

ThermoFisher SCIENTIFIC

ADC characterization on a single platform with **Q Exactive BioPharma**

Global BioPharma Summit

The world leader in serving science

Understanding Microheterogeneity and Critical Quality Attributes (CQAs)

Comprehensive characterization of therapeutic protein CQAs requires analysis from multiple perspectives.

Characterization at the Intact, Subunit and Peptide Level

Q Exactive BioPharma Allows a Complete Solution for BioPharma Characterization

One-Stop Shop

- Denatured Intact Analysis (MS1)
- Peptide Mapping (MS/MS)
- Middle/Top-Down (MS/MS)

Q Exactive™ MS

Dedicated to Deliver

- Denatured Intact Analysis (MS1)
- Native Intact Analysis (MS1)
- With Tune-able Optics

Exactive™ Plus EMR MS

Highest performing for intact analysis

One-Stop Shop

- Denatured Intact And
- Peptide Mapping (M
- Middle/Top-Down (N

Complete Solution

- Denatured Intact Analysis (MS1)
- Native Intact Analysis (MS1)
- Peptide Mapping (MS/MS)
- Middle/Top-Down (MS/MS)

Q Exactive

Q Exactive[™] BioPharma MS

nalysis (MS1) vsis (MS1) ptics Plus EMR MS - 6 q for intact analysis

A Powerful Solution to the Challenge of BioPharma Characterization

Thermo Scientific[™] :

Vanquish[™] Horizon UHPLC system

Q Exactive[™] Plus/HF BioPharma

Orbitrap[™] Mass Spectrometer

BioPharma Finder™ Data Analysis Software Platform

Q Exactive BioPharma has Pre-Optimized Workflows for BioPharma Characterization

High Mass Range (HMR) Mode Intact mAb and ADC Analysis

Optimized intact protein analysis under both native and denaturing conditions assures the highest quality and most informative spectra for the widest range of therapeutic proteins.

Protein Mode Subunit Analysis Top/Middle-Down

Extreme resolving power of the Orbitrap[™] mass analyzer ensures isotopic resolution of subunits and facilitates top/middle-down sequencing.

Standard Mode
Peptide Mapping

Perform peptide mapping with Orbitrap technology for unparalleled acquisition speed, mass accuracy, and spectral quality.

BioPharma Finder[™] Mass Spectrometry Protein Characterization Data Software

BioPharma Finder[™] 2.0

Mass informatics Platform for Protein Characterization

- Screen, identify and characterize intact proteins with higher productivity and confidence using Intact Protein workflow.
- Xtract and ReSpect[™] deconvolution algorithms take full advantage of the high-quality HRAM intact protein data produced by Thermo Scientific[™] Orbitrap[™] mass spectrometers.
- Confirm amino acid sequence, identify site and type of known/unknown PTMS while providing relative amounts using Peptide Mapping workflow.
- Additional features include disulfide linkage, sequence variant analysis and sequence alterations.

Two Types of Orbitrap Measurements for Large Molecules

Intact mAb

- Average mass measurement
- High Mass Range (HMR) mode
- Works for all protein sizes

mAb Subunit

- Isotopic resolution
- Protein mode
- Small-medium size proteins

- Workflow software for intact protein mass determination
- Supports all Orbitrap mass spectrometers
- Includes 2 deconvolution algorithms:
 - ReSpect for isotopically-unresolved, average masses for intact mAb analysis
 - Xtract for isotopically-resolved, monoisotopic masses for mAb subunit analysis
- Batch processing/automation enhanced with Sliding Window deconvolution

Sliding Window Deconvolution

- Automatically performs Xtract or ReSpect deconvolution along separations timescale
- Removes user bias from deconvolution analysis
- Improves quality of batch analyses
- Sensitive and confident identification + relative quan
- All biologics benefitted simple mAbs, complex ADCs

Comparison of Sliding Window and Conventional Deconvolution

Sliding window detects the higher mass ADC components

missed by conventional deconvolution - works with both Xtract and ReSpect

Navigating Intact Protein Complexity with High Mass Range (HMR) Mode

High Mass Range (HMR) Mode Intact mAb and ADC Analysis

Denaturing MS is compatible with reverse phase HPLC separation.

