

ThermoFisher SCIENTIFIC

Advanced Fragmentation Techniques for BioPharma Characterization

Global BioPharma Summit

The world leader in serving science

Different modes of fragmentation to answer different questions or for different assays

(Figure from Coon et al., Analytical Chemistry, 2009)

MS Tools for Major Biopharma Characterization Workflows

Thermo Scientific[™] Q Exactive[™]

MS Family

For all the routine characterization workflows.

Mode of fragmentation: HCD

Thermo Scientific[™] Orbitrap Fusion[™] Tribrid[™] MS Family

From routine to the most challenging tasks.

Mode of fragmentation: HCD CID ETD EThcD ETciD (UVPD - not commercial)

Etanercept: O-glycosylation

O-glycosylation of Etanercept

Etanercept (trade name Enbrel)

LPAQVAF**T**PYAPEPGSTC₁₈RLREYYDQTAQMC₃₁C₃₂SKC₃₅SPGQHAKVFC₄₅TKTSDTVC₅₃DS C₅₆EDSTYTQLWNWVPEC₇₁LSC₇₄GSRC₇₈SSDQVETQAC₈₈TREQNRIC₉₆TC₉₈RPGWYC₁₀₄ALS KQEGC₁₁₂RLC₁₁₅APLRKC₁₂₁RPGFGVARPGTETSDVVC₁₃₉KPC₁₄₂APGTFS**N**TTSSTDIC₁₅₇R PHQIC₁₆₃NVVAIPG**N**ASMDAVC₁₇₈TSTSPTR**S**MAPGAVHLPQPV**ST**RSQH**T**QP**T**PEP**ST**AP**ST S**FLLPMGP**S**PPAEGSTGDEPKS**C**₂₄₀DKTH**TC**₂₄₆PP**C**₂₄₉PAPELLGGPSVFLFPPKPKDTLMIS RTPEVTC₂₈₁VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQY**N**STYRVVSVLTVLHQDWLN GKEYKC₃₄₁KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC₃₈₇LVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC₄₄₅SVMHEALHNH YTOKSLSLSPGK

3 N-glycan sites
 13 reported O-glycosylation sites

Sialic acids from the O-glycan were removed prior trypsin digestion

Peptide mapping was performed on the tryptic digest

Results for peptide SMAPGAVHLPQPVSTR after processing HCD data

	HC	D													▼ ×
l		ŧ	7	No.	Peptide Sequence	Modification		Delta (ppm)	RT (min)	M/Z		Charge State	Mono Mass Exp.	Mono Mass Theo. 🔺	MS Area
	T _x			= - T _x	<u>A</u> a • T ₂	Aa	• T _x	= • T _x		T ₂₆ =	▼ 1/ _x	$=$ T_{x}	= • T _x	= • T _x	= • T _x
L	÷	1	1	1339	SMAPGAVHLPQPVSTR	None		-2.15	32,	41	824.434	2	1646.8527	1646.8562	14,750.08
	•	2	\checkmark	855	SMAPGAVHLPQPVSTR	O_core		-2.09	30.	41	1007.501	2	2011.9843	2011.9885	185,478.92
L	•	3	1	1076	SMAPGAVHLPQPVSTR	O_core		-2.33	31.	59	1007.500	2	2011.9838	2011.9885	756,140.69
Ļ	+	4	\checkmark	599	SMAPGAVHLPQPVSTR	O_core ,O_core		-2.90	29.)8	1190.066	2	2377.1138	2377.1207	33,328,382.00
L	÷	5	\checkmark	378	SMAPGAVHLPQPVSTR	O_core ,O_core ,O_core	2	-2.29	27.	75	1372.633	2	2742.2466	2742.2529	201,459.91
	10		32.43										BioPharma Finder Mass Informatics Platform for Pr	TM 2.0 Otein Characterization	
	5	0- <u>-</u>				S ₁₈₆ MAPG	iAV	HLPQF	2VS ₁₉₉	Γ ₂₀₀ Ϝ	{				
	10 5	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					30.4	40		31.57			<u>S</u> MAPGA	AVHLPQPV	<u>ST</u> R +
	10 5	0 0 1 1 1 1 1 1 1 1 1 1 1	29.07						<u>S</u> MAPGAVHLPQPV <u>ST</u> R +						
	10 5		27.75 SMAPGAVHLPQPVSTR												
		<	27.5	28.0	28.5 29.0	29.5 30.0	1	30.5 31 T	ime (min)	1.5	32.0	32.5	33.0 33	3.5 34.0	34.5 35.0

CID and HCD spectra of peptide SMAPGAVHLPQPVSTR + 1 O-core1 (365.1322 Da)

