

ThermoFisher SCIENTIFIC

Taking charge variant analysis from research into the routine environment

Global BioPharma Summit

The world leader in serving science

Structure of IgG and Typical Forms of Heterogeneity

Bio-Column Selection Guide

Analysis		Description	Columns and Buffers	Detection
Titer		mAb capture, titer & screening	Thermo Scientific™ MAbPac™ Protein A	UV
Aggregate		Routine screening for aggregates and fragments	Thermo Scientific™ MAbPac™ SEC-1	UV & light scattering
Charge Heterogeneity	***	Routine variant profiling including; lysine truncation, deamidation and acylation	Thermo Scientific [™] MAbPac [™] SCX-10 Thermo Scientific [™] MAbPac [™] SCX-10 RS Thermo Scientific [™] ProPac [™] WCX-10 Thermo Scientific [™] CX-1 pH Gradient Buffer Kit	UV
Methionine & Tryptophan Oxidation		Targeted analysis of methionine and tryptophan oxidation	Thermo Scientific™ MAbPac™ HIC-20 Thermo Scientific™ MAbPac™ HIC-10 Thermo Scientific™ ProPac™ HIC-10	UV
Antibody Drug Conjugate (ADC)		Drug to Antibody ratios	Thermo Scientific [™] MAbPac [™] HIC-10 Butyl Thermo Scientific [™] MAbPac [™] HIC-20 Thermo Scientific [™] MAbPac [™] HIC-10 Thermo Scientific [™] MAbPac [™] RP	UV
Antibody Drug Conjugate (ADC) using MS		Drug to Antibody ratios and intact mass	Thermo Scientific™ MAbPac™ SEC-1 Thermo Scientific™ MAbPac™ RP Thermo Scientific™ Acclaim™ SEC-300	
Intact or Fragment Mass	N	Intact, light (LC), heavy chain (HC) and fragment (Fab & Fc) analysis	Thermo Scientific™ MAbPac™ RP	UV and MS
Native Mass	1	Intact native mass analysis	Thermo Scientific™ MAbPac™ SEC-1 Thermo Scientific™ Acclaim™ SEC-300	UV and MS

Thermo Scientific[™] Vanquish[™] UHPLC Platform for Bio-therapeutic Characterization

Charge Variant Analysis using Cation Exchange Chromatography (CEX)

Next-generation CEX Column

Improve resolution or sample throughput through column chemistry

mAb Charge Variant Analysis by CEX Salt Elution

Cation Exchange of mAb

Elution with competing sodium ions from an NaCl gradient

Cation Exchange

Ion Exchange Charge

- Competition for Ion Exchange sites between the mAb and Na⁺ ions
- This interaction happens all the way through the column
- The longer the column the better the resolution
- Surface exchange on a pelicular resin for high resolution

http://bit.ly/ChargeVariants

Effect of pH on elution of mAb (salt gradient)

Mab Charge Variant Analysis by CEX pH Gradient Elution

pH gradient elution

- Based on pl of protein
- Loss of retention with progressing pH gradient, depending on pl
- "Single" binding event, trapping at pH < pl (for CEX)

pH Gradient

Ion Exchange Charge

Isoelectric Focusing on a Cation Exchange Column

- mAb binds to cation exchange sites on the column
- A gradient of increasing pH is applied
- mAb is released from the exchange site when the net charge on the mAb is neutral
- This interaction happens once, then the mAb runs through the rest of the column
- Column length has little effect on the resolution
- This is a concentrating technique
- Surface exchange on a pelicular resin for high resolution and low buffering capacity effects

Comparison of pH gradient buffer systems

MAbPac SCX-10 (5 μm) 4x50 mm

Charge Variant Analysis using pH Gradient

Advantages

- Platform method ⇒ single method for wide range of mAbs
- Reduced method development and method transfer times
- Outperforms any other charge variant technology
- Less effect from column variability
- Transferability of method from development to QC

	рН
Thermo	Form
	Concentra
 Dilute buffers 10-fold with DI water A linear pH gradient (pH 5.6 - 10.2) 	Shipping condition
is generated by running a linear pump gradient from 100% Buffer A to 100% Buffer B	Storage

Generic, fast & high-resolution!

