrated with T-2 toxin in Figures 2 and 3. In Figure 2, a screen shot of processed data is shown. On the upper window the targeted screening results can be found with information about compound, accurate mass (theoretical and found), mass deviation in ppm, retention time (defined and found), intensity, and fragment ions (green is found, red is not found). On the left hand side there is a list of sequence samples with additional information about compound identification. In the window below chromatogram (left) and spectrum (right) of selected compound can be seen.

0	1 1 7 • (*	•				My	coD8_TMO_pos - Micr	osoft Excel							-	σ
-	Home Ir	isert Page Layout Formula	as Data Revi	iew View	Add-Ins											•
1	X Cut	Calibri • 11 •	A' x' = =	- *	Wrap Text Gen	eral +		Normal	Bad	Good	Neu	tral	3 × i	Σ AutoSu	· 57 (B)	
Paste	Copy	B / U	· A· ===		Merge & Center - \$	· % · 38 -3	Conditional Format	Calculation	Check Ce	I Expla	natory Inpu	t ÷	Insert Delete Fo	emat Class v	Sort & Find &	
	Clipboard	G Font	6	Alignment	6	Number 5	Formatting * as Table * .		Style	5			Cells	CZ Creat	Editing	
	A213	• (* <i>f</i> e 210														_
	А	В	С	D	E	F	G	н	1	J	K	L	М	N	0	
3	Index	Compound Name	Elemental Co	Polarity	Analyte Type	Expected RT	Intensity Thres	Adduct1	Adduct2	Adduct3	Fragment1	Fragment2	Fragment3	Fragment4	Fragment5	;
198	195	Dihydroxysterigmat	C18H14O6	+	Parent		1.00E+03									
199	196	Methoxysterigmato	C19H14O6	+	Parent		1.00E+03									
200	197	Sterigmatocystin	C18H12O6	+	Parent	10.1	1.00E+03				310.0463	281.0437				
201	198	Norsolorinic acid	C20H18O7	+	Parent		1.00E+03									
202	199	Parasiticol	C16H14O6	+	Parent		1.00E+03									
203	200	Nivalenol	C15H20O7	+	Parent		1.00E+03									
204	201	Fusarenone X	C17H22O8	+	Parent	4.16	1.00E+03				288.9214	232.9276	176.938			
205	202	Deoxynivalenol	C15H20O6	+	Parent	4.1	1.00E+03				118.9425	132.9584	249.1565	265.1215	281.183	
206	203	3-Acetyldeoxynival	C17H22O7	+	Parent		1.00E+03									
207	204	15-O-Acetyl-4-deox	C17H22O7	+	Parent		1.00E+03									
208	205	15-Acetoxyscirpeno	C17H24O6	+	Parent		1.00E+03									
209	206	3a-Acetyldiacetoxys	C21H28O8	+	Parent		1.00E+03									
210	207	Neosolaniol	C19H26O8	+	Parent		1.00E+03									
211	208	T-2 Triol	C20H30O7	+	Parent		1.00E+03									
212	209	HT-2 Toxin	C22H32O8	+	Parent	9.2	1.00E+03				141.1694	90.9768	203.106	345.13	203.106	1
213	210	T-2 Toxin	C24H34O9	+	Parent	9.55	1.00E+03				199.1112	387.1399	327.1192	245.1166		
214	211	Iso-T-2 toxin	C24H34O9	+	Parent		1.00E+03									
215	212	Acetyl-T-2 toxin	C26H36O10	+	Parent		1.00E+03									
216	213	Trichodermin	C17H24O4	+	Parent		1.00E+03									
217	214	Trichodermol	C15H22O3	+	Parent		1.00E+03									
218	215	7-a-Hydroxytrichod	C15H22O4	+	Parent		1.00E+03									
219	216	Verrucarol	C15H22O4	+	Parent		1.00E+03									
220	217	4,15-Diacetylverruc	C19H26O6	+	Parent		1.00E+03									
221	218	Trichothecin	C19H24O5	+	Parent		1.00E+03									
222	219	Trichothecolone	C15H20O4	+	Parent		1.00E+03									
223	220	Isosatratoxin F	C29H34O10	+	Parent		1.00E+03									
224	221	Roridin A	C29H40O9	+	Parent		1.00E+03									

Figure 1. Database template in Excel converted to an .csv file

Figure 2. Accurate mass confirmation of T-2 toxin in wheat 250 μ g/kg sample in ESI_{nos} mode

Figure 3. HCD fragment ion confirmation of T-2 toxin in wheat 250 μ g/kg sample in ESI_{nos} mode

Figure 3 documents how additional information about fragment ions of T-2 toxin from the HCD experiment can be provided (bottom right).

