

Advanced QA/QC characterization MS in QC : Multi Attribute Method

Global BioPharma Summit

A Complex Problem: Drug Safety and Quality

Safety Is the product safe to use? (e.g. Immunogenic effects?)

Potency

Does the drug have the expected effect? (e.g. CDR complementation)

Knowledge How do changes effect the therapeutic? (e.g. Oxidation)

Quality

How do changes in process effect the product? (e.g. Glucose concentration on glycoforms)

How much? What? Unregulated GLP GCP / GMP BioPharma Finder Chromeleon Approval **Pre-Clinical** Discovery П Release Development MS in QC: Multi Attribute Method (MAM) Analytical and Automation Process Technologies Molecular Assessment **Quality Control** Protein Attribute Chemistry • Attribute Science Groups Manufacturing •

Advantages of MAM

Required Characterizations	MAM Metho	d				Conve	ntiona	l Metho	ds 📰
	Pep Map-MS		SEC	CEX	rCE-SDS	nrCE-SDS	HILIC	ID ELISA	HCP ELISA
Aggregate Assessment	No		Yes	Indirect	Yes	Yes	No	No	No
Deamidation (Isomerization) Assessment	Yes		No	Indirect	No	No	No	No	No
Disulfide Isoform Assessment	Maybe		No	Indirect	No	Yes	No	No	No
Glycation Assessment	Yes		No	No	Yes	Yes	No	No	No
High Mannose Assessment	Yes		No	No	No	No	Yes	No	No
Methionine Oxidation Assessment	Yes		No	No	No	No	No	No	No
Signal Peptide Assessment	Yes		No	No	No	No	No	No	No
Unusual Glycosylation Assessment	Yes		No	Indirect	Maybe	Maybe	Yes	No	No
CDR Tryptophan Degradation Assessment	Yes		Indirect	No	No	No	No	No	No
Non-consensus Glycosylation Assessment	Yes		No	No	Maybe	Maybe	No	No	No
N-terminal pyroGlutamate Assessment	Yes		No	Indirect	No	No	No	No	No
C-terminal Lysine Assessment	Yes		No	Yes	No	No	No	No	No
Galactosylation Assessment	Yes		No	No	No	No	No	No	No
Dimer Assessment	No		Yes	No	No	No	No	No	No
Fragmentation (peptide bond) Assessment	Maybe		Maybe	No	Yes	Yes	No	No	No
Disulfide Reduction (DS Fragmentation) Assessment	Maybe		No	No	No	Yes	No	No	No
Host Cell Protein Assessment	Yes		No	No	No	No	No	No	Yes
Mutations/Misincorporations Assessment	Yes		No	No	No	No	No	No	No
Hydroxylysine Assessment	Yes		No	No	No	No	No	No	No
Thioether Assessment	Yes		No	No	No	No	No	No	No
Trisulfide Assessment	Maybe		No	No	No	No	No	No	No
Non-glycosylated Heavy Chain	Yes		No	No	No	No	No	No	No
DNA Assessment	No		No	No	No	No	No	No	No
Cysteine Adducts Assessment	Maybe		No	Maybe	No	No	No	No	No
C-terminal Amidation Assessment	Yes		No	Indirect	No	No	No	No	No
CDR Conformers (HIC Isoform) Assessment	No		No	Indirect	No	No	No	No	No
O-linked Glycans Assessment	Maybe		No	No	No	No	No	No	No
Fucosylation Assessment	Yes		No	No	No	No	No	No	No
Residual Protein A	Yes		No	No	No	No	No	No	No
Identity	Yes		No	Yes	No	No	No	Yes	No

Multi-Attribute Method for QC

Key Tenets of MS in QC (aka MAM)

Multi Attribute Method

Confirmation

Confirm process by evaluating release product against a gold reference standard

Using High Resolution/Accurate Mass MS instrumentation to directly measure CQA

Quality by Design

Implement hybrid traditional (evaluation in QC) and QbD approach (monitoring of CQA and end-result of CPP space)

Knowledge

Eliminate the need of traditional lot release methodologies while increasing product knowledge