Average Structural Resolution = 1.8 residues

Color Code for Ion Intensity >1.8e+004 >1.1e+004 >6.2e+003 >3.6e+003 >2.1e+003

Average Structural Resolution = 1.1 residues

$\overset{1}{S} + \overset{2}{\underline{M}} + \overset{3}{\underline{A}} + \overset{4}{\underline{P}} + \overset{5}{\underline{G}} + \overset{6}{\underline{A}} + \overset{7}{\underline{V}} + \overset{8}{\underline{H}} + \overset{9}{\underline{L}} + \overset{10}{\underline{P}} - \overset{11}{\underline{Q}} + \overset{12}{\underline{P}} + \overset{13}{\underline{V}} + \overset{14}{\underline{S}} - \overset{15}{\underline{T}} + \overset{16}{\underline{R}} + \overset{16}{\underline{V}} + \overset{16}{\underline{N}} + \overset{16}{\underline{V}} + \overset{16}{\underline{N}} + \overset{16}{\underline{V}} + \overset{16}{\underline{V}} + \overset{16}{\underline{N}} + \overset{16}{\underline{V}} + \overset{16}{\underline{V} + \overset{16}{\underline{V}} +$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 S M A P G A VHL P Q P V S T R b12-H20[2+](767.4) y4(462.2) b4(752.4) y12(1261.7) y15[2+](781.4) y14(1429.8) y11-3H20(1150.6) y9(1034.6) y8(897.5) y7(784.4) y5(559.3) y3-3H20[2+] y1

>1.6e+004 >9.0e+003 >5.1e+003 >2.9e+003 >1.6e+00

Color Code for Ion Intensity

HCD spectrum provides good peptide backbone fragmentation.

Site of glycosylation cannot be identified with the HCD or CID spectra.

Data acquisition method on a Fusion Lumos: ETD methods

Flexibility and ease of use to design acquisition method

DDA method used to collect data to identify the sites of O-glycosylation.

Data acquisition method on a Fusion Lumos: ETD methods

Data acquisition method on a Fusion Lumos: ETD methods

Other useful methods:

- * HCD followed by ETD for every precursors.
- * HCD followed by ETD when specific product ions are present in the HCD MS2 spectrum

ETD spectrum of SMAPGAVHLPQPVSTR (No O-core1 tag)

ETD MS/MS of O-glycan structural isomers: SMAPGAVHLPQPVSTR + 1 core1 tag.

ETD spectrum of SMAPGAVHLPQPVSTR + 2 core1 tag.

ETD spectrum of SMAPGAVHLPQPVSTR + 3 core1 tag.

Results for peptide SMAPGAVHLPQPVSTR after processing ETD data

E	ETD 📃		Peptide Sequence	Modification	Site	Delta (ppm)	Confidence Score	RT (min)	M/Z	Charge State Mono Mass Exp.		Mono Mass Theo. 🖌	
	T _x		<u>A</u> a sma ▼ ¥ _x	<u>A</u> a 🔹 🛙	, <u>A</u> a ▼ 17,	. = • T _x	= • T _x	= • T _x	= - T _x	$=$ T_{x}	= • T _x	= - T	
٠	1		SMAPGAVHLPQPVSTR	None		-1.19	100.0%	32.35	549.959	3	1646.8542	1646.856	
÷	2		SMAPGAVHLPQPVSTR	O_core	~T200	-0.94	100.0%	30.35	672.003	3	2011.9866	2011.988	
٠	3		SMAPGAVHLPQPVSTR	O_core	~S199	-1.06	100.0%	31.54	672.003	3	2011.9863	2011.988	
٠	4		SMAPGAVHLPQPVSTR	O_core ,O_core	S199,T200	-1.97	100.0%	29.07	595.537	4	2377.1160	2377.120	
÷	5		SMAPGAVHLPQPVSTR	O_core ,O_core ,O_core	S186,S199,T200	-2.11	100.0%	27.71	686.569	4	2742.2471	2742.252	
٠ [•	

All of the O-glycosylation sites of peptide SMAPGAVHLPQPVSTR were successfully identified

BioPharma FinderTM 2.0 Mass Informatics Platform for Protein Characterizatio

Etanercept: leveraging ETD and MSn for disulfide bond mapping

Disulfide bond mapping: Etanercept

Etanercept (trade name Enbrel)

LPAQVAF**T**PYAPEPGSTC₁₈RLREYYDQTAQMC₃₁C₃₂SKC₃₅SPGQHAK VFC₄₅TKTSDTVC₅₃DSC₅₆EDSTYTQLWNWVPEC₇₁LSC₇₄GSRC₇₈SSD QVETQAC₈₈TREQNRIC₉₆TC₉₈RPGWYC₁₀₄ALSKQEGC₁₁₂RLC₁₁₅APL RKC₁₂₁RPGFGVARPGTETSDVVC₁₃₉KPC₁₄₂APGTFS**N**TTSSTDIC₁₅₇ RPHQIC₁₆₃NVVAIPG**N**ASMDAVC₁₇₈TSTSPTR**S**MAPGAVHLPQPV**ST** RSQH**T**QP**T**PEP**ST**AP**ST**SFLLPMGP**S**PPAEGSTGDEPKSC₂₄₀DKTH**T** C₂₄₆PPC₂₄₉PAPELLGGPSVFLFPPKPKDTLMISRTPEVTC₂₈₁VVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQY**N**STYRVVSVLTVLHQDW LNGKEYKC₃₄₁KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEM TKNQVSLTC₃₈₇LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSC₄₄₅SVMHEALHNHYTQKSLSLSPGK

Disulfide bond mapping: Etanercept

Etanercept (trade name Enbrel)

The N-terminal side of this sample is not as expected. The first 2 amino acids are missing.