Native MS is best for co-eluting high complexity samples like ADCs

HMR mode intact analysis of Trastuzumab shows same answer in denaturing or native conditions

Choosing the Right Strategy for Intact Protein Analysis

Denaturing LC-MS in HMR Mode Sensitive Intact Analysis of Trastuzumab Antibody

Thermo Fisher SCIENTIFIC

Understanding Antibody Drug Conjugate (ADC) Complexity Native MS in HMR Mode

ADC construction can create layers of sample heterogeneity

Intact ADC analysis: Goal is to look at unaltered molecule

Many diverse ADC forms possible

- Antibody
 - Glycan variants
 - Minor PTM variants
 - Sequence/clipping variants
- Conjugation
 - Linker-payload forms
 - Free-linker forms

Trastuzumab Emtansine Lysine-linked ADC

Intact Analysis of *Trastuzumab Emtansine* Lysine-inked ADC Denaturing vs. Native Conditions

Native LC-MS in High Mass Range (HMR) Mode Intact ADC Analysis of *Trastuzumab Emtansine*

High Mass Range (HMR) Mode Intact mAb and ADC Analysis

Size Exclusion Chromatography (SEC)-MS

Native LC-MS in High Mass Range (HMR) Mode Intact ADC Analysis of *Trastuzumab Emtansine*

BioPharma Finder[™] 2.0

Mass informatics Platform for Protein Characterizatio Bf

Trastuzumab Emtansine Lysine-linked ADC

```
19 Achieving unprecedented detail in intact ADC analysis with high resolution Native MS
```


Native LC-MS in High Mass Range (HMR) Mode Intact ADC Analysis of *Trastuzumab Emtansine*

Bf

BioPharma Finder[™] 2.0

20 Achieving unprecedented detail in intact ADC analysis with high resolution Native MS

Subunit Analysis in Protein Mode LC-MS Analysis of IdeS-digested, Reduced Trastuzumab

ProSight Lite v1.3 Simple, Targeted, Top-Down Proteom

NORTHWESTERN

Bf

BioPharma Finder[™] 2.0

Mass informatics Platform for Protein Characterizatio

Light Chain

38% residue

39% residue

cleavages

cleavages

Fc/2

Fd'

N D I QMTQSP S SL SA SV GD RV T IT C RA 25 26 SQDVNTAVAWYQQKPGKAPKLLIYS 50 ⁵¹ A S]F]L]Y]S]G V P S R F S G S R S]G T D F]T]L]T]I ⁷⁵ ⁷⁶]S]SLLQPELDLFLALTLYLYCQQHYTTPPT]F]GQ¹⁰⁰ 49% residue 101 G TLK V E I K R T V A A P SIVIFIIFIPIP S D E Q L 125 126 K S G T ALS VVCLLLN N F Y P R E A K V Q W K V 150 CLEAVAQES 151 D N A LQLSLGLNLSLQLELSLVLTLELQLDLSLKLDLSLTLYLSL 175 176LSLSLTLLTLLSLKLALDLY ELKLHLKLVLYLALCLELV TLHLQLG 200 201 LLSLSLPLVLTLKLSLFLNLR G E C C

> N E V QLVESGGGGLVQP G G S L R L S CAA S 25 26 G F N I K D T Y] I H W V R]Q] A P] G K] G L E W V A R 50 ⁵¹ I Y P T N G Y T R Y A D S V K G R F T I S A D T S ⁷⁵ 76 KNTAYL]Q]MNSL R]ALEDT]A]V]Y]Y]C]SR]W]G 100 101]G]D G]F]Y]A]M]D]Y]W]G]Q G T]L V]T]V S S A S T K[G 125 126 P S V F]P L A]P S S K[S[T S G G T[A A L G C L V K 150 151 DYFPEPVITVISWNSGALTSGVHTFPA175 176 V L QISIS GILIYIS LISISIVIVITIVIPIS SIS LIG TIQIT 200 201 YLI C N V N H K PLS N T K V D K K V E P K S C D K 225 226 THTCLPLPCLPALPELLLGC

> N G P S[V]F]L]F]P P]K]P K D]T]L]M]I]S R T]P E]V]T]C 25 26 VVVD V SH E DP ΕVK F NWVVD G V EV H N 50 51 AKTKPREEOYNSTYRVVSVLTVLHO 75 76 DWLNGKEYKCKVSNKALPAPIEKTI 100 101 SKAKGQPREPQVYTLPPSREEMTKN 125 126 Q VISIL T C LIVIKIG FIYIPIS DIIALVEWESNIGQ 150 151 P EIN N Y K T T P P V L D S D G S F F L Y S K L T 175 176 VLDLK S R W Q Q G N VLFLS CLS VLMLH ELA L HLNLHLY 200 201 TOKSLSLSPGC

Sensitivity and rapid high resolution scanning of the Orbitrap allows discrimination between components which are near-isobaric or co-eluting. Accurate peptide IDS are based on high fidelity MS/MS spectra visualized in a color coded display by BioPharma Finder software.

