

ThermoFisher SCIENTIFIC

mAb and ADC Analysis

Shanhua Lin, Ph.D. R&D Manager Bioseparation, Chromatography Consumables

The world leader in serving science

Structure of IgG and Typical Forms of Heterogeneity

Protein and mAb Separation by HPLC

IEC Analysis for Charge Variant

- ProPac WCX-10 and MAbPac SCX-10 columns
- Separate acidic and basic variants
- CX-1 pH Gradient Buffer Kit provides a platform solution

Next-generation CEX Column

Improve resolution or sample throughput through column chemistry

Thermo Scientific CX-1 pH Gradient Buffers

- Dilute buffers 10-fold with DI water
- A linear pH gradient (pH 5.6 10.2) is generated by running a linear pump gradient from 100% Buffer A to 100% Buffer B
- It is platform, fast, and high-res!

US 8921113 B2: Buffer kit and method of generating a linear pH gradient

	Buffer A	Buffer B
рН	5.6	10.2
Form	Liquid	Liquid
Concentrate	10X	10X
Shipping condition	Room Temp	Room Temp
Storage condition	4 ~ 8 °C	4 ~ 8 °C

pH Gradient Buffers – How Do They Work?

Linear pH Gradient by Zwitterionic Buffer Cocktail

Protein Standard – CX-1 pH Gradient Buffer

Peak label: protein name - elution pH 90 ·11 Lectin-1 - 6.11 -10 pH trace 60 -9 40 -8 Cytochrome C - 10.15 Lectin-2 - 6.28 Ribonuclease A - 8.72 -7 ö.45 Lectin-3 20 Trypsinogen - 7.75 -6 0 -10 | -5 10 15 20 25 30 35 5 40

MAbPac SCX-10 Column, 4 × 250 mm

Protein Standard – Phosphate-based pH Gradient

Why pH Gradient Buffers?

- Traditional salt gradient using ion
 exchange chromatography
 - Needs to be tailored for individual charge variants
- Patented pH buffer formulations
 - Fast, robust and reproducible pH gradients
 - Ready to use with existing CEX columns and systems
 - Simple to optimize and easily automated
 - Applicable to the majority of mAbs

Benefit of Linear pH Gradient: Platform Approach

- A platform approach for charge variant analysis, covering the pH range 5.6 to 10.2
 - The same pH gradients is applicable to majority of mAb charge variants with pl value between 6-10
 - pl value of the unknown mAb can be predicted from the correlation curve

mAb Standards Using Linear pH Gradient

Top-selling mAbs Analyzed by pH Gradient Method

Platform method for mAb charge variant analysis

Benefit of Linear pH Gradient: Simple Optimization

- The method can be simply optimized
 - By running a **shallower pH gradient** a higher resolution separation is obtained (e.g. 50-100%, rather than 0-100%B)

Ultra Fast Method Development

3 steps method development

- 1. 10 minutes $0 \rightarrow 100 \%$ B in 10 minutes
- 2. $20 \rightarrow 40$ %B in 5 minutes
- 3. 18→27 %B in 0.8 minutes

Number of charge variants and resolution maintained for subminute gradient

Repeat Injections of Ribonuclease A: Over 300 Runs

Retention time reproducibility <0.8% RSD

CX-1 pH Gradient Buffer Kit (10X): Lot to Lot Consistency

RP LC/MS Analysis for Intact, mAb Fragments, and ADCs

- MAbPac RP column
- Separate mAb, mAb fragments (LC, HC, Fc, Fab, scFc, and F(ab')₂) and ADC DAR forms
- Often coupled with MS instrument for high resolution accurate mass determination

MAbPac RP columns

Column	Phenyl
Chemistry	
Substrate	Spherical, polymer,
	wide-pore (1,500 Å)
Particle	4 µm
size	
Pore size	1,500 Å
Formats	100 mm: 3.0 + 2.1mm ID
	50 mm: 3.0 + 2.1mm ID
	10mm Guard Cartridges:
	3.0 + 2.1mm ID

SiteClick[™] Enzyme-based N-glycan Labeling of Antibody

Recombinant

Site-selective Antibody-drug Conjugates (ADCs) DAR Forms

LC/UV Analysis of ADC

LC/MS Analysis of ADC

Deconvolution of mAb and Intermediate

Deconvolution of Multiple DAR Forms

Thermo Fisher SCIENTIFIC

SiteClick[™] Enzyme-based N-glycan Labeling of Antibody

Poster number: P-202-TH Presenting: Thursday, January 26 from 7:30am – 8:30am. Title: High Resolution LC/MS Separation and Characterization of Chemoenzymatic Site-specific Engineered Antibody-drug Conjugates (ADCs)

Thank you!

- Chris Pohl
- Xiaodong Liu
- Julia Baek
- Yoginder Singh

- Brian Agnew
- Terry Zhang
- Jonathan Josephs