Disulfide Bond Mapping: Etanercept

Etanercept (trade name Enbrel)

LPAQVAFTPYAPEPGSTC₁₈RLREYYDQTAQMC₃₁C₃₂SKC₃₅SPGQHAFVFC₄₅TKTSDTVC₅₃DS C₅₆EDSTYTQLWNWVPEC₇₁LSC₇₄GSRC₇₈SSDQVETQAC₈₈TREQNRIC₉₆TC₉₈RPGWYC₁₀₄ALS KQEGC₁₁₂RLC₁₁₅APLRKC₁₂₁RPGFGVARPGTETSDVVC₁₃₉KPC₁₄₂APGTFSNTTSSTDIC₁₅₇R PHQIC₁₆₃NVVAIPGNASMDAVC₁₇₈TSTSPTRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPST SFLLPMGPSPPAEGSTGDEPKSC₂₄₀DKTHTC₂₄₆PPC₂₄₉PAPELLGGPSVFLFPPKPKDTLMIS RTPEVTC₂₈₁VVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKC₃₄₁KVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTC₃₈₇LVKGFYP SDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC₄₄₅SVMHEALHNH YTQKSLSLSPGK

The N-terminal side peptide contains one cysteine. The HCD search result of the non-reduced sample suggests that the N-terminal peptide is linked to two other peptides through disulfide bonds.

Leveraging ETD and MSn for disulfide bond mapping

Workflow of the MS2 ETD – MS3 HCD for disulfide bond peptide identification

Leveraging ETD and MSn for disulfide bond mapping

Workflow of the MS2 ETD – MS3 HCD for disulfide bond peptide identification

Peptide: AQVAFTPYAPEPGSTC₁₈R-EYYDQTAQMC₃₁C₃₂SK-VFC₄₅TK

MS3 HCD spectrum of AQVAFTPYAPEPGSTC₁₈R.

Peptide: AQVAFTPYAPEPGSTC₁₈R-EYYDQTAQMC₃₁C₃₂SK-VFC₄₅TK

MS3 HCD spectrum of EYYDQTAQMC $_{31}C_{32}SK$ using a) the Orbitrap or b) the ion trap mass analyzers.

Peptide: **AQVAFTPYAPEPGSTC**₁₈**R-EYYDQTAQMC**₃₁**C**₃₂**SK-VFC**₄₅**TK**

MS3 HCD spectrum of VFC₄₅TK.

Antibody Drug Conjugates

ADCs are heterogeneous mixture

Light Chain: 12 Lysines Heavy Chain: 32 Lysines

Trastuzumab emtansine peptide mapping by SMART Digest[™]

Trastuzumab emtansine SMART Digest (75 min) - reduction (non optimized protocol)

BioPharma FinderTM 2.0 Mass Informatics Platform for Protein Characterization

Proteins	Number of MS Peaks	MS Peak Area	Sequence Coverage	Abundance (mol)
1:LC_Trastu_Emta	1029	25.2%	100.0%	38.62%
2:HC_trastu_Emta	2479	62.8%	100.0%	61.38%
Unidentified	25270	12.0%		

BioPharma Finder Variable PTMs K: MCC-DM1 Glycan: CHO N, Q: Deamidation M, W: Oxidation