Materials

Methods

Peptide Mapping

TIC Basepeak

Intensity 3e9 Intensity 1.6e9

Peptide Mapping

Establishing CQAs

SCIENTIFIC

MS in QC – Late Stage Discovery to Process Dev / QC

- Analytical group is primary driver and is responsible for
 - · Identification and selection of target peptides / modifications
 - Generation of targeted component list (HR/AM MS1) for QC
 - Complete analytical method (processing and instrument methods, designing report templates, eWorkflows)
 - Development of peptide mapping assay SOPs (for QC)
 - MS list is transferred directly from the discovery experiment in BioPharma Finder 2.0 to Chromeleon
 - Checkboxes enable easy selection of components to transfer.
 - More can be added at anytime in the future

esul	lts										
e 🛛 🖓		Level	No.	Identification	Peptide Seque	nce	Modification	Site	Delta	a (ppm)	
٦,	×		<u>A</u> a ▼ ₩ _ж	= • T _x	= (NonBlanks) - 🗸	<u>A</u> a	👻 T _{ac}	<u>A</u> a 🔹	r _ж <u>A</u> a → 1	. –	▼ T ₁
Ð	94		Component	1414	1:Q154-K168 = 1622.70199m[nonspecific]	QSGNSQESVT	TEQDSK	nonspecific			-1.13
Ð	95		Component	1416	1:Q154-K168 = 1622.70199m[nonspecific]	QSGNSQESVT	TEQDSK	nonspecific			-0.6
E	96		Component	1422	2:P294-R304 = 1441.65861m(N300+A2G2F)	PREEQYNSTY	R	A2G2F	N300		-1.4
	97		Component	1424	2:H60-R68 = 1128.56761m	HYNPSLKDR		None			-1.6
Ð	98		Component	1425	2:P294-R304 = 1441.65861m(N300+A2G1F)	PREEQYNSTY	R	A2G1F	N300		-1.2
Ð	99		Component	1428	2:H60-R68 = 1128.56761m(K66+Glycation)	HYNPSLKDR		Glycation	K66		-1.3
Ð	100		Component	1430	2:P294-R304 = 1441.65861m(N300+A2G0F)	PREEQYNSTY	R	A2G0F	N300		-1.2
0 ° ×	101	V	Component	1431	2:H60-R68 = 1128.56761m(K66+Glycation)	HYNPSLKDR		Glycation	K66		-1.0
	102		Component	1437	1:V149-K168 = 2134.96145m(D166+Isomeriz	VDNALQSGN	Export All cor		D166		-0.4
	103		Component	1457	1:V149-K168 = 2134.96145m(D166+Isomeriz	VDNALQSGN	Create mgf	ed components >	Excel Workbook		0.0
	104		Component	1505	2:E296-R304 = 1188.50473m(N300+A3Ga3F)	EEQYNSTYR		vo Processing	CSV		-1.3
Ð	105		Component	1515	2:T259-K277 = 2080.99869m(C264+Carboxy	TPEVTCVVVD		t Information	Chromeleon		-0.5
Ð	106		Component	1517	2:E296-R304 = 1188.50473m(N300+A2Ga1G	EEQYNSTYR	Componen	AZGALOIF	N300		-1.8
	107		Component	1518	2:E296-R304 = 1188.50473m(N300+A2Ga2F)	EEQYNSTYR		A2Ga2F	N300		-1.5
Ð	108		Component	1519	2:E296-R304 = 1188.50473m(N300+A2Ga1G	EEQYNSTYR		A2Ga1G1F	N300		-1.6
	109		Component	1523	2:E296-R304 = 1188.50473m(N300+A3Ga1G	EEQYNSTYR		A3Ga1G2F	N300		-1.0
Ð	110		Component	1524	2:E296-R304 = 1188.50473m(N300+A2Ga2F)	EEQYNSTYR		A2Ga2F	N300		-1.6
	111		Component	1525	2:E296-R304 = 1188.50473m(N300+A2Ga2F)	EEQYNSTYR		A2Ga2F	N300		-1.7

Acquiring Data

Data Analysis Processing Chromeleon

Chromeleon 7.2

- Set up injection sequence
- Build LC and MS methods
- Target. Confirm. Integrate.
- Look for new peptides/impurities/features
- outputs/formulas

Injection List

Building Targeted List of Critical Quality Attributes

Chromeleon 7.2

MS Settings

1	
36	
	P 4
	_
	-

high resolution enables accurate extraction and quantitation

no offline recalibration necessary

Chromeleon 7.2

•	Set absolute	or relative	retention	time

- Set absolute or relative RT window
- Setting on specific to individual component
- First, greatest, nearest match within window