Glycopeptide Analysis in Standard Mode Signature Ion Detection with HCD Fragmentation

Signature HCD fragment ions for glycans (Gn) and glycopeptides (Y1, Y2) are identified in BioPharma Finder software.

Protein	Residue #	Modification	Category 🔶	Peptides	Sequence	
Herceptin Heavy Chain	300	N300+A1G0	Glycoform	1:E296-R304 = 1188.50473m(N300+A1G0)	EEQYNSTYR	
Herceptin Heavy Chain	300	N300+A1G0F	Glycoform	1:E296-R304 = 1188.50473m(N300+A1G0F)	EEQYNSTYR	
Herceptin Heavy Chain	300	N300+A1G1F	Glycoform	1:E296-R304 = 1188.50473m(N300+A1G1F)	EEQYNSTYR	
Herceptin Heavy Chain	300	N300+A2G0	Glycoform	1:E296-R304 = 1188.50473m(N300+A2G0)	EEQYNSTYR	
Herceptin Heavy Chain	300	N300+A2G0F	Glycoform	1:E296-R304 = 1188.50473m(N300+A2G0F)	EEQYNSTYR	
Herceptin Heavy Chain	300	N300+A2G1F	Glycoform	1:E296-R304 = 1188.50473m(N300+A2G1F)	EEQYNSTYR	

BioPharma Finder[™] 2.0

Bf

Trastuzumab Emtansine Top 15 Most Abundant Glycoforms Measured by Peptide Mapping

Protein	Residue #	Modification	Category	Sequence	Confidence	Average % Abundance	% Abundance Run 1	% Abundance Run 2	% Abundance Run 3
Heavy Chain	300	N300+A2G0F	Glycoform	EEQYNSTYR	100	35.22	34.70	34.70	36.24
Heavy Chain	300	N300+A2G1F	Glycoform	EEQYNSTYR	100	31.77	31.22	31.53	32.55
Heavy Chain	300	N300+A1G0F	Glycoform	EEQYNSTYR	100	9.31	10.83	9.53	7.59
Heavy Chain	300	N300+A2G2F	Glycoform	EEQYNSTYR	100	5.54	5.50	5.56	5.58
Heavy Chain	300	N300+A2G0	Glycoform	EEQYNSTYR	100	4.79	4.66	4.85	4.85
Heavy Chain	300	N300+M5	Glycoform	EEQYNSTYR	100	4.72	4.78	4.83	4.53
Heavy Chain	300	N300+A1G1F	Glycoform	EEQYNSTYR	100	3.53	4.06	3.65	2.87
Heavy Chain	300	N300+A1G0	Glycoform	EEQYNSTYR	100	2.35	2.54	2.45	2.05
Heavy Chain	300	N300+A2G1	Glycoform	EEQYNSTYR	100	2.32	2.25	2.39	2.31
Heavy Chain	300	N300+Unglycosylated	Glycoform	EEQYNSTYR	100	1.97	1.94	2.00	1.97
Heavy Chain	300	N300+A2S1G1F	Glycoform	EEQYNSTYR	100	0.82	0.76	0.82	0.88
Heavy Chain	300	N300+A1G1	Glycoform	EEQYNSTYR	100	0.59	0.61	0.64	0.54
Heavy Chain	300	N300+M6	Glycoform	EEQYNSTYR	100	0.59	0.56	0.60	0.60
Heavy Chain	300	N300+A2S1G0F	Glycoform	EEQYNSTYR	100	0.40	0.39	0.41	0.41
Heavy Chain	300	N300+M4	Glycoform	EEQYNSTYR	100	0.39	0.38	0.43	0.35

²⁵ Automatic detection by BioPharma Finder

SCIENTIFIC

HCD Fragmentation of Heavy Chain Hinge Peptide KVEPK-(MCC-DM1)

