

Thermo Fisher SCIENTIFIC

Method Transfer Best Practice

Dr. Frank Steiner Scientific Advisor

Co-authored by Dr. Susanne Fabel, Dr. Alexandra Manka, Michael Menz, Sabrina Patzelt, Dr. Markus Martin

Agenda

- Important considerations for method transfer
- Direct UltiMate 3000 → Vanquish method transfer by instrument similarity
- Method transfer by exchange of gradient mixer
- Unique hardware features of Vanquish systems for method transfer
 - Adaptable GDV by autosampler metering device
 - Eluent pre-heating and column thermostatting modes
- What is the best practice?

Important considerations for method transfer

Pump

- Gradient generation principle
- Gradient delay volume (GDV)
- Solvent mixing characteristics

Pump

- Gradient generation principle
- Gradient delay volume (GDV)
- Solvent mixing characteristics

Autosampler

- Contribution to GDV
- Contribution gradient shape (flush out)

Pump

- Gradient generation principle
- Gradient delay volume (GDV)
- Solvent mixing characteristics

Autosampler

- Contribution to GDV
- Contribution gradient shape (flush out)

Column thermostat

- Working principle (still air vs. forced air)
- Eluent pre-heater design and working principle

Autosampler Pump Contribution to GDV Gradient generation principle Contribution gradient shape (flush out) Gradient delay volume (GDV) Solvent mixing characteristics System connection tubing Dimensions **Gradient Delay Volume** Plumbing (dead volumes) Detector Autosampler Column Extra Extra Pump Column Column Volume Volume

Column thermostat

- Working principle (still air vs. forced air)
- Eluent pre-heater design and working principle

• Gradient

- Gradient generation principle
- Gradient delay volume (GDV)
- Solvent mixing characteristics

Autosampler

- Contribution to GDV
- Contribution gradient shape (flush out)

Gradient Delay Volume Autosampler Column Volume

System connection tubing

- Dimensions
- Plumbing (dead volumes)

Extra Column Volume

Column thermostat

- Working principle (still air vs. forced air)
- Eluent pre-heater design and working principle

Detector

- Flow cell design and dimensions
- Wavelength settings (bandwidth, reference)
- Data collection rate and filter constant

 Volume contraction has influence on gradient generation

- Volume contraction has influence on gradient generation
- Effect will differ between HPG and LPG pumps, also in isocratic dial-a-mix mode

Mixing Volume Effects with HPG and LPG Instruments

Mixing Volume Effects with HPG and LPG Instruments

Mixing Volume Effects with HPG and LPG Instruments

- Method transfer from HPG to HPG straightforward (if GDV matches)
- Method transfer from LPG to LPG more challenging (mixing properties must also match)
- Better refrain from transfer between LPG and HPG (in applications with critical resolution)

UltiMate 3000 → Vanquish Flex Method transfer by instrument similarity

Method Transfer: UltiMate 3000 BioRS → Vanquish Flex (HIV Medication Example)

Column: Accucore aQ, 2.6 µm, 2.1 × 100 mm System: Vanguish Flex System with DAD (10 mm

light path)

BioRS System, VWD with 2.5 µL flow cell

(7 mm light path)

Mobile Phase: A - 25 mM ammonium acetate buffer,

pH 3.8 with acetic acid

B - Methanol C - Acetonitrile

D - Water

Flow rate: 0.600 mL/min

Method Transfer: UltiMate 3000 BioRS → Vanquish Flex (HIV Medication Example)

Column: Accucore aQ, 2.6 μ m, 2.1 × 100 mm

System: Vanquish Flex System with DAD (10 mm

light path)

BioRS System, VWD with 2.5 µL flow cell

(7 mm light path)

Mobile Phase: A - 25 mM ammonium acetate buffer,

pH 3.8 with acetic acid

B - Methanol C - Acetonitrile

D - Water

Flow rate: 0.600 mL/min

Vanquish Flex enables easy method transfer from UltiMate 3000 systems.

Method Transfer – Deamidation of Ribonuclease A

- Seamless method transfer from UltiMate 3000 BioRS to Vanquish Flex already with identical tubing and mixer (both for DAD and VWD)
- Improved Sensitivity with Vanquish DAD
- Increased peak resolution on Vanquish Flex with VWD

Method Transfer – Antibody Charge Variant Analysis

- Method transfer between UltiMate 3000 BioRS and Vanquish Flex
- Improved sensitivity with Vanquish DAD
- Identical methods were applied and successful method transfer was achieved by recreating the same hardware conditions on both instrument platforms

MabPac SCX-10; 4x250mm, 10 μm, **A:** 20mM MES, 60mM NaCl, pH 5.7 **B:** 20mM MES, 300mM NaCl, pH 5.7

Gradient: 15-45% B in 15 min, 30 °C; 0.5mL min⁻¹; UV detection@280nm; Injection volume 4 μL

Method transfer from other vendor's instrument by modification of gradient mixer

Transfer of a Heart Treatment Drug Analysis from Other Vendor to UltiMate 3000

Column: Thermo Scientific™ Accucore™ XL, C18, 4.6×150 mm, 4μ m, P/N 74104-154630 Mobile Phases: A: Water + 0.1% FA B: Methanol + 0.07% FA Gradient: 0-10.0 min from 10 to 80% B, 10.0 -11.5 min 80% B, 11.5-12.0 min 80 to 10% ,12.0-17.0 min 10% B Flow rate: 1.200 mL/min Temperature: 50 °C still air mode Injection: 25 µL Detection: 214 nm data collection rate: 10 Hz Sample: 1. Hydrochlorthiazide 10 µg/mL 20 µg/mL 2. Chlorthalidone 3. Enalapril 60 µg/mL 4. Impurity 5. Ramipril 60 µg/mL 6. Telmisartan 20 µg/mL 7. Azilsartan 20 µg/mL 8. Valsartan 20 µg/mL

Transfer of a Heart Treatment Drug Analysis from Other Vendor to UltiMate 3000

750 µL mixer instead of the default 350 µL mixer to mimic GDV of the other vendor's HPLC

Unique hardware features of Vanquish systems for method transfer

Transferring the Analysis of Pain Killer from UltiMate 3000 to Vanquish

Transferring the Analysis of Pain Killer from UltiMate 3000 to Vanquish

Fine-tuning of GDV by the autosampler metering device makes the perfect match!

