

# SCIENTIFIC

### High Performance Analytics for Bioprocessing and Manufacturing

Global BioPharma Summit

The world leader in serving science

### Agenda





### High Performance Analytics for Bioprocessing & Manufacturing





### **Product Portfolio**



#### Turnkey solutions addressing critical customer needs across the Biotherapeutic production workflow



### Advantages of Fully Integrated Systems

- Consistent Performance: Kit to Kit, Lot to Lot, Year to Year
- Minimizes:
  - Internal development and optimization investment
  - Procurement and qualification of reagents from multiple vendors
  - Development of SOP's for preparation of standards and controls
  - Preparation and qualification of standards and controls
- Challenging Test Samples :
  - Leverage our experience gained from solving sample preparation challenges around the world
- Customer Support:
  - Expert Field Application Scientist support eliminates development of specialized internal training program and enables rapid implementation
  - Equipment validation support, protocols and execution
  - Test method validation examples and guidance
  - Trouble shooting: Expert technical support if a problem is encountered
- Site to Site Transfers:
  - No comparability validation needed, same method and multiple sites



### Worldwide support network







### **Glycan Analysis**



#### **Glycosylation:**

Attachment of Glycans (Carbohydrates or oligosaccharides) to proteins

- Glycans are made up of **Monosaccharides**
- More than **70%** of biotherapeutics are glycosylated
- Glycans are important for protein stability, folding, assembly, signaling, etc.
- Glycosylation is a critical quality attribute (CQA) of biotherapeutics



### **Glycan Analysis Challenges**





### GlycanAssure System

- Very high throughput (96 samples/7–9 hrs)
- No compromise in CE separation time
- Easy magnetic bead based workflow
- Fewer pipetting steps and hands-on time
- Multiple fluorescent dyes for glycan labeling
- No use of Sodium cyanoborohydride
- No vacuum centrifugation steps
- Parallel analysis of 24 samples on AB multi capillary CE (<2min/sample)</li>
- Fit for use "app" style software
- Integrated solution with sample prep kits, CE instrument and software
- Reduced cost per sample

First fully integrated system combining throughput and data quality





### **Product Overview**





### Sample Prep Kits

- Three fluorescent dyes with distinct properties
- Traditional APTS and two Thermo Fisher Scientific proprietary dyes
- Faster glycan labeling with Teal and Turquoise dyes (30 min)
- Magnetic beads for glycan purification and excess dye removal
- No need for excess dye removal with Teal (96 samples in 7hrs)
- Each kit with PNGase-F enzyme and beads for 96 samples





### **CE** Instrumentation

#### **Key Features**



8 & 24-capillary systems for medium & high throughput parallel analysis (< 2min/sample)



Single-line, 505 nm, solid-state, long-life laser that utilizes a standard power supply and requires no heat-removal



Powerful, integrated data acquisition and analysis software that provides real-time assessment of data



Radio frequency identification (RFID) technology that tracks key consumables data and records administrative information



Calibration across capillaries using internal standard



Unrivaled application flexibility—one array and one polymer are used for most applications



Simple setup, operation, and maintenance







### Software

#### Acquisition Dashboard

Quick access to instrument status and data

#### **Run Setup**

Simplified and intuitive chevron based, step by step workflow

#### **Reports**

Easily create reports with choice of templates

#### Library

Stores historical information for plates, experiments, methods and reference



( 🕅 )

#### Analysis Dashboard

- Quick view of analyzed and unanalyzed samples. Allows to create data analysis projects
- Quick access to favorite projects

#### **Data Processing**



- Quick comparison of analysis methods, alignment, normalization, and smoothing
- Library of analysis methods and recommendations for glycan analysis

Analysis

Simplified graphics interface for manual integrations







### APTS Workflow

|              |                   | *****                  | ***                | *****                 |                             |
|--------------|-------------------|------------------------|--------------------|-----------------------|-----------------------------|
| Sample       | Glycan<br>Release | Glycan<br>Purification | Glycan<br>Labeling | Excess Dye<br>Removal | CE<br>Analysis              |
| Glycoprotein | PNGase-F          | Magnetic Beads         | APTS               | Magnetic Beads        | 24 Capillary<br>CE Analysis |
|              | 1 Hour            | 30 Minutes             | 2 Hours            | 30 Minutes            | 3 Hours                     |