Retention				
Retention Time				
Retention Time:	39.241	min		
Use this component as	reference compo	onent		
Interpretation				
Absolute Time				
O Time Distance				
O Time Ratio				
Reference	e component:		-	
	1	Requires Referer	nce Peak	
Retention Time St	tandard Peak Are	a Patio		
0				
Hat	tio Tolerance: 0.0	00	A V	
Window				
Detect peak within retention	n time +/-	0.100	min	
Interpretation				
Absolute				
Relative				
Component Match				
First	Spectrun	n only		
 Greatest 	Spectrun	n and Time		
Nearest				

Quantification of CQA: M255 Oxidation

Deamidation of N392

GFYPSDIAVEWESNGQPEN[Deamid]NYK

Deamidation of N62

Deamidation of N62

Deamidation of N62

Deamidation of N62

Deamidation of N62

eak Name	Ret.Time	Area
	min	counts*min
irst Injection	NistAb02_MAM30k	NistAb02_MAM30k
IS Quantitation Peak	MS Quantitation Peak	MS_Quantitation
IYNPSLK	7.928	
IYN[Deamid]PSLK	8.014	
	TOTAL Rel Abundance	96404929.37 0.09%
 HYNPSLK-2 HYNPSLK (+2) HYNPSLK 		
HYN[Deamid]PSL		
HYN[Deamid]PS		
😪 (+2) HYN[Deami	dIPSLK	

Deamidation of N62

Deamidation of N62

Deamidation of N62

HYN[Deamid]PSLK

		ographically Resolved	
Peak Name	Ret.Time	Peak Area	
First Injustion	min NietAb02 MAM120k 1	counts*min	
First Injection MS Quantitation Peak	NistAb02_MAM120k_1 MS Quantitation Peak	NistAb02_MAM120k_1 MS Quantitation Peak	
HYNPSLK	7.930		.099
HYN[Deamid]PSLK	8.022	202432.	.341
	TOTAL	84179679	
	Rel Abundance	0.1	^{24%}
HYNPSLK-2			
MYNPSLK			5 p
😪 (+2) HYNPSLK			Spe
4 HYN[Deamid]PSLK	-2		
HYN[Deamid]PSL	<		
😪 (+2) HYN[Deamid]	PSLK		

Spectrometrically resolve deamidated peptides

Data Analysis Processing Chromeleon

Chromeleon 7.2

- Set up injection sequence
- Build LC and MS methods •
- Target. Confirm. Integrate.
- Look for new peptides/impurities/features
- Automatically generate reports outputs/formulas

Injection List

Assign a reference injection (A) and compare as many new injection (B) as desired

First Sample Prep (A) Second Sample Prep (B)

Set Alignment and Framing Settings

0.1% Base Peak 10 ppm 0.5 min

Automatic Alignment and Framing

Monoisotopic

Multiple Isotopes

Charge between 2 and 4

More than 10-fold Change

1	Non	-Targeted MS Processing	
- 10		ections	
	ter ter	Blank_5	
		NistAb01_PeptideMap_1	
	3 🛃	NistAb01_PeptideMap_2	
	4 🛃	NistAb01_PeptideMap_3	
	5 🛐	NistAb01_MAM120k	
	6 🛐	NistAb01_MAM240k	
	7 🖥	NistAb01_MAM60k	
	8 🛐	NistAb01_MAM30k	
	9 🖥	NistAb02_PeptideMap_1	
1	0 🛐	NistAb02_PeptideMap_2	
	1 🛐	NistAb02_MAM120k_1	
1	2 💽	NistAb02_MAM120k_2	
1	3 🛐	NistAb02_MAM240k	
1	4 🖥	NistAb02_MAM60k	
1	5 🗑	NistAb02_MAM30k	
	6 🛐	NistAb02_MAM120k_3	

Validation of Results

Assign a reference injection (A) and compare as many new injection (B) as desired

First Sample Prep (A) Second Sample Prep (B)

Set Alignment and Framing Settings

0.1% Base Peak 10 ppm 0.5 min

Automatic Alignment and Framing

Monoisotopic Multiple Isotopes

Charge between 2 and 4

More than 10-fold Change

Validation of Results

Assign a reference injection (A) and compare as many new injection (B) as desired

First Sample Prep (A) Second Sample Prep (B)

Set Alignment and Framing Settings

0.1% Base Peak 10 ppm 0.5 min

Automatic Alignment and Framing

Monoisotopic Multiple Isotopes Charge between 2 and 4 More than 10-fold Change

Validation of Results

Assign a reference injection (A) and compare as many new injection (B) as desired

First Sample Prep (A) Second Sample Prep (B)

