

#### **ThermoFisher** SCIENTIFIC

The analysis of polar ionic pesticides using ion-exchange chromatography coupled to mass spectrometry: turning negatives into positives

Richard Fussell, Vertical Marketing Manager Food & Beverage 11<sup>th</sup> EPRW, Limassol Cyprus 24<sup>th</sup>-27<sup>th</sup> May 2016

#### **Presentation Overview**

- An overview of the Quick Polar Pesticides Extraction (QuPPe) Method
  - negative and positive aspects
- An update on the current Status of IC-MS/MS for the determination of polar ionic pesticides
- Recent developments and results from a collaboration between Thermo Fisher Scientific and Fera Science Ltd., York, UK
- Summary including further developments creating new possibilities
- Acknowledgement of co-authors
  - Stuart Adams, Jonathan Guest (Fera Science Ltd, UK)
  - Jonathan Beck and Frans Schoutsen (Thermo Fisher Scientific)

- Widely used in agricultural production
- High frequency of residues of certain compounds detected in food
- EPRW 2014 number of poster on residues of chlorate in leafy vegetables (and perchlorate residues from fertiliser use)
- 2016: Alliance for Natural Health USA: reported 10 of 24 breakfast foods had residues of glyphosate (86 – 1,327 µg/kg) (<u>www.anh-usa.org</u>)
- 2016: Glyphosate residues in German beers
- Glyphosate under scrutiny after the <u>International Agency for Research</u> on Cancer (IARC) that informs the World Health Organization (WHO) on cancer risk factors, <u>classified glyphosate as a 'probable carcinogen' last</u> <u>March 2015</u>
- Blog: Analysis of the Pesky Polar Pesticides: In the News, but What's the Answer?
   http://analyteguru.com/analysis-of-the-pesky-polar-pesticides-in-the-news-but-whats-the-answer

#### QuPPe-PO Method: An Imperfect Compromise

- Generic extraction using acidified methanol- no partition, no clean-up
- The QuPPe method developed by EURL-SRM is not perfect, but is your glass......





#### QuPPe Method: An Imperfect Compromise

#### Half Empty - negative point of view:

- Extracts contain high amounts of co-extractives: contaminate columns and MS
- Observed variation in retention time (especially glyphosate)
- Variable recoveries/ precision (use labelled internal standards which are costly)
- A number of different column chemistries required

#### Half Full - positive point of view:

- Because of the nature of the analytes compromises are inevitable
- Cost effective compared to previous approaches (derivatisation etc.)
- QuPPe has enabled analysis of pesticides monitored infrequently in the past
- Labelled internal standards became commercially available



#### QuPPe-PO v 9.1-Negative Mode Compounds

#### • Method Lists a total of 42 different (pos and neg mode) analytes

Table 3: Overview and scope of the methods proposed within this document for the QuPPe method:

|                      | M 1.1               | M 1.2               | M 1.3          | M 1.4          | M 2       | M 3       | M 4.1     | M 4.2         | M 5   | M 6       | M 7        | M8             |
|----------------------|---------------------|---------------------|----------------|----------------|-----------|-----------|-----------|---------------|-------|-----------|------------|----------------|
| ESI-mode             | Neg.                | Neg.                | Neg.           | Neg.           | Neg.      | Pos.      | Pos.      | Pos.          | Pos.  | Pos.      | Pos.       | Pos.           |
| Separation principle | Anion<br>Exchange   | Anion<br>Exchange   | Carbon         | Carbon         | HILIC     | HILIC     | HILIC     | HILIC         | HILIC | HILIC     | HILIC      | Carbon         |
| Column type          | AS 11               | AS 11-HC            | Hyper-<br>carb | Hyper-<br>carb | Obelisc-R | Obelisc-R | Obelisc-R | BEH-<br>Amide | PFP   | Obelisc-R | Trinity P1 | Hyper-<br>carb |
|                      |                     |                     |                |                | NEGATIVE  | MODE      |           |               |       |           |            |                |
| Ethephon             | 1                   | 1                   | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| HEPA                 | 1                   | 1                   | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| Glufosinate          | <ul><li>✓</li></ul> | ✓                   | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| N-Acetyl-glufosinate | <b>√</b>            | ×                   | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| MPPA                 | ✓                   | ×                   | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| Glyphosate           | ×                   | ×                   | *              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| AMPA                 | 1                   | 1                   | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| Phosphonic acid      | (✔)                 | (✔)                 | 1              | 1              | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| N-Acetyl-AMPA        | NT                  | <ul><li>✓</li></ul> | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| Fosetyl-Al           | -                   | <ul><li>✓</li></ul> | 1              | NT             | 1         | NT        | NT        | NT            | NT    | NT        |            | NT             |
| Maleic hydrazide     | -                   | -                   | 1              | NT             | 1         | NT        | NT        | NT            | NT    | NT        | *          | NT             |
| Perchlorate          | NT                  | -                   | 1              | 1              | 1         | NT        | NT        | NT            | NT    | NT        |            | NT             |
| Chlorate             | NT                  | -                   | 1              | 1              | NT        | NT        | NT        | NT            | NT    | NT        |            | NT             |
| Bialaphos            | NT                  | NT                  | *              | NT             | NT        | NT        | NT        | NT            | NT    | NT        | -          | NT             |
| Cyanuric acid        | NT                  | NT                  | 1              | NT             | NT        | NT        | NT        | NT            | NT    | NT        |            | NT             |
| Bromide              | NT                  | NT                  | -              | 1              | NT        | NT        | NT        | NT            | NT    | NT        | NT         | NT             |
| Bromate              | NT                  | NT                  | (*)            | 1              | NT        | NT        | NT        | NT            | NT    | NT        | NT         | NT             |

#### http://www.crl-pesticides.eu/userfiles/file/EurlSRM/meth\_QuPPe-PO\_EurlSRM.pdf

#### QuPPe-PO v 9.1-Positive Mode Compounds

Table 3: Overview and scope of the methods proposed within this document for the QuPPe method:

|                       | M 1.1             | M 1.2             | M 1.3          | M 1.4          | M 2       | M 3       | M 4.1     | M 4.2         | M 5   | M 6       | M 7        | M8             |
|-----------------------|-------------------|-------------------|----------------|----------------|-----------|-----------|-----------|---------------|-------|-----------|------------|----------------|
| ESI-mode              | Neg.              | Neg.              | Neg.           | Neg.           | Neg.      | Pos.      | Pos.      | Pos.          | Pos.  | Pos.      | Pos.       | Pos.           |
| Separation principle  | Anion<br>Exchange | Anion<br>Exchange | Carbon         | Carbon         | HILIC     | HILIC     | HILIC     | HILIC         | HILIC | HILIC     | HILIC      | Carbon         |
| Column type           | AS 11             | AS 11-HC          | Hyper-<br>carb | Hyper-<br>carb | Obelisc-R | Obelisc-R | Obelisc-R | BEH-<br>Amide | PFP   | Obelisc-R | Trinity P1 | Hyper-<br>carb |
|                       |                   |                   |                |                | POSITIVE  | MODE      | 1         |               |       |           |            |                |
| Amitrole              | NT                | NT                | -              | NT             | NT        | 1         | -         | ✓             | NT    | NT        | NT         | NT             |
| ETU                   | NT                | NT                | 1              | NT             | NT        | 1         | -         | 1             | 1     | NT        | NT         | NT             |
| PTU                   | NT                | NT                | 1              | NT             | NT        | 1         | -         | 1             | 1     | NT        | NT         | NT             |
| Cyromazine            | NT                | NT                | NT             | NT             | NT        | 1         | -         | 1             | NT    | NT        | NT         | NT             |
| Trimesium             | NT                | NT                | NT             | NT             | NT        | 1         | -         | 1             | NT    | NT        | NT         | NT             |
| Daminozide            | NT                | NT                | NT             | NT             | NT        | 1         | -         | 1             | NT    | NT        | NT         | NT             |
| Chlormequat           | NT                | NT                | 1              | NT             | NT        | 1         | -         | 1             | 1     | NT        | NT         | NT             |
| Mepiquat              | NT                | NT                | -              | NT             | NT        | 1         | -         | 1             | 1     | NT        | NT         | NT             |
| Difenzoquat           | NT                | NT                | -              | NT             | NT        | 1         | -         | 1             | - 1   | NT        | NT         | NT             |
| Propamocarb           | NT                | NT                | NT             | NT             | NT        | 1         | -         | 1             | NT    | NT        | NT         | NT             |
| Melamine              | NT                | NT                | NT             | NT             | NT        | NT        | -         | 1             | NT    | NT        | NT         | NT             |
| Diquat                | NT                | NT                | -              | NT             | NT        | NT        | -         | -             | NT    | NT        | NT         | NT             |
| Paraquat              | NT                | NT                | -              | NT             | NT        | NT        | -         | -             | NT    | NT        | NT         | NT             |
| N,N-Dimethylhydrazine | NT                | NT                | -              | NT             | NT        | NT        | -         | -             | NT    | NT        | NT         | NT             |
| Nereistoxin           | NT                | NT                | 1              | NT             | NT        | NT        | -         | 1             | NT    | NT        | NT         | NT             |
| Streptomycin          | NT                | NT                | NT             | NT             | NT        | NT        | NT        | NT            | NT    | ✓         | NT         | NT             |
| Kasugamycin           | NT                | NT                | NT             | NT             | NT        | NT        | NT        | NT            | NT    | 1         | NT         | NT             |
| Morpholine            | NT                | NT                | NT             | NT             | NT        | NT        | (✔)       | ()            | NT    | NT        | ✓          | NT             |
| Diethanolamine        | NT                | NT                | NT             | NT             | NT        | NT        | (✓)       | (*)           | NT    | NT        | ×          | NT             |
| Triethanolamine       | NT                | NT                | NT             | NT             | NT        | NT        | (✓)       | ()            | NT    | NT        | 1          | NT             |
| 1,2,4-Triazole        | NT                | NT                | NT             | NT             | NT        | NT        | (✓)       | -             | NT    | NT        | NT         | 1              |
| Triazole-alanine      | NT                | NT                | NT             | NT             | NT        | NT        | (✓)       | -             | NT    | NT        | NT         | 1              |
| Triazole-acetic acid  | NT                | NT                | NT             | NT             | NT        | NT        | (✓)       | -             | NT    | NT        | NT         | 1              |
| Triazole-lactic acid  | NT                | NT                | NT             | NT             | NT        | NT        | NT        | -             | NT    | NT        | NT         | 1              |
| Aminocyclopyrachlor   | NT                | NT                | NT             | NT             | NT        | NT        | NT        | 1             | NT    | NT        | NT         | NT             |

