

Therapeutic Drug Monitoring of 8 new anticancer agents by High-Performance Liquid Chromatography-**Tandem Mass Spectrometry**

B. Duretz¹, I. Gana², I. Andriamanana², A. Hulin² ¹ThermoFisher, Les Ulis, France. ²Laboratoire de Pharmacologie - Groupe Hospitalier Henri Mondor, APHP - Créteil, France

INTRODUCTION

The treatment of some cancers has shifted from conventional chemotherapy drugs to chronic treatment with molecular targeted therapies. Targeted therapies include drugs such as Tyrosine kinase inhibitors (eg: Imatinib, Dasatinib, Nilotinib, Sunitinib, Sorafenib, Vandetanib, Vatalanib and Erlotinib) that present better efficiency and lower side effects than conventional anti cancer drugs.

GOAL

The goal was to develop and validate a specific and sensitive method for the quantitation of Tyrosine kinase inhibitors (eg: Imatinib, Dasatinib, Nilotinib, Sunitinib, Sorafenib, Vandetanib, Lapatinib, Vatalanib and Erlotinib) in plasma samples using liquid chromatography coupled to mass spectrometry.

ANALYTICAL CONDITIONS

- <u>Sample preparation: 50µl of plasma samples were</u> extracted with methanol containing internal standard and the organic layer diluted into the mobile phase.
- Analytical conditions are reported on table 1.
- For each analyte, 2 SRMs transitions are monitored: one is used for quantitation (Q_0) and the other one is used for confirmation (Q_1) (Table 2).
- 3 quality controls (CQI) at the following concentrations : 750, 1500 and 7500 ng/mL for each analyte have been used for validation.

Exemple: MSMS spectrum of I matinib obtained by infusion

|--|

Internal standard	Imatinib-D ₈		
Injection volume	20µL		
Flow rate	300 μL/min		
Analytical column	nn C18 (100 mm x 2.1; 1.9 μm)		
Mobile phase	Ammonium formate 10 mM with 0.1% formic acid+ acetonitrile containing 0.1% formic acid		
Ionization mode	de Positive mode using HESI source		
Scan mode	SRM Mode (XCalibur®software)		

<u>Table 2</u>: Retention time (RT) and SRMs transitions for each drug.

Molecules	RT(min)	Exact Mass	Parent Ion [M+H]+ (m/z)	Q _o Fragment ion (m/z)	Q ₁ Fragment Ion (m/z)
Vatalanib	3,02	346,098856	347	92	127
Erlotinib	3,07	393,168856	394	278	336

- Calibration curves were established from 100 to 10 000 ng/ml in human plasma, calculated and fitted by 1/x2weighted linear regression . R² values were above 0.977 for all drugs (n = 10).
- (2) Intra-day (n=6) and inter-day (n=60) variabilities were evaluated by injecting the QCs. CVs were all below 15%
- Precision was good with values below 15% and accuracy 3 was close to 100% (n=60) for all quality controls.

\frown	

Recoveries (Extraction recovery ER, ionization recovery IR and global recovery GR) have been studied at two levels of concentration : 500 and 5000 ng/mL. Results are reported in table 4 are those obtained for 5000 ng/ml. For the lower concentration (500 ng/ml), a higher matrix effect has been observed and for this reason, ionization recovery was above 100.

Table 3 : Results	obtained for CQI 1	(750 ng/ml)		
Molecules	Intra-day precision CV(%)	Inter-day precision CV(%)	Accuracy (%)	Precision (%)

morecures	CV(%)	CV(%)	(%)	(%)			
Vatalanib	4,00	12,24	109,84	9,84			
Erlotinib	2,91	14,13	106,62	6,62			
Sunitinib	3,90	17,44	92,51	-7,49			
Sorafenib	3,29	10,17		-12,22			
Vandetanib	5,72	13,67	100,93	0,93			
Dasatinib	5,14	14,87	108,19	8,19			
Imatinib	3,19	7,35	105,84	5,84			
Nilotinib	2,46	11,54	103,27	3,27			
Lapatinib	3,92	13,50	109,95	9,95			
able 4: Recoveries (GR,ER and IR) obtained at 5000ng/ml.							
Molecules	GR (%)	ER (%)	IR	(%)			
Vatalanib	98,3	98,5	9	9,8			
Erlotinib	112,2	102,4	1(109,5			
Sunitinib	88,3	97,8	9	90,2			
Sorafenib	99,3	105,0	9	94,6			
Vandetanib	104,7	99,1	1(105,6			
Dasatinib	114,3	94,8	12	120,5			
Imatinib	107,4	98,4	1(09,1			
Nilotinib	100,8	99,7	1(01,1			
Lanatinih	102.6	97 1	1(75 7			

- 5 Specificity has been evaluated and no inteferences have been detected.
- 6 The limit of quantitation has been established to 50ng/ml for all the molecules.

CONCLUSION

We have developed and validated a method for the analysis of 8 anti cancer drugs using the LC/MSMS technology. It is simple, sensitive, spécific, reproducible, accurate, linear and fast (< 15 minutes)

It can be used for pharmacology and pharmacokintics studies for patients in hematology and oncology area.