Trastuzumab emtansine: conjugated peptides

Subset of identified conjugated peptides

	ŧ	No.	Peptide Sequence	# K	-	Modification	Site	Deita (ppm)	ID Type	RT (min)	M/Z	Charge State	Mono Mass Exp.	Mono Mass Theo.	MS Area	Protein	
٦	ж	= (Custom) 🔹 🟹	<u>A</u> a		· T _x	<u>A</u> a (▼ ¥ _×	$\underline{A}a \bullet \underline{\nabla}_{\!_{\!$	= • T _x	<u>A</u> a 🔻 🟹	= • T _x	= • T _x	$= T_{\rm x}$	= • T _x	= • T _x	= • T _x	<u>A</u> a 🔹 🟹	×
÷	1	21049	ADYEKHK			DM1	K188	0.60	MS2	50.16	616.272	3	1845.7949	1845.7938	20,170,934.00	LC_Trastu_Emta	а
÷	2	21419	ADYEKHK	2		DM1	K188	-0.13	MS2	50.94	616.272	3	1845.7936	1845.7938	14,392,560.00	LC_Trastu_Emta	а
÷	3	22848	AKGQPR	1		DM1	K343	-0.09	MS2	53.88	806.878	2	1611.7408	1611.7410	1,016,677.25	HC_trastu_Emta	a
÷	4	23430	AKGQPR			DM1	K343	-0.17	MS2	54.75	806.878	2	1611.7407	1611.7410	790,552.56	HC_trastu_Emta	a
٠	5	26843	ALPAPIEKTISK			DM1	K337	0.64	MS2	64.62	742.381	3	2223.1206	2223.1192	462,441.38	HC_trastu_Emta	a
÷	6	26950	ALPAPIEKTISK	۷		DM1	K337	0.42	MS2	65.11	742.381	3	2223.1201	2223.1192	353,500.62	HC_trastu_Emta	a
÷	7	25889	ASQDVNTAVAWYQQKPGK			DM1	K39	0.40	MS2	60.66	983.794	3	2946.3564	2946.3553	99,419.80	LC_Trastu_Emta	а
÷	8	25971	ASQDVNTAVAWYQQKPGK	2		DM1	K39	0.56	MS2	61.18	983.794	3	2946.3569	2946.3553	78,092.43	LC_Trastu_Emta	а
÷	9	23503	ASQDVNTAVAWYQQKPGKAPK	2		DM1	~K42	0.58	MS2	54.93	1082.521	3	3242.5420	3242.5401	3,348,808.00	LC_Trastu_Emta	а
÷	10	23773	ASQDVNTAVAWYQQKPGKAPK	3		DM1	~K42	0.20	MS2	55.50	1082.521	3	3242,5408	3242.5401	2,925,363.50	LC_Trastu_Emta	а
÷	11	27147	DSTYSLSSTLTLSKADYEK	2		DM1	K183	0.50	MS2	66.91	1023.135	3	3064.3821	3064.3806	72,910.94	LC_Trastu_Emta	а
÷	12	27210	DSTYSLSSTLTLSKADYEK	2		DM1	K183	0.10	MS2	67.35	1023.136	3	3064.3809	3064.3806	42,332.44	LC_Trastu_Emta	а
÷	13	22964	TKPR	1		DM1	K293	-1.18	MS2	54.16	729.342	2	1456.6698	1456.6715	1,648,967.12	HC_trastu_Emta	a
÷	14	23556	TKPR			DM1	K293	-0.01	MS2	55.02	729.343	2	1456.6715	1456.6715	1,267,997.38	HC_trastu_Emta	a

Identification of peptide ASQDVNTAVAWYQQKPGKAPK

Identification of peptide ASQDVNTAVAWYQQKPGKAPK

$\dot{A} = \overline{s} + \overline{2} \overline{2} + \overline{2} \overline{2} + \overline{2} \overline{1} + \overline{1} + \overline{1} \overline{2} + \overline{2} \overline{1} + \overline{2} \overline{$

The HCD spectra of the non-conjugated peptide contains numerous intense y fragments ions. On the opposite, most of y ions for the conjugated peptide are at low intensity.

The HCD spectra of the conjugated peptide contains a characteristic neutral loss ion at m/z 547.2.

$\overset{1}{A} + \overset{2}{\underline{S}} + \overset{3}{\underline{O}} + \overset{4}{\underline{D}} + \overset{5}{\underline{N}} + \overset{4}{\underline{T}} + \overset{2}{\underline{A}} + \overset{10}{\underline{W}} + \overset{11}{\underline{W}} + \overset{11}{\underline{W}} + \overset{11}{\underline{U}} + \overset{11}{\underline{W}} + \overset{11}{\underline{W} + \overset{11}{\underline{W}} + \overset{11}{\underline{W}}$