#### http://www.crl-pesticides.eu/userfiles/file/EurISRM/meth\_QuPPe-PO\_EurISRM.pdf

# Can IC-MS/MS Help with the Analysis of Polar Ionic Pesticides?

- 2007: analysis of glyphosate and glufosinate in sugar, dextrins, maltodextrins
- Thermo Scientific<sup>™</sup> Dionex<sup>™</sup> ICS-3000 system coupled to a Sciex API 2000 MS
- Using large volume injections (up to 4.7 mL) with online concentration and 'clean-up' cartridge







Courtesy of Fera Science Ltd UK

CIENTIFIC

### Realities of Using Large Volume Injection

- Pros and Cons
- Enables low limits of quantification
- Faster contamination of columns requiring regular offline cleaning
- Contamination of the suppressor
- Contamination of the MS system





after 100 injections



### The Latest High Sensitivity IC-MS/MS (2016)

- Collaboration with Fera Science Ltd UK
- Currently evaluating the Thermo Scientific<sup>™</sup> Dionex<sup>™</sup> ICS-5000 HPIC<sup>™</sup> system
- Fully integrated with Thermo Scientific<sup>™</sup> TSQ<sup>™</sup> Quantiva<sup>™</sup> Triple Quadrupole MS
- Integrated system control via a single software package – Thermo Scientific<sup>™</sup> TraceFinder<sup>™</sup> 3.2 software
- Multi-residue analysis of polar ionic pesticides in 'QuPPe' extracts





- New generation IC columns with 4 µm particle size
- MS tune optimised for low mass
- High sensitivity allowing lower volume injections
- Ability to change ion transfer tube while the system under vacuum

### **IC-MS/MS** Configuration





#### Column Capacity and Robustness – Key for Success



- More than 40 years of history of manufacturing lon-exchange columns
- Backpressure a good indication of the condition of the column
- Columns are robust and can be cleaned
- 1M KOH (aq) overnight at a low flow rate, then 200 mM H2SO4 in 80% acetonitrile at a low flow rate
- Post column suppression is needed to realise the benefits of using high capacity ion-exchange columns.