Set Alignment and Framing Settings

0.1% Base Peak 10 ppm 0.5 min

Automatic Alignment and Framing

Monoisotopic

Multiple Isotopes

Charge between 2 and 4

More than 10-fold Change

Validation of Results

In Spec: No New Features

Detection of New Features: PRTC Syn Peptide Kit

Detection of new features in Nist Ab digest with 1% of Peptide RT Calibration peptides spiked in

Digest Only (A) Digest + 500 fmol/uL PRTC (B) Alignment and Framing Settings 1.0% Base Peak 10 ppm

Detection of New Features: Stress Study

Two Weeks at pH 8

Forced stress study versus sample immediately after preparation

Detection of New Features: Stress Study

Two Weeks at pH 8

Forced stress study versus sample immediately after preparation

System Suitability

System Suitability

Thermo Fisher

CQA Profiling

CQA Overview

Thermo Fisher

Glycan Profile

					Glyca	n Profi	e					Th s c		sher FIC	
nce Det	ails														
Name:		AppsNotell													
Instrume		TheGhostandth	Darkness									Created On:		01/Feb/17 17:00:03	_
Imported		False										Updated On:		03/Feb/17 15:17:33	
First Inje	ection: Ing Method:	Control_One_1 SuperMAM													
MS Aco	uisition Time (mi														
	Length [min]:	115.00													
Total Th	ne (hrsj	15.33													
Data Va No. of In	WE loop:	ChromeleonLd.	al									Created By: Updated By:		Thermo Thermo	-
740. 07 10	eccons.	•										opusied by:		The fille	
STYR G	lycopeptides														
	Name														
			G0F - GICNAC	G0F	G1F	G2F	G2F + Hex	G0	G1	M5	G2	MG	M7	Degly	1
Control_	One_1		5.2	38.8	39.5	9.0	1.8	0.1	0.1	0.9	0.04	0.05	0.02	0.6	1
Control			5.2	39.0	39.1	9.1	1.8	0.1	0.1	0.9	0.03	0.05	0.02	0.6	1
Control			5.3	38.4	39.6	9.3	1.8	0.1	0.1	0.9	0.05	0.05	0.02	0.6	1
Control			5.2	38.7	39.5	9.1	1.8	0.1	0.1	0.9	0.05	0.06	0.03	0.6	1
Control			5.4	38.8	39.3	9.0	1.7	0.1	0.1	0.9	0.04	0.05	0.02	0.6	1
Control			5.4	38.7	39.2	9.1	1.8	0.1	0.1	1.0	0.05	0.06	0.02	0.6	1
	Three_1		5.3	38.7	39.3	9.0	1.8	0.1	0.1	0.9	0.05	0.06	0.03	0.6	1
	Three_2		5.3	39.1	39.2	8.9	1.7	0.1	0.1	0.9	0.05	0.05	0.02	0.6	1
	6 Abundar	nce													1
50^{\prime}															
- K	J													ntrol_One_1 ntrol_One_2	
														ntrol_One_3	
45	2													ntrol_Two_1	
	A													ntrol_Two_2	
- K	4 +													ntrol_Two_3	
40	0													ntrol_Three_1	
- ""	2	.												ntrol_Three_2	
- K															
35	J														
- 35 (0														
	2														
K	/														
30	/														
	A														
- P															
25	4														
	g														
20	/L.														
C	J													·	
15	A														
- E	4														\vdash
- E															
10	2														
- K	4														
_ <u>_</u> Ľ	J														
5	2														
	2														
- o É															
0 4	GOE -	GICNAC G	ÓF G1F-G	SICNAC G	1F (G2F G2F	+ Hex GC	G1	M	5 G	2 1	46 M	7 Degl	v	

Custom MS Report Template

eWorkflows

- eWorkflow automates the acquisition, data processing, and reporting processes
- Ultimate goal of a QC implementation

Pack Everything Up

Chromeleon 7.2

Contains:

Sequence

Raw Data

Enterprise Based Solution

Chromeleon 7.2

Remote: Data Vaults Data Processing Licensing Administration

Multi-Attribute Method

Not just about reducing the number of tests, but a better way to validate purity

$\overline{\mathbf{-}}$

Insightful

Use high quality deeper knowledge of product to improve from development to production through QbD

Easy to Use

Simple LCMS methods without the need for advanced chromatography or gas phase separations

High Resolution

Take advantage of another dimension of separation to see what is missed.

Powerful

Replace numerous conventional lot release techniques while providing greater knowledge of product attributes

Previously Filed

Software/hardware already used for several filings to begin clinical trials with the FDA

Confident

Composite peptide scoring and separation of isotopes/charge states helps eliminate false quantitation