Trastuzumab emtansine site occupation: ETD spectrum

Trastuzumab emtansine site occupation

Thermo Fisher SCIENTIFIC

Trastuzumab emtansine: conjugated peptides

Subset of identified conjugated peptides

	ŧ	No.	Peptide Sequence	# K	-	Modification	Site	Deita (ppm)	ID Type	RT (min)	M/Z	Charge State	Mono Mass Exp.	Mono Mass Theo.	MS Area	Protein	
٣,	c	= (Custom) 🔹 🏹	<u>A</u> a	,	· T _x	<u>A</u> a (▼ ¥ _×	<u>A</u> a ▼ 🏹	= • T,	<u>A</u> a ▼ 7 _x	$r = r T_{x}$	= • T _x	$= T_{\rm x}$	= • T _x	= • T _x	= • T _x	<u>A</u> a	▼ T _x
÷	1	21049	ADYEKHK			DM1	K188	0.60	MS2	50.16	616.272	3	1845.7949	1845.7938	20,170,934.00	LC_Trast	tu_Emta
÷	2	21419	ADYEKHK	2		DM1	K188	-0.13	MS2	50.94	616.272	3	1845.7936	1845.7938	14,392,560.00	LC_Trast	tu_Emta
÷	3	22848	AKGQPR	1		DM1	K343	-0.09	MS2	53.88	806.878	2	1611.7408	1611.7410	1,016,677.25	HC_tras	tu_Emta
÷	4	23430	AKGQPR			DM1	K343	-0.17	MS2	54.75	806.878	2	1611.7407	1611.7410	790,552.56	HC_tras	tu_Emta
+	5	26843	ALPAPIEKTISK	_ 2 _		DM1	K337	0.64	MS2	64.62	742.381	3	2223.1206	2223.1192	462,441.38	HC_tras	tu_Emta
+	6	26950	ALPAPIEKTISK	۷		DM1	K337	0.42	MS2	65.11	742.381	3	2223.1201	2223.1192	353,500.62	HC_tras	tu_Emta
÷	7	25889	ASQDVNTAVAWYQQKPGK	_ 2 _		DM1	K39	0.40	MS2	60.66	983.794	3	2946.3564	2946.3553	99,419.80	LC_Trast	tu_Emta
•	8	25971	ASQDVNTAVAWYQQKPGK	۷		DM1	K39	0.56	MS2	61.18	983.794	3	2946.3569	2946.3553	78,092.43	LC_Trast	tu_Emta
÷	9	23503	ASQDVNTAVAWYQQKPGKAPK	2		DM1	~K42	0.58	MS2	54.93	1082.521	3	3242.5420	3242.5401	3,348,808.00	LC_Trast	tu_Emta
+	10	23773	ASQDVNTAVAWYQQKPGKAPK	3		DM1	~K42	0.20	MS2	55.50	1082.521	3	3242.5408	3242.5401	2,925,363.50	LC_Trast	tu_Emta
÷	11	27147	DSTYSLSSTLTLSKADYEK			DM1	K183	0.50	MS2	66.91	1023.135	3	3064.3821	3064.3806	72,910.94	LC_Trast	tu_Emta
•	12	27210	DSTYSLSSTLTLSKADYEK	2		DM1	K183	0.10	MS2	67.35	1023.136	3	3064.3809	3064.3806	42,332.44	LC_Trast	tu_Emta
•	13	22964	TKPR	1_		DM1	K293	-1.18	MS2	54.16	729.342	2	1456.6698	1456.6715	1,648,967.12	HC_tras	tu_Emta
•	14	23556	TKPR	I		DM1	K293	-0.01	MS2	55.02	729.343	2	1456.6715	1456.6715	1,267,997.38	HC_tras	tu_Emta

Identification of peptide TKPR

Abundance

Relative

Middle-down: ETD

Main parameters that can be controlled for ETD fragmentation on an Orbitrap[™] Fusion[™] mass spectrometer.

• Isolation window

- AGC target for precursor ions and reagent
- Reaction time
- Supplemental energy

Top-Down sequencing: Trastuzumab

Light Chain of Trastuzumab

Due to the complexity of the spectra in top-down analysis, high resolution is required

Effect of parent ion AGC and ETD reaction time on sequence coverage (Trastuzumab)

% residue cleavages for AGC target value of 3E5 or 1E6 at different ETD reaction times

% residue cleavages for AGC target value of 3E5 or 1E6 at different ETD reaction times

Middle Down: Orbitrap Tribrid Fusion Lumos

Type:

Observed:

Theoretical:

Mass Diff. (Da):

Mass Diff. (ppm):

Monoisotopic

25,220.46

25,220.46

0.002

0.07

590.62

2e-53

Ŧ

High sequence coverage for the light chain, Fc and Fd were obtained from the combined ETD and EThcD experiments.

60 %

Monoisotopic

25,367.52

25,367.52

0.002

0.08

641.24

2.3e-57

18 %

Precursor Mass

Type:

<u>Scores</u>

P-Score:

PCS:

Observed:

Theoretical:

Mass Diff. (Da):

Mass Diff. (ppm):

% Fragments Explai...

Modification (E1)

No Modification

Custom

x

% Residue Cleavages: 60 %

Scores 101 SKAKJGQ PREPQVYTL PPSREEMTKN 125 PCS: 126 Q V S L T C LLVK GLFY P SDIIALVEWELSNGQ 150 P-Score: % Fragments Explain... 20 % 151 PENNYK T T P P VLLDSDGSFFLLYSKLLT 175 % Residue Cleavages: 67 % 176 V D K S R W Q Q G N V F S C S V M H E A L H N H Y 200 Modification (G1) 201 T Q K S L S L S P G C No Modification Custom Matching Fragments (Count: 454) X