14.2 Not Detected Compounds

All peaks that cannot be confirmed or identified by attempting to match against reference compounds in the database are marked with red flags and defined as not found.

15. Method Validation

15.1 Specificity

Method specificity is based on the detection of ions with a mass accuracy <5 ppm.² Detected ions, mass deviation from theoretical value, and fragment ions of 21 targeted fungal and plant metabolites are listed in Table 2.

15.2 Quality Control Materials

Six samples of certified reference materials have been prepared according to the section "Sample Preparation and Spiking" to determine the accuracy of compound identification and confirmation by ExactFinder software.

Mycotoxins	Molecular Formula	Adduct	Found Molecular Mass in Wheat [<i>m/z</i>] (Δ ppm)	Found Molecular Mass in Corn [<i>m/z</i>] (Δ ppm)	Found Molecular Mass in Feed [<i>m/z</i>] (Δ ppm)	RT in Wheat [min]	RT in Corn [min]	RT in Feed [min]	Fragment Ion 1 [<i>m/z</i>]	Fragment Ion 2 [<i>m/z</i>]	Fragment Ion 3 [<i>m/z</i>]	eV HCD
Apicidin (ESIpos)	C ₃₄ H ₄₉ N ₅ O ₆	Na+	646.3576 (+0.22)	646.3585 (+1.6)	646.3581 (+0.87)	10.29	10.24	10.27	429.2457	373.1835		35
Apicidin (ESIneg)	C ₃₄ H ₄₉ N ₅ O ₆	-H+	622.3618 (+1.21)	622.3615 (+0.82)	622.3619 (+1.4)	10.28	10.25	10.25	462.2748	252.1350		35
AFB ₁	C ₁₇ H ₁₂ O ₆	Na+	335.0530 (+1.23)	335.0530 (+1.2)	335.0531 (+1.38)	8.31	8.18	8.25	197.0118	175.0638		35
AFB ₂	C ₁₇ H ₁₄ O ₆	Na+	337.0681 (-0.33)	337.0684 (+0.35)	337.0688 (+1.53)	7.91	7.8	7.88	259.0603	314.6734		35
AFG,	C ₁₇ H ₁₂ O ₇	Na+	351.0474 (-0.23)	351.0477 (+0.42)	351.0481 (+1.54)	7.8	7.76	7.88	215.6405			35
AFG ₂	C ₁₇ H ₁₄ O ₇	Na+	353.0631 (-0.25)	353.0636 (+1.13)	353.0638 (+1.66)	7.6	7.4	7.62	188.9185	331.0811	313.0706	35
DON	C ₁₅ H ₂₀ O ₆	Na+	319.1154 (+0.6)	319.1160 (+2.39)	319.1157 (+1.68)	4.32	4.06	4.15	249.1565	265.1215	281.1834	35
Ergocornine	C ₃₁ H ₃₉ N ₅ O ₅	H+	562.3033 (+1.68)	562.3035 (+1.93)	562.3041 (+2.96)	7.84	7.8	7.6	266.9992	351.0471		35
Fumagillin	C ₂₆ H ₃₄ O ₇	Na+	481.2204 (+1.47)	481.2205 (+1.71)	481.2204 (+1.59)	10.37	10.33	10.36	102.0466	131.0018		35
FB1	C ₃₄ H ₅₉ NO ₁₅	H+	722.3973 (+2.18)	722.3973 (+2.17)	722.3980 (+3.17)	8.64	8.62	8.69	352.3198	334.0913		35
FB2	C ₃₄ H ₅₉ NO ₁₄	H+	706.4020 (+1.62)	706.4025 (+2.39)	706.4030 (+3.01)	9.27	9.22	9.27	336.3253	318.3147		35
Fusarenone X	C ₁₇ H ₂₂ O ₈	Na+	377.1208 (+0.33)	377.1213 (+1.65)	377.1214 (+1.95)	4.0	4.1	4.13	176.9380	232.9276	288.9214	35
HT-2	C ₂₂ H ₃₂ O ₈	Na+	447.1996 (+1.46)	447.1999 (+2.13)	447.2000 (+2.44)	9.24	9.2	9.23	203.1060	285.1088		35
Malformin A (ESIpos)	C ₂₃ H ₃₉ N ₅ O ₅ S ₂	Na+	552.2293 (+1.46)	552.2295 (+1.91)	552.2295 (+1.92)	10.08	10.07	10.06	307.1572	231.0615		35
Malformin A (ESIneg)	C ₂₃ H ₃₉ N ₅ O ₅ S ₂	-H*	528.2324 (+0.86)	528.2324 (+0.74)	528.2326 (+1.13)	9.98	10.09	10.25	141.0658	221.1543		35
Monocrotaline	C ₁₆ H ₂₃ NO ₆	H+	326.1599 (+0.19)	326.1601 (+0.85)	326.1601 (+1.0)	5.58	5.55	5.57	94.0653	120.0810	194.1169	35
ОТА	C ₂₀ H ₁₈ NO ₆ CI	Na+	426.0721 (+1.34)	426.0722 (+1.66)	426.0724 (+2.23)	9.95	9.9	9.94	260.9917	239.0100		35
p-Anisaldehyde	C ₈ H ₈ O ₂	H+	137.0598 (+0.74)	137.0599 (+1.12)	137.0600 (+1.9)	8.15	8.08	8.11	109.0649	94.0416	77.0390	35
Retrorsine	C ₁₈ H ₂₅ NO ₆	H+	352.1756 (+0.33)	352.1758 (+0.94)	352.1760 (+1.54)	6.28	6.23	6.26	93.9467	119.9507	299.0616	35
Sterigmatocystin	C ₁₈ H ₁₂ O ₆	Na+	347.0532 (+1.66)	347.0534 (+2.32)	347.0533 (+2.0)	10.13	10.11	10.1	281.0437	310.0463		35
T-2	C ₂₄ H ₃₄ O ₉	Na+	489.2102 (+1.39)	489.2103 (+1.62)	489.2105 (2.06)	9.61	9.59	9.6	199.1112	387.1399	327.1192	35
Tenuazonic acid	C ₁₀ H ₁₅ NO ₃	H+	198.1129 (+2.09)	198.1130 (+2.77)	198.1131 (+3.09)	8.95	8.86	8.93	124.9913	149.0448		35
ZON (ESI neg)	C ₁₈ H ₂₂ O ₅	-H+	317.1395 (+0.31)	317.1395 (+0.27)	317.1397 (+0.66)	9.98	9.97	9.96	131.0490	175.0391		35