	Buffer A	Buffer B
рН	5.6	10.2
Form	Liquid	Liquid
Concentrate	10X	10X
Shipping condition	Room Temp	Room Temp
Storage condition	4 ~ 8 °C	4 ~ 8 °C

Infliximab – Vanquish System Ultra-fast Gradients

Resolution and number of charge variants maintained in sub-minute gradients

Fast, Generic and Linear pH Gradient – Vanquish UHPLC

pH 5.6 to 10.2 in 10 minutes, *MAbPac SCX-10* (5 μm), 2 x 50 mm

Repeat Injections of Ribonuclease A: >300 Runs

Retention time reproducibility <0.8% RSD

Effect on Loading Capacity and Peak Resolution

pH gradient

- Peak resolution increases with loading
- Isoelectric focusing
- Full column capacity can be used for loading without affecting peak resolution and capacity

Salt gradient

- Peak resolution lost with increased loading
- Separation occurs over complete column length
- Peak capacity easily exceeded and resolution lost

Peak Analysis of 50 and 250 mm Columns with pH Gradient Elution

	PW[HH] Peak 1	PW[HH] Peak 2	PW[HH] Peak 3	Resolution Peak 2 to 3	Elution pH Peak 1	Elution pH Peak 2	Elution pH Peak 3
50mm column	0.06	0.06	0.06	3.63	6.61	6.68	6.81
250mm column	0.06	0.06	0.06	3.73	6.81	6.9	7.04

Equilibration times on a 150mM long MAbPac SCX column

In-depth Charge Variant Characterization using CEX fraction collection and LC-MS

1st dimension: IEX pH gradient + fraction collection

2nd dimension: Polymer RP-LC/MS

SCIENTIFIC

Minimized Carryover using Polymeric MAbPac RP

Full Scan MS Spectra from Q Exactive

Optimized Conditions

Reproducibility NIST mAb

Cetuximab Commercial Drug Product

Biosimilar Candidate

ThermoFisher

SCIENTIFIC

Drug Product vs. Biosimilar Candidate

Compare Expression Systems

Potential causes of variation	Chinese Hamster Ovary	Human Embryonic Kidney	Drug Product (NS0 Cell line)
Transfection	Transient	Transient	Stable
Culture Duration	8 days	6 Days	N/D
DNA construct	Human	Human	Chimeric mouse/human
Purification	Purified from culture media into neutralized Acetic Acid	Purified from culture media into neutralized Acetic Acid	Diafiltrated into formulation buffer prior to purification
Viability at harvest	~93%	~70%	N/D
Viable Cell count at harvest	(Mean) 6.9x10 ⁶ cells/mL	(Mean) 8.3x10 ⁶ cells/mL	N/D
Culture Volume	50 mL	50 mL	10,000-12,000 L

nibrt National Institute for Bioprocessing Research and Training

Different Charge Variants

Preparative Chromatography

Conclusions: Charge Variant Analysis

- Charge variant analysis can be achieved with salt or pH gradient elution
- New column chemistries are available that can provide increased speed and resolution
- pH gradient elution can provide several advantages including; Global applicability, Increased speed, fast method development, High loading capacity, less column dependence, Easy method transfer
- Collection of variant peaks can be easily desalted on-line for further analysis by MS
- Protein expression in different cell lines resulted in altered charge variants
- Charge variants peak collection and individual *N*-glycan analysis can identify sialylation patterns.

Acknowledgements

NIBRT, Dublin

- Jonathan Bones
- Amy Farrell
- Stefan Mittermayr
- Silvia Millán
- Izabela Zaborowska
- Craig Jakes

Thermo Fisher Scientific

- Ken Cook
- Shanhua Lin
- Robert Van Ling
- Kai Scheffler
- Frank Steiner
- Mauro De Pra