26 VVVDVDVSHEDPEVKFNWVVDGVEVHN 50

⁵¹AKTKPREEQYNSTYRVVSVLTVLHQ ⁷⁵

76 DWLNGKEYKCKVSNKALPAPILEKTI 100

NIST mAb: middle down experiment using ETD and UVPD

ETD 10 ms + UVPD 12 ms

N DIQMTQSPSTLSASVGDRVTITCSA 24 ²⁶]S]S]R]V]G]Y]M]H]W]Y]Q]Q]K]P G]K]A]P]K]L]L]I]Y]D]T 5 51 S K L A S G V P S R F S G S G S G T E F T L T I S 75 76 SLLQPDDFAT YLYC F QG S GYP FT FGGGG 100 101 T KUVELIK RTVAAAPLS VLF ILFPPPSDEQ LLK 125 S GITIALS VIV CIL L NINE Y P REAKVQWK VD 150 151 NALLQIS GINISIQLE SIVITLE QUDISIK DIST Y SILLS 175 176 STLL TLLSKADYEKHKVYA CLEVTHQ GLL 200 201 S S P V T K S F N R G E C % Residue Cleavages: N G P S V F L F P P K P K D T L M I S R T P E V T C 25 0 ⁵¹AKTKPREEQYNSTYRVVSVLTVLHQ ⁷⁵ ⁷⁶]DWLNGKEYKCK)VSNKAL PLIEKTI 100 101 SLK ALKLGQP R ELP QLV Y TLLPLPLS R ELE MLT KN 125 L26 Q V S L T C L V K G F Y P S D I A V E W E S N G Q 150 151 PENNYK TTPPVLLDSDGSFFLYSKLLT 175 ١ĭ 176 V D K S R W Q Q G N V F S C S V M H E A L H N H Y 200 201 TLQLKLSLSPGC % Residue Cleavages: 67 % N OVTLRESGPALVKPTQTLTLTCTFS 25 26]G FSLSTAGMS V GW IROP P GKALJEW L 50 ⁵¹ AD IWWDDKKHYNPSLKDRLTISKDT ⁷⁵ 8 76 SKNQVVLKVTNMDPADTATYYCARD 100 101 M I FNFY FD VWGQ GT TV TV SA ST KG 125 126 P S V]FÌP LÌAÌP S SÌKLS TÌSLG G T A A L G C L VLK 150 151 DYFFEPEVTVSWNSGALTSGVHTFPA 175 176 VLLQSSGLLYSLSSVVVTVPSSSLLGT QT 200 226 THTCLPLPCLPLALPELLG % Residue Cleavages: 61 9

One acquisition with UVPD 12 ms

N DIQMITQISIPSTLISASVGDRIVITITCISA 25 26]SJSRIVJGYIMHWIYIQIQIKIPGIKAIPIKILILIYDT 50 51 SKILASGIVIPSRIFISGISGSGTEIFITLTIJS 75 76]SLIQIPDDFIAITYLYLCFQLGSGIYIPFTFGLGG100 101 TKVEIKRTVAIAIPLSVFILFIPIPLSDEQLLK125 126 SGTLASVLVCLLLNNFYPREAKVQWKVD150 151 NALQLSGNSQELSLVLTEQDSKDSTLYLS175 176 STLTLLSKLALDLYLEKLHLKVLYLACLELVLTLHQGL 200 201LSLSLPLVLTLKSFNRGEC%Residue Cleavages: 40%

N GPSVF]L]F]PPK]P]K]D]TL]M]I]SR]TPE]V]T]C 25 26 VVVDVDVSHEDPEVKFNVVDGVEVHN 50 ⁵¹ A K T K P R E E Q Y N S T Y R V V S V L T V L H Q ⁷⁵ 76]DWLNGKEYKCK]VSNKAL]PAPLIEKTI 100 101 SKAKGQPREPQVYTLPPSREEMTKN 125 126 Q V S L T C L V K G F Y P S D I A V E W E S N G Q 150 151 PENNYKTTPPVLDSDGSFFLYSKLT 175 176 V D K S R WLQ Q G NLV FLS CLS V M HLELA L HLNLH Y 200 201 TQKSLSLSPGC % Residue Cleavages: 32 % N OVTLRESGPALVKPTQTLTLTCTFS 25 ²⁶]GF]S]L]S]TA]GM]SVG]WI]R]Q]PPGKAL]E]WL ⁵⁰ ⁵¹ A D I W W D D K K H Y N P S L K D R L T I S K D T 76 SKNQVVLKVTNMDPADTATYYCARD 100 101 M I F N F Y F D V W G Q G T T V T V S S A S T K G 126 PSVFPLAPSSKSTSGGTAALGCLVK 150 151 DYFLPLEPVTVSWNSGALLTSGVHTFLPA 175 176 V LOS SG LYS L SSVVTVPS S S L G T Q T 200 201 Y I C N V N H K P S N T K V D K R V E P K S C D K 226 THTCLPPCLPALPELLG % Residue Cleavages: 26 %