### Post Column Suppression and Addition of Organic Modifier

| es este              | Makeup Pump  | Effect of using post suppressor modifier MeCN |                        |  |  |
|----------------------|--------------|-----------------------------------------------|------------------------|--|--|
|                      | (MeCN)       | Analyte                                       | % Increase in response |  |  |
|                      |              | 3-MPPA                                        | 391                    |  |  |
|                      | →(I I)       | chlorate                                      | 458                    |  |  |
| Electrolytic         | Conductivity | clopyralid                                    | 284                    |  |  |
| Eluent<br>Suppressor | Detector     | glufosinate                                   | 365                    |  |  |
|                      |              | glyphosate                                    | 421                    |  |  |
|                      |              | N-acetyl-<br>glufosinate                      | 360                    |  |  |
| a                    |              |                                               |                        |  |  |

- Ideal operating back pressure for suppressor is around 100-150 psi
- Monitor conductivity signal



#### From the Past to the Present; What a Difference!

- 2007: glyphosate @ 100 µg/kg in cereal with 2500 µL injection and inline concentration
- 2016: glyphosate @ 100 µg/kg- 1/10 extraction dilution of QuPPE extracts of wheat flour, 100 µL loop injection
- Equivalent to 10 µL of extract



### IC-MS/MS Multiresidue RIC for Cereal (Wheat Flour)

• All analytes at 10 µg/kg except fosetyl & phosphonic acid (@ 200 µg/kg)



Courtesy of Fera Science Ltd UK

ThermoFi

S C I E N T I F I C

### Glyphosate and AMPA in QuPPe Extracts of Wheat Flour

Glyphosate spiked @ 10 µg/kg



### Summary of Validation Results (Wheat Flour)



S C I E N T I F I C

#### Glufosinate & Metabolites in Cereal (Wheat Flour)

|             |                  |                          |            | Glufosinate                                               | 3-MPPA                                                  | N-Acetyl<br>Glufosinate                     |
|-------------|------------------|--------------------------|------------|-----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|
| Compound    | Concn<br>(µg/kg) | Mean Rec<br>(%)<br>(n=5) | RSD<br>(%) | HO O O<br>H <sub>3</sub> C <sup>-</sup> P <sup>-</sup> OH | HO O<br>H <sub>3</sub> C <sup>-</sup> P <sup>-</sup> OH |                                             |
| Glufosinate | 10               | 100                      | 16         | NH <sub>2</sub>                                           | 0                                                       | H H                                         |
| (15)        | 50               | 109                      | 11         | 1150                                                      | 3200 - +<br>3100<br>3000                                | 1150 ¥<br>1100-                             |
|             | 100              | 109                      | 8          | 1100<br>1050<br>1000                                      | 2900-<br>2800-<br>2700-                                 | 1050<br>1000<br>950                         |
| 3-MPPA      | 10               | 106                      | 17         | 900-                                                      | 2500-<br>2500-<br>2400-<br>2300                         | 900<br>850<br>ann                           |
| (15)        | 50               | 108                      | 13         | 800<br>750<br>700                                         | 2200-<br>2100-<br>2000-<br>1900-                        | 750                                         |
|             | 100              | 111                      | 7          | 650<br>650                                                | 1800-<br>                                               | 660-<br>680-<br>89-<br>550-<br>550-         |
| N-Acetyl-   | 10               | 88                       | 6          | 550<br>500<br>450                                         | 1400-<br>1300-<br>1200-                                 | 500<br>450<br>400                           |
| (IS)        | 50               | 88                       | 9          | 400<br>350<br>300                                         | 1100-<br>1000-<br>900-<br>800-                          | 350                                         |
|             | 100              | 91                       | 3          | 250<br>200<br>150                                         | 700-<br>600-<br>500-<br>400-                            | 280-<br>200-<br>150-                        |
|             |                  |                          |            | $\begin{array}{c} 100 \\ 50 \\ 0 \\ 10 \end{array}$       | 300<br>200-<br>100-<br>0-<br>10 12 14<br>RT(min)        | 100<br>50<br>0<br>10<br>12<br>14<br>RT(min) |
|             |                  |                          |            | 80.1>62.9                                                 | 151.1 >62.9                                             | 222.2 >62.9                                 |