#### Notes:

Total 9hrs taking into account initial glycoprotein prep time and time between steps. Total time of the workflow is only 7hrs. CE takes 45min to analyze 24 samples



### Reproducibility of Glycan Separation



#### Plasma Glycans/APTS





### Variability Across Instruments & Arrays



\*Tight relative quantities among repetitive injections (12 Injections)



### Consistent Quantitation of glycans from varying inputs of IgG

|       | 1µg   |       | 2.5µg |       | 5µg   |       | 25µg  |       | 50µg  |      | 100µg |      |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|------|
| Peak# | %Area | %CV   | %Area | %CV   | %Area | %CV   | %Area | %CV   | %Area | %CV  | %Area | %CV  |
| A2F   | 1.11  | 12.27 | 0.96  | 5.23  | 1.03  | 3.60  | 1.08  | 4.48  | 0.93  | 4.99 | 0.89  | 8.25 |
| A2FB  | 0.96  | 18.10 | 0.72  | 6.87  | 0.78  | 11.15 | 1.01  | 5.31  | 0.86  | 4.28 | 0.83  | 8.62 |
| G1FS1 | 1.32  | 7.04  | 1.25  | 2.83  | 1.32  | 4.67  | 1.32  | 5.17  | 1.29  | 4.49 | 1.28  | 3.95 |
| A1    | 0.61  | 14.19 | 0.59  | 14.17 | 0.54  | 13.6  | 0.47  | 11.45 | 0.48  | 5.16 | 0.45  | 3.67 |
| A1F   | 9.14  | 4.32  | 8.53  | 2.76  | 8.55  | 3.97  | 9.04  | 1.89  | 8.51  | 3.54 | 8.53  | 3.64 |
| A1FB  | 2.20  | 3.95  | 1.90  | 5.78  | 1.65  | 3.69  | 2.92  | 13.97 | 2.36  | 3.60 | 2.26  | 7.28 |
| G0F   | 18.34 | 6.21  | 19.03 | 3.18  | 19.52 | 2.83  | 18.51 | 0.67  | 19.39 | 0.92 | 19.45 | 2.00 |
| G1    | 0.73  | 12.69 | 0.77  | 3.73  | 0.80  | 2.86  | 0.53  | 2.81  | 0.56  | 4.86 | 0.57  | 6.40 |
| G0FB  | 2.73  | 4.15  | 2.99  | 2.25  | 3.10  | 1.22  | 3.86  | 1.52  | 3.98  | 1.39 | 3.97  | 1.17 |
| G1F   | 23.24 | 1.28  | 23.35 | 0.98  | 23.61 | 0.40  | 21.88 | 1.06  | 22.39 | 0.43 | 22.38 | 1.07 |
| G1F'  | 9.66  | 1.19  | 9.71  | 1.82  | 9.66  | 1.41  | 9.21  | 1.62  | 9.30  | 0.83 | 9.29  | 1.10 |
| G1FB  | 5.59  | 4.89  | 5.65  | 2.13  | 5.56  | 1.30  | 6.39  | 0.58  | 6.36  | 0.65 | 6.36  | 1.27 |
| G2    | 0.49  | 10.45 | 0.49  | 5.55  | 0.46  | 1.54  | 0.60  | 6.16  | 0.57  | 3.34 | 0.57  | 3.50 |
| G2F   | 21.83 | 6.3   | 22.03 | 2.02  | 21.62 | 1.77  | 20.49 | 1.00  | 20.60 | 1.19 | 20.59 | 1.37 |
| G2FB  | 2.05  | 14.73 | 2.04  | 4.91  | 1.82  | 1.92  | 2.67  | 7.78  | 2.42  | 2.12 | 2.37  | 2.78 |



### Separation of N-glycans from human serum IgG



#### **APTS** label



### Accurate Quantitation of Highly Sialylated Glycans







### Separation of $\alpha(2-3/6)$ Sialylated Biantennary Glycans





### Separation of $\alpha(2-6)$ Sialylated Tri- and Tetraantennary Glycan Library





### Selection of Right Clone with Right Glycosylation





### GlycanAssure: Value Proposition

#### General

First in class glycan analysis platform that combines both high throughput and data quality

High

Quality

Specific\*

Faster



Cost-

effective

Integrated Solution

\* Compared to other Commercial & Homebrew Products

Simpler



## THANK YOU