N DIQMTQSPSTLSASVGDRVTITCSA 25 26 S S R VJGJYMHWJJQJQJK P GJKJA PJKJLJIJYDJT SISKLASGV PS RFSGSGS GT E F TLTIS 7 76 SLQ PDDFATYYCFQGSGYPFTFGGGG 100 101 T KVEIIK RT VA A PS VF IF P P SDEQ LK 125 10 126 S G T A S V V C L L N N F Y P R E A K V Q W K V D 150 151 NALLQ S GNSQES VITEQDSKDSTYSLS 175 176 STL TLSKADYEKHKVYACEVTHQGL 200 201 S P V T K S F N R G E C % Residue Cleavages: N G P S V F L F P P K P K D T L M I S R T P E V T C 25 % 26 V V VD V SHED PEVKFNWYVDGVEVHN 50 ⁵¹AKTKPREEQYNSTYRVVSVLTVLHQ ⁷⁵ O 3 76 DWLNGKEYKCKVSNKALPAPILEKTI 100 S 101 SKAKGQPREPQVYTLPPSREEMTKN 125 126 Q V S L T C L V K G F Y P S D I A V E W E S N G Q 150 U 151 PLE NNYKTTPPVLDSDGSFFLLYSKLLT 175 LĽ 176 VDKSRWOOGNVFSCSVMHEALHNHY 200 201 TOKSLSLSPGC % Residue Cleavages: 52 % N Q V T L R E S G P A L V K P T Q T L T L T C T F S 25 26 GFSLSTAGMSVGWIRQPPGKALEWL 50 AD IWWDDKKHYNPSLKDRLTISKDT 0 2 76 SKNQVVLKVTNMDPADTATYYCARD 100 0 (0) \mathbf{c} 101 M I FNFY FD VWGQGTTV TV S SAST KG 125 N PSVFPLAPSSKSTSGGTAALGCLVK 150 151 DYFPEPVTVSWNSGALTSGVHTFPA 175 σ 176 VLQSSGLYSLSSVVTVPSSSLGTQT 200 \mathbf{O} 226 THTCPPCPAPELLGC % Residue Cleavages: 43 %

One acquisition with ETD 10 ms

NIST mAb: middle down experiment using ETD and UVPD

	One acquisition with E	ETD 10	ms	One acquisition wi	th UVPD 12 ms	ETC	0 10 ms + UVPD 12 ms	
LC (60%)	N DI QM TQS PSTLSASVGC 26 SSRVGYMHWYQQK PGKA 51SKLASGV PSRFSGSGSG 76SLQ PDDFATYYCFQGSG 101 TKVEIKRTVAAPSVFIL 126 SGTASVVCLLNNFYPRE 151NALLQSGNSQESVTEQDS 176STLTLSKADYEKHKVYA	D R V T I A P K L L L G T E F T G Y P F T F P P S D E A K V Q S K D S T A C E V T	T C S A 25 N I]Y]D]T 50 26] L]T]I]S 75 51 F[G]G]G 100 76] E[Q L[K 125 101 W]K V[D 150 126 Y[S]L[S 175 151 H[Q G L 200 176	DIQMÌTQÌSÌPSTLÌSAS SÌSRÌVÌGYÌMÌHWÌYÌQÌQÌKÌF SKÌLASGÌVÌPSRÌFÌSGÌS SLÌQÌPDDFÌAÌTYLYLCFQ TKVEIKRTVAÌAÌPLSV SGTLASVLVCLLLNNFY NALQLSGNSQELSLVLTE STLTLLSKLALDLYLEKLHLK	S V G D R V T I T C S A 25 P G K A P K L L L I Y D T 50 S G S G T E F T L T I S 75 Q G S G Y P F T F G G G 100 Y F I F P P S D E Q L K 125 Y P R E A K V Q W K V D 150 E Q D S K D S T Y S L S 175 X V Y A C E V T H Q G L 200	N D I QMTQ 26]S]S]RV]G]Y 51]S]K]L]A]S]G 76]S[L]Q[P]D]D 101 T K[V]E]I]K 126 S G[T[A]S V 151[N]A[L]Q[S G] 176[S[T[L T[L]S]	S)P S T L]S A S V G D R]V]T]I T]C]S A 25 M]H]W]Y]Q]Q]K]P G]K]A]P]K]L]L]I]Y]D]T 50 V]P]S R]F]S]G]S]G]S G]T E]F]T]L]T]I]S 75 IF]A]T Y[Y[C F Q[G S G]Y]P F]T F[G]G]G 100 R]T]V]A]A]P[S V]F I[F]P]P[S]D[E]Q L[K 125 [V C[L L N]N[F Y P R]E[A[K[V]Q]W]K V[D 150 [N]S[Q[E[S[V T]E[Q]D[S[K]D[S]T[Y]S[L[S 175 [K]A[D]Y[E[K]H[K[V]Y[A C[E[V]T]H[Q G[L 200	
	201 S PVT KSFNR G E C % Resid	lue Cleavag	es: 60 %	SLSLPLVLTLK S F N R G E C 9	6 Residue Cleavages: 40 %	201 ͺϛͺϛͺϼͺνͺ ϯͺκ	SLFNRGEC % Residue Cleavages: 78 %	%
(%)	N G P S VJFJLJF P PJK PJKJDJTJLJM 26JV V VJD V SJHJEJD PJEJVJKJFJNJWJ 51JAJKJTJK PJRJEJEJQJY <mark>N</mark> S T Y RJV	I]S]R]T P]	EIVITIC 25 N	GP S V FILIFIP P KIPIKIDI	ages	N GIP S VIFILI	F]P P]K]P]K]D]T]L]M]I]S]R]T P]E]V]T]C 25 H]E]D]P]E]V]K]F]N]W]Y]V]D]G]V]E]V]H]N 50 E]E]Q]Y <mark>]N</mark>]S T Y R]V V S V L T V L H Q 75	
22	⁷⁶ DWLNG <mark>KEYKCKVSNKA</mark>		ETD 10 ms	UVPD 12 ms	ETD + UVPD	% increase	EYKCKÌVSNKALÌPLAPLILELKÌTLI 100	
С С	101 SLK ALKLELO P K E P Q V Y TLL P 126 Q V S L T C L VLK GLFLY PLS D I 151 PLE NNYLK T T P P V L DLSDG	LC	60	40	78	30.0%	PRELPQLVYTLL PLPLSRELEMLTKLN125 LVLKGLFLYPLSDILAVEWLELSNLGLQ150 TTLPPVLLDLSDLGLSLFFLLYLSKLLT175	
		Fc	52	32	67	28.8%	χ[Q[G[N[V]F[S c[S V M[H[E[A L[H[N[H[Y 200 κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ p]c κ γ κ γ γ κ γ γ γ γ γ	
	N QVTLR]E]S]GPALV]KP]T]Q]T	Fd	43	26	61	41.9%	SIG P A LIVIKIPITIQITILITILITICITIFIS 25	_
3%)	²⁶ G F]S L S T A G M S V G W I R]Q P ⁵¹ A]D I]W]W]D]D]K K H Y]N P S]L K D ⁷⁶]S]K]N]Q]V V L]K]V]T]N M]D P A D T ¹⁰¹ M I F]N]F]Y F]D V]W]G O G T T]V T	PGIKIAIL R L TIS ATYYC	EWL 50 20 [K]D]T 75 51 A R D 100 76 T K]G 125 00 101	В FISILISIT А В МІЗ V ВІМ. А D I W W D D KÌK H YÌNÌP S S K N Q V V L K VÌT N M DÌI M I F N F Y F D V W GÌQ G I	S L K D R L T I S K D T 75 P A D T A T Y Y C A R D 100 F T V T V S S A S T K G 125	51 A]D I]W]W]D] 76]S]K]N]Q]V V 101 M I F]N]F]Y	A]G M]S V G[W I]R]Q]P P G[K A L]E]W L 50 D]K]K H Y]N]P S]L K D]R]L]T I S]K]D]T 75 L]K]V]T]N M]D]P A D T A T Y Y C A R D 100 F]D V]W]G]Q G[T T]V T]V S[S[A S T K]G 125	
4	126 P S V]F P L]A P S S]K[S T]S[G G T 151 D Y]F P[E P V T V[S W N[S[G[A L T	A A L G C S G V H T	L V K 150 F P A 175	P S V FÌP L AÌP S S K S T S D Y FÌPLELP V T V S W N S C	S G G T A A L G C L V K ¹⁵⁰ S ALL T S G V H T FLP A ¹⁷⁵	126 P S V F P L 151 D Y F F F F F	A) P S S)KLS TLSLG G T A A L G C L VLK 150 V T VLS W NLSLGALL TLSLG V H T FLP A 175	
й	[⊥] /º LV LLQLSLS GLLYLSLLSLSLV VLTLV P 201 LY I C N V N H K P S N T K V D K R 226 T H T C P P C P A P E L L G C % R	S LS LS LL LG LV LE P K LS esidue Cleav	c [D [K 225] 201 ages: 43 % 226	Y I C N V N H[K[P[S]N T K N T H T C[P P C[P A[P E L L C	V DLK R V ELP K S C D K 225 % Residue Cleavages: 26 %	226 T H T CLPP	LL LL <td< td=""><td>5</td></td<>	5