ThermoFisher SCIENTIFIC

Courtesy of Fera Science Ltd UK

### Summary of Validation Results (II): Wheat Flour

| Analyte           | Conc <sup>n</sup><br>(µg/kg) | Mean<br>Rec (%)<br>(n=5) | RSD<br>(%) |               | Analyte          | Conc <sup>n</sup><br>(µg/kg) | Mean Re<br>(%)<br>(n=5)      | ec RSD<br>(%) |
|-------------------|------------------------------|--------------------------|------------|---------------|------------------|------------------------------|------------------------------|---------------|
| Perchlorate       | 10                           | 95                       | 6          |               | Fosetyl Al       | 200                          | 60                           | 4             |
| (IS)              | 50                           | 90                       | 7          |               |                  | 1,000                        | 71                           | 4             |
|                   | 100                          | 92                       | 9          |               |                  | 2,000                        | 72                           | 2             |
| Chlorate          | 10                           | 93                       | 5          |               | Phosphonic       | 200                          | 106                          | 5             |
| (15)              | 50                           | 88                       | 2          |               | acid             | 1,000                        | 94                           | 4             |
|                   | 100                          | 87                       | 4          |               |                  | 2,000                        | 97                           | 2             |
| Ethephon          | 10                           | 95                       | 11         | Cyanuric acid |                  | 10                           | Insufficient S/N             |               |
| (15)              | 50                           | 86                       | 4          |               | (IS)             | 50                           | 75                           | 31            |
|                   | 100                          | 85                       | 4          |               |                  | 100                          | 88                           | 13            |
| Clopyralid        | 10                           | Insufficie               | nt S/N     |               |                  | 100                          | 00                           | 15            |
|                   | 50                           | 70                       | 5          |               |                  | Ĭ                            |                              |               |
|                   | 100                          | 89                       | 6          |               | н₃с              | ∕o∕P∕_H                      | I 0                          | Fosetyl-Al    |
| clopyralid<br>ClN | ∕он                          | cyanı<br>acid            | uric OF    | I<br>N<br>OH  | H <sub>3</sub> C |                              | <sup>↓+3</sup> •0 / P 0<br>H | CH3           |
| ~~~`C             | ;                            |                          |            |               | Co               | ourtesy of I                 | Fera Scienc                  | e Ltd UK      |

Thermo Fisher SCIENTIFIC

### Glyphosate in Beer – No Extraction Required

 Glyphosate incurred residue @ 0.58 µg/L Glyphosate spike @ 0.5 µg/L

Calibration plot 0.1 - 5 µg/L spikes



1/10 dilution with water and internal standard added

#### Glyphosate in Beer - Retention Time Stability

 Over 100 injections over 2.5 days, retention time of glyphosate starts at 14.90 minutes and moves to 14.63 minutes



#### Determination of Chlorate in Dairy Produce @ 5 µg/kg



#### Determination of Perchlorate in Dairy Products @ 5 µg/kg



S C Ι Ε Ν Τ Ι F Ι C

### Determination of Ethephon @ 50 µg/kg in Grapes

| Analyte  | Conc <sup>n</sup><br>(µg/kg) | Mean Rec<br>(%)<br>(n=5) | RSD<br>(%) |
|----------|------------------------------|--------------------------|------------|
| Ethephon | 10                           | 114                      | 17         |
| (IS)     | 50                           | 95                       | 14         |
|          | 100                          | 102                      | 10         |





#### *m/z* 143>106.9







Thermo Fisher

SCIENTIFIC

#### Summary of Validation Results for Grapes

| Analyte          | Conc <sup>n</sup><br>(µg/kg) | Mean Rec<br>(%)<br>(n=5) | RSD<br>(%) |
|------------------|------------------------------|--------------------------|------------|
| Perchlorate      | 10                           | 110                      | 17         |
| (15)             | 50                           | 110                      | 12         |
|                  | 100                          | 113                      | 6          |
| Chlorate<br>(IS) | 10                           | 112                      | 19         |
|                  | 50                           | 111                      | 12         |
|                  | 100                          | 115                      | 6          |
| Clopyralid       | 10                           | 90                       | 1          |
|                  | 50                           | 91                       | 1          |
|                  | 100                          | 97                       | 1          |