16. Results and Discussion

16.1 Compound Confirmation, Identification, and Not Detected Compounds by ExactFinder Software

Samples of corn, wheat, and animal feed were spiked with fungal metabolite standards at two concentration levels (250 and 500 μ g/kg). Each level in each matrix was prepared in six replicates.

Identification of 21 targeted metabolites was sought by processing with the ExactFinder software. Compound confirmation or identification was based on previously defined criteria (see the sections "Confirmation and Identification of Toxins" and "Not Detected Compounds"). Evaluation of % hits of confirmed, identified, and not found mycotoxins is illustrated graphically in Figure 4 and summarized in Table 3.

Evaluation of targeted screening of 21 fungal and plant metabolites shows an average confirmed/identified rate of 98% in corn, 97% in wheat, and 100% in animal feed. The overall results (Table 3) show 99% identified or confirmed with 1% of not found hits. In wheat, few not found hits (3%) have been found for OTA, fumagillin, ergocornine, DON, and FB1. This can be explained by chromatographic problems such as poor peak shape or matrix interferences.

Figure 4. Graphical illustration of % hits of compound confirmation (green), identification (yellow), and not found (red) in corn, wheat, and animal feed at two concentration levels (250 and 500 μ g/kg)

Table 3. Evaluation of total confirmed, identified, and not found hits by ExactFinder software

Total Number of Analyzed Samples	Confirmed	Identified	Not Found
756	673	73	10
100%	89%	10%	1%

16.2 Analysis of Quality Control Materials

Quality control materials were analyzed for the determination of compound confirmation (green), identification (yellow), or not found (red) hits. The results are listed in Table 4. Most of the compounds have been confirmed by the software. HT-2 in sample T2280 has only been identified because of the low signal of the present fragment ion. Yellow hits in the ergot alkaloid sample can be explained by the missing information in the database about retention time and fragment ions. Table 4. Results of quality control materials