Hydrogen Deuterium Exchange

HDX-MS workflow

Moving from MS only to MS/MS HDX experiment using ETD

Under normal operation condition, minimal scrambling is observed on the ETD Spectrum

•Minimal deuterium scrambling ETD measurement with different instruments and source conditions (No deuterium is retained on Histidine due to fast exchange with solvent)

Moving from MS only to MS/MS HDX experiment using ETD

Pinpoint the Protein Ligand Binding Site with ETD

Deuterium labeled protein and protein+ligand biding sample's C and Z fragments mass differences vs. sequence position. From C3 to C14 |4mass differences were from 0.03 to 0.2. Start from 1 C17, the Δ mass increased to around 1 and stay at the same level for the rest of the C fragments. C14 4 was identified as significant change area.

Significant change was observed around Z_8 - Z_{10} is consistent with the C fragments plot. Combine the two plot results, the potential binding site was predicted.

Summary

• ETD is a must have type of fragmentation for in-depth characterization of biotherapeutic proteins.

 High sequence coverage for middledown experiments allows quick characterization assays.

 Orbitrap Fusion Lumos offers multiple types of fragmentation and ease of use to tackle the most challenging task.

Thank you !

Acknowledgements

BioPharma Vertical Marketing

- Kelly Broster
- Rowan Moore
- Terry Zhang
- Aaron Bailey
- Kyle D'Silva
- Michael Blank
- Simon Cubbon
- Stephane Houel
- Jonathan Josephs
- John Rontree

Tribrid Product

Management

- Helene Cardasis
- Seema Sharma
- Romain Huguet
- Vlad Zabrouskov

BioPharma Software

- Jennifer Sutton
- Mark Sanders