| Analyte         | Conc <sup>n</sup><br>(µg/kg) | Mean Red<br>(%)<br>(n=5) | c RSD<br>(%) |
|-----------------|------------------------------|--------------------------|--------------|
| Fosetyl Al      | 100                          | 98                       | 3            |
|                 | 500                          | 92                       | 2            |
|                 | 1,000                        | 90                       | 2            |
| Phosphonic acid | 100                          | 100 102                  |              |
|                 | 500                          | 97                       | 7            |
|                 | 1,000                        | 103                      | 2            |
| Cyanuric acid   | 10                           | 10 Insufficien           |              |
| (15)            | 50                           | 116                      | 12           |
|                 | 100                          | 113                      | 8            |

### IC Coupled to Thermo Scientific Q Exactive Focus MS



VERITAS

Courtesy Veritas Laboratory – Venice

• Glyphosate, AMPA and Glufosinate at 20 ppt in surface water





#### The Dionex<sup>™</sup> Integrion<sup>™</sup> HPIC<sup>™</sup> System









# Candidates for Cation Exchange Chromatography



Plus, aminoglycosides, N,N' dimethylhydrazine, morpholine, triethanolamine, nereistoxin, triazole metabolites

#### Potential for the IC Separation of Cations



Thermo Fisher

#### **Potential for Other Applications**

- The potential to analyse other analytes not just pesticides
  - Bromates
  - Halo acetic acids
  - Metals speciation
  - Anions
  - Organic acids
  - Carbohydrates
  - Amines



- Method validated for 13 polar pesticides (mostly at 10 µg/kg) in a single run without issues of variation in retention times
- More cost effective compared to analysing a single extract by a number of different chromatographic approaches
- There are good possibilities to make improvements to the performance of the system
- Ion chromatography is proven to be robust for the analysis of 'dirty' sample extracts
- Possibility to analyse cations by IC-MS to extend the scope of the analysis
- Use of IC coupled to Orbitrap technology is in place and preliminary results are promising



### Thermo Fisher Scientific Food and Beverage Community

Dedicated pesticide residues page



http://www.thermofisher.com/uk/en/home/industrial/food-beverage/foodanalytical-testing/pesticide-residues-analysis.html



# Thermo Scientific AppsLab Library of Analytical Applications



|   | S C I E N T I F I C                                                                | SEARCH<br>thin Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Refine by Feature:                                                                 | Noms per page: 5 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - | Instrument Type:<br>HPLC<br>IC<br>UHPLC<br>GCMS<br>GC<br>More<br>Market:<br>Brease | "Green" and ultrafast method for determination of ingredients in a cola soft drink using the Thermo Scientific Acclaim 120 C18 RSLC column Instrument Type: UHPLC The Thermo Scientific UtilMate 3000 RSLC system is applied for the analysis of soft drink ingredients. The separation is performed on a Thermo Scientific Acclaim 120 C18 RSLC column in under 1.5 minutes. To avoid the use of toxic solvents, acetonitrile has been replaced by ethanol. To reduce the solvent viscosity and column pressure, the column is heated to 50 °C. Wavelength switching (changes from 230 nm to 214 nm at 0.3 minutes) suppresses interferences near acesulfame-K. |
|   | Pharma     Food and Beverage     Environmental     BioPharma     Chemical More     | "Green" and ultrafast method for determination of soft drink<br>ingredients on the Thermo Scientific Acclaim 120 C18 RSLC column<br>Instrument Type: UHPLC<br>The Thermo Scientific UltiMate 3000 RSLC system is applied for the analysis of soft drink ingredients.<br>The separation is performed on a Thermo Scientific Acclaim 120 C18 RSLC column in under 1.5 minutes.                                                                                                                                                                                                                                                                                     |
|   |                                                                                    | ¢.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



AnalyteGuru™

Your resource for the latest applications, regulatory information & research in sample preparation, ion chromatography, liquid chromatography, gas chromatography, mass spectrometry and software.







### Thank You for Listening: Stay Connected With Us



Analyte Guru Blog http://www.analyteguru.com



Twitter @ChromSolutions



Facebook + http://www.facebook.com/ChromatographySolutions



YouTube http://www.youtube.com/ChromSolutions



Pinterest http://pinterest.com/chromsolutions/