Column: Acclaim RSLC PA2, Polar Advantage II,

2.1 x 150 mm, 2.2 µm

Mobile Phase: isocratic

20 mM phosphate buffer pH 7/methanol

(35/65, v/v, dial-a-mix)

Flow rate: 0.55 mL/min, resulting in 760 bar back pressure

Temperature: 40 °C Injection: 1 µL

Detection: UV, 2.5 μ L flow cell, 254 nm, 50 Hz (VWD)

Sample: 1. Uracil, 2. Dimethyl phthalate (DMP), 3. Methyl parabene (MP), 4. Methyl benzoate (MB)

Column: Acclaim RSLC PA2, Polar Advantage II,

2.1 x 150 mm, 2.2 µm

Mobile Phase: isocratic

20 mM phosphate buffer pH 7/methanol

(35/65, v/v, dial-a-mix)

Flow rate: 0.55 mL/min, resulting in 760 bar back pressure

Temperature: 40 °C Injection: 1 μL

Detection: UV, 2.5 μ L flow cell, 254 nm, 50 Hz (VWD)

Sample: 1. Uracil, 2. Dimethyl phthalate (DMP), 3. Methyl parabene (MP), 4. Methyl benzoate (MB)

Column: Acclaim RSLC PA2, Polar Advantage II,

2.1 x 150 mm, 2.2 µm

Mobile Phase: isocratic

20 mM phosphate buffer pH 7/methanol

(35/65, v/v, dial-a-mix)

Flow rate: 0.55 mL/min, resulting in 760 bar back pressure

Temperature: 40 °C Injection: 1 µL

Detection: UV, 2.5 μL flow cell, 254 nm, 50 Hz (VWD)

Sample: 1. Uracil, 2. Dimethyl phthalate (DMP), 3.

Methyl parabene (MP), 4. Methyl benzoate (MB)

Column: Acclaim RSLC PA2, Polar Advantage II,

2.1 x 150 mm, 2.2 µm

Mobile Phase: isocratic

20 mM phosphate buffer pH 7/methanol

(35/65, v/v, dial-a-mix)

Flow rate: 0.55 mL/min, resulting in 760 bar back pressure

Temperature: 40 °C Injection: 1 µL

Detection: UV, 2.5 µL flow cell, 254 nm, 50 Hz (VWD) Sample: 1. Uracil. 2. Dimethyl phthalate (DMP), 3.

Methyl parabene (MP), 4. Methyl benzoate (MB)

Retention and selectivity very sensitive to temperature with this application

Minor changes in eluent pre-heating and frictional heat dissipation can matter

Correlation of retention factors of origin UltiMate 3000 BioRS system (Forced Air principle) and target Vanquish Flex system (Still Air mode) by reducing incoming eluent temperature enabled by the active pre-heater

In compromise an averaged incoming eluent temperature of 32 °C should deliver best matching retention factors for all 3 substances in Still Air mode

Why using Still Air and reducing incoming eluent temperature when coming from Forced Air?

⇒ 10% better efficiency

Why using Still Air and reducing incoming eluent temperature when coming from Forced Air?

⇒ 10% better efficiency

Why using Still Air and reducing incoming eluent temperature when coming from Forced Air?

⇒ 10% better efficiency

Why using Still Air and reducing incoming eluent temperature when coming from Forced Air?

⇒ 10% better efficiency

Why using Still Air and reducing incoming eluent temperature when coming from Forced Air?

⇒ 10% better efficiency

Why using Still Air and reducing incoming eluent temperature when coming from Forced Air?

⇒ 10% better efficiency

But do we still meet the resolution?

Still Air mode + reduced pre-heater temperature deliver better efficiency + better resolution

Match of retention factors and improved resolution

Successful method transfer with increased performance (resolution and plates) through unique thermostatting features of Vanquish platform

Method transfer

Gradient delay volume (GDV) adaption

- · Adjustable metering device idle volume
- · Mixer and Viper capillaries
- Delayed injection

Pump H and F Sampler HT and FT

• Match the thermostatting mode

- Forced and still air mode give different results
- Mimic thermal conditions used in existing systems

 UltiMate 3000 TCC or column compartments of competitors

Increasing peak capacity by smart temperature control

Mobile phase pre-heating

Column heating mode

Method transfer from UltiMate 3000 RS HPG to Vanquish

Adding 0.32 min to the initial isocratic hold to account for the lower Vanguish GDV

Result:

Time shift between the two UHPLC methods at average 5 s over all 250+ pesticides.

What is the best practice?

Method Transfer Best Practice Summary

- Consider changes of prescribed method parameters vs. hardware adaptations
- Consider physico-chemical effects of gradient generation principle (HPG vs. LPG)
- Consider the advantage of seamless GDV adaptation by the adjustable metering device in Vanquish autosamplers
- Consider the influence of column and eluent thermostatting specifics and the unique thermostatting features that the Vanquish systems offer