QC Material	Matrix	Target Analyte (Assigned Value µg/kg)	Found
ΕΔΡΔς Τ2280	Oat flour	T-2 (220)	
		HT-2 (89)	
FAPAS T2268	Breakfast cereal	DON (618)	
			Ergosine, Ergocornine
Römer labs 3020		Ergot alkaloids (331–1349)	Ergometrine, Ergometrinine, Ergosinine, Ergotamine, Ergotaminine, α -Ergocryptine, α -Ergocryptinine
FAPAS T2273	Corn	ZON (44)	
EADAS T2275	Corn	FB1 (501)	
	UUII	FB2 (369)	
FAPAS T2276	Feed	ZON (129)	

Method 63747

17. Conclusion

This method documents a fast screening method for the detection of fungal metabolites in corn, wheat, and animal feed. Two sets of samples were prepared for each matrix at 250 and 500 µg/kg spiking level. The extracted samples were injected to the Transcend TLX-1 system for automated sample preparation clean up and analyzed with HRAM. Compound identification was based on the detection of a peak with minimum threshold of 20,000 and accurate mass with <5 ppm mass deviation. Compounds were confirmed by additional detection of minimum one fragment ion at the specific retention time. Data processing with ExactFinder software has proved to be an effective tool with 99% of compounds identified and confirmed and 1% not found. The false positive rate was 0%. This method is in compliance with the guidelines of the validation of the screening method in which a reliable method is defined to have a false-compliant rate of <5%.6 Additional confirmation of accurate compound confirmation and identification was given by the analysis of certified quality control materials.

18. References

- European Commission. 2006a. Commission Regulation 1881/2006 EC on setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union. L364:5-24.
- European Commission. 2007. Commission Regulation 1126/2007 EC of September 2007 amending regulation 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off J Eur Union. L255:14–17.

- European Commission. 2006c. Commission Recommendation 576/2006 EC of August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisin in products intended for animal feeding. Off J Eur Union. L229:7–9.
- 4. Ates, E.; Mittendorf, K; Stroka, J; Senyuva, H. Determination of Fusarium mycotoxins in wheat, maize and animal feed using on-line clean-up with high resolution mass spectrometry. *Food Additives and Contaminants part A*, **2012**, http://dx.doi.org/10. 1080/19440049.2012.729162
- Commission Decision 657/2002 of August 2002 on implementing Council Directive 96/23/EC concerning performance of analytical methods and the interpretation of results. Off J Eur Union, L221, 8–36.
- Guidelines for the validation of screening methods for residues of veterinary medicines. 2010. Community reference laboratories residues (CRLs) 20/1/2010.
- Senyuva, H; Gilbert, J; Öztürkoglu, S. Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS. *Analytica Chimica Acta*, 2008, 617, 97–106.
- Nielsen, K.F.; and Smedsgaard, J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardized liquid chromatography – UV – mass spectrometry methodology. *Journal of Chromatography A*, 2003, 1002, 11–136.
- Mol, H.G.J; Van Dam, R.C.J.; Zomer, P; Mulder, P.P.J. Screening of plant toxins in food, feed and botanicals using full-scan high-resolution (Orbitrap) mass spectrometry. *Food Additives and Contaminants*, 2011, 28 (10), 1405–1423.
- 10. Cole, R.J. and Cole, R.H. Handbook of Toxic Fungal Metabolites, Academic Press Inc 1981.

www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved. Sigma-Aldrich is a registered trademark of Sigma-Aldrich Co. LLC. Römer Labs is a registered trademark of Römer Labs Division Holding GmbH. Sartorius is a registered trademark of Sartorius GmbH. Elmasonic and ELMA are registered trademarks of Elma Hans Schmidbauer GmbH & Co KG. IKA is a registered trademark of KA-Werke GmbH & Co. KG. Excel is a registered trademark of Microsoft Corporation. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

Africa-Other +27 11 570 1840 Australia +61 3 9757 4300 Austria +43 1 333 50 34 0 Belgium +32 53 73 42 41 Canada +1 800 530 8447 China +86 10 8419 3588 Denmark +45 70 23 62 60

Europe-Other +43 1 333 50 34 0 Finland/Norway/Sweden +46 8 556 468 00 France +33 1 60 92 48 00 Germany +49 6103 408 1014

India +91 22 6742 9434

Italy +39 02 950 591

Latin America +1 561 688 8700 Middle East +43 1 333 50 34 0 Netherlands +31 76 579 55 55 New Zealand +64 9 980 6700 Russia/CIS +43 1 333 50 34 0 South Africa +27 11 570 1840

Japan +81 45 453 9100

Spain +34 914 845 965 **Switzerland** +41 61 716 77 00 **UK** +44 1442 233555 **USA** +1 800 532 4752