Trastuzumab emtansine Lysine-conjugation mapping

l	BioPharma Finder Mass Information Pattern for Poster Characterization	™ 2.0	Bf

Peptide Sequence	Modification	Protein	Site	Delta (ppm)	RT
ASQDVNTAVAWYQQKPGK	DM1	Light Chain	K39	-0.25	67.47
PGKAPK	DM1	Light Chain	K42	-0.31	63.21
VEIKR	DM1	Light Chain	K107	-0.46	65.96
EAKVQWK	DM1	Light Chain	K145	0.09	67.23
VQWKVDNALQSGNSQESVTEQDSK	DM1	Light Chain	K149	0.09	68.57
VDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK	DM1	Light Chain	K169	0.2	68.77
D STY SLSSTLTLSKADYEK	DM1	Light Chain	K183	1.07	73.01
ADYEKHK	DM1	Light Chain	K188	-0.77	59.14
HKVY ACEVTHQGLSSPVTK	DM1	Light Chain	K190	0.01	58.54
VYACEVTHQGLSSPVTKSFNR	DM1	Light Chain	K207	0.15	64.92
LSCAASGFNIKDTYIHWVR	DM1	Heav y Chain	K30	-2.37	73.12
QAPGKGLEWVAR	DM1	Heav y Chain	K43	-0.62	71.01
YADSVKGR	DM1	Heav y Chain	K65	-0.67	65.35
FTISADTSKNTAYLQMNSLR	DM1	Heav y Chain	K76	0.39	70.82
VDKK	DM1	Heav y Chain	K216	-0.74	63.99
KVEPK	DM1	Heav y Chain	K217	0.46	63.38
SCDKTHTCPPCPAPELLGGPSVFLFPPKPK	DM1	Heav y Chain	K225	-1.61	72.91
THTCPPCPAPELLGGPSVFLFPPKPK	DM1	Heav y Chain	K249	-0.4	73.5
PKDTLMISR	DM1	Heav y Chain	K251	0.01	70.58
TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK	DM1	Heav y Chain	K277	-0.05	71.84
FNWYVDGVEVHNAKTK	DM1	Heav y Chain	K291	0.26	67.17
TKPR	DM1	Heav y Chain	K293	0.19	64.16
EYKCK	DM1	Heav y Chain	K323	-0.04	64.44
CKVSNK	DM1	Heav y Chain	K325	-0.47	62.93
VSNKALPAPIEK	DM1	Heav y Chain	K329	-0.38	68.18
ALPAPIEKTISK	DM1	Heav y Chain	K337	-0.66	71.07
TISKAK	DM1	Heav y Chain	K341	-0.25	64.06
AKGQPR	DM1	Heav y Chain	K343	-0.07	62.99
EEMTKNQVSLTCLVK	DM1	Heavy Chain	K363	-0.07	72.43
LTVDKSR	DM1	Heav y Chain	K417	-0.6	66.04

Trastuzumab Emtansine Lysine-Conjugation Mapping

44 **D** Lysines total in sequence

30 Lys-MCC-DM1 sites automatically detected and manually confirmed

Color code for signal intensity

>2.6e+007 >1.1e+006 >4.4e+004 >1.8e+003 >7.6e+001

High Mass Range (HMR) Mode

Intact mAb and ADC Analysis

Optimized intact protein analysis under both native and denaturing conditions. Highest quality spectra for the widest range of therapeutic proteins.

Subunit Analysis with Q Exactive BioPharma

Protein Mode

Subunit Analysis Top/Middle-Down

Extreme resolving power of the Orbitrap mass analyzer ensures isotopic resolution of subunits and facilitates top/middle-down sequencing.

Peptide Mapping Analysis with Q Exactive BioPharma

Standard Mode

Peptide Mapping

Perform peptide mapping with Orbitrap technology for unparalleled acquisition speed, mass accuracy, and spectral quality.

Summary

- Q Exactive Plus/HF with BioPharma option is a platform for complete biotherapeutic protein characterization
- BioPharma Finder software allows easy analysis of data from intact, subunit, and peptide mapping assays
- Biologics characterization is a complex endeavor which requires multiple approaches with Orbitrap mass spectrometry
- Structural fragility and complexity of ADCs can be accommodated by native MS analysis using Q Exactive BioPharma

