

Thermo Fisher SCIENTIFIC

Pharmaceutical Intermediate Impurity Profiling

Pharma Tours | 2016

Overview

 Demonstrate new features and capabilities that enable confident identification and quantification of unknown impurities

Overview

Present new GC-MS technology

 Demonstrate new features and capabilities that enable confident identification and quantification of unknown impurities

Overview

Present new GC-MS technology

 Demonstrate new features and capabilities that enable confident identification and quantification of unknown impurities

 Demonstrate pharmaceutical intermediate impurity analysis with real-world samples analyzed in partnership with AstraZeneca

Acknowledgements

The Applicability of the Thermo Scientific Q Exactive GC in Support of Pharmaceutical Research and Development

Natalie Sanderson

Analytical Scientist - Pharmaceutical Development, AstraZeneca R&D

Confidential statement

Analysis of pharmaceutical intermediate impurities Semi-Volatile **Volatile Impurities Impurities** Non-**Elemental** Volatile **Impurities Impurities**

Analysis of pharmaceutical intermediate impurities

Requirements for Identification of Unknowns

AstraZeneca study objectives

"High mass accuracy is an advantage when it come to looking at identifying compounds. This increases the confidence in structural characterisation."

- Aim: Analyze low molecular weight compounds, typical of starting materials
 - Analyze at relevant concentrations (1% to 0.0001% (v/v) for liquid samples)
 - Unambiguously confirm structure of intermediate and impurities through accurate mass measurement and sub-structural analysis.
 - Asses performance across concentration ranges.

Introducing Thermo Scientific™ Q Exactive™ GC

Integration of 3 highly successful technologies

Thermo Scientific™ TRACE™ 1310 GC rapid heat cycling unique modular injector and detector design

Integration of 3 highly successful technologies

Thermo Scientific™ ExtractaBrite™ ion source technology

Routine grade robustness

Removable without breaking vacuum

Patented RF lens protects ion guide and quads

Integration of 3 highly successful technologies

Thermo Scientific™ Orbitrap™ mass analyzer technology

Incredible HR/AM performance

Proven Thermo Scientific™ Q Exactive™ platform

Bringing GC and Orbitrap Technology Together

Q Exactive GC: Compound Discovery and Identification

Chemical ionization for molecular ion

Remove entire ion source or change to CI source in under 2 minutes without venting...

Q Exactive GC: Compound Discovery and Identification

MS/MS for structural information

Fragmentation in HCD Cell

- Thermo Scientific™ Mass Frontier™ software can be used for sub-structural interpretation
- Sub ppm accurate mass allows for higher confidence in fragment IDs

Breakthrough in GC-MS capability

The Power of Q Exactive GC

Resolution

Up to 120,000 at m/z 200

- Highest available
- Maximum selectivity
- Fast enough for GC!

Mass Accuracy

< 1ppm

- Every scan
- All concentrations
- In complex matrix
- Across the mass range from 30 – 3000 m/z
- Everyday!

Sensitivity

ppt

- In full scan
- High selectivity
- High spectral fidelity

Dynamic Range

>6 orders

- Excellent coverage in sample profiling
- "Triple quad grade" quantitation in full scan

Scan speed and accurate mass error across a peak

Unprecedented quantitation power for HR/AM GC-MS

PPT Sensitivity Huge linear range

- Low fg on-column detection limits (~best triple quads)
- > 6 Orders linear range*
- Excellent precision
- Highest selectivity
- "triple quad grade" quantitation

*application specific

Unprecedented quantitation power for HR/AM GC-MS

Unprecedented quantitation power for HR/AM GC-MS

Unprecedented quantitation power for HR/AM GC-MS

To get data this good, it's really fast and simple...

Easy set-up

- Familiar Q Exactive environment
- Simple status
- Automated leak checking
- Automated tuning & calibration
- Source and lens tuning
- Mass calibration
- Ready to go < 5 minutes

"Impurity detection is important within the pharmaceutical industry. **High mass accuracy** is an advantage when it come to looking at unknown sample impurities."

Mass Accuracy

 Aim: demonstrate mass accuracy across a range of test compounds:

 "All five compounds were identified by their elemental formula."

 "Each was identified with a mass accuracy of less than 0.9 ppm"

Compound Analysed	Mass Accuracy ppm
O NH	0.6
N≡C−√F	0.0
OH F F	0.9
F Br	0.7
N N	0.1

Scan Speed

"For quantitative analysis in GC/MS, a minimum of 10 scans is needed for an idealized peak shape."

 4-fluorobenzonitrile (2.5 μg/mL (w/v) in methanol) was analysed in CI mode.

 The main component peak has a peak width of 3.6 seconds.

- Acquisition rate more than sufficient for narrow GC peaks
- Quantitative capabilities even at exceptionally high R ≥ 120,000

Mass Accuracy Across the Peak

Mass Accuracy Across the Peak

Linearity

- Aim: show linearity across relevant concentration range
 - Linearity of N,N,N'-trimethylethylenediamine across a concentration range of 0.0001 to 0.1250 % (v/v in DMSO).
 - Analysed at a resolution of 60,000 RP (at m/z 200) using EI
 - Extracted ion chromatogram of m/z 102.11515 (mass window 2 ± ppm) and corresponding peak area were used in calibration curve.

Linearity Results

Linearity Results

- Linearity demonstrated > 4 orders of magnitude
- Mass accuracy not affected by concentration

Impurity Detection

 Aim: analyse (3S)-3-methylmorpholine and to identify the impurities within the sample.

Retention (min)	Compound ID	Exact mass (EI)	Measured mass (EI)	Δррт	Exact mass (PCI)	Measured mass (PCI)	Δррт
3.55	$(3S)-3-methylmorpholine$ $Molecular Formula = C_sH_{11}NO$	101.08352	101.08358	0.6	102.09134	102.09136	0.2
3.75	$\begin{array}{c} \text{CH}_3 & \text{H} \\ \downarrow & \text{CH}_3 \\ \\ \text{O} \\ \\ \text{Molecular Formula} &= \text{C}_6\text{H}_{13}\text{NO} \end{array}$	115.09917	115.09925	0.7	116.10699	116.10703	0.4
4.32	H_3C H CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	129.11482	129.11486	0.4	130.12264	130.12268	0.3
5.06	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	155.13047	155.13048	0.1	156.13829	156.13825	0.3
5.87	$\begin{array}{c} \text{CH}_3\\ \text{O}\\ \text{N}\\ \text{CH}_3\\ \text{Molecular Formula}\\ = \text{C}_{\text{e}}\text{H}_{11}\text{NO}_2 \end{array}$	129.07843	129.07843	0.0	130.08626	130.08634	0.6
6.23	CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3	143.09408	143.09414	0.4	144.10193	144.10193	0.2
Thermo Fisher							

Retention (min)	Compound ID	Exact mass (EI)	Measured mass (EI)	Д ррт	Exact mass (PCI)	Measured mass (PCI)	Δррт				
3.55	$\begin{array}{ccc} & & & H & \\ & & & & \\ & & & & \\ & & & &$	101.08352	101.08358	0.6	102.09134	102.09136	0.2				
3.75	CH ₃ H N CH ₃ Molecular Formula \Rightarrow C, H, NO	115.09917	115.09925	0.7	116.10699	116.10703	0.4				
•4.32 Change from El to Cl in minutes 4 130.12264 130.12268 0.3											
 Mass Accuracy maintained in CI – all <1ppm "Delivers unambiguous identification" 13829 156.13825 0.3 											

129.07843

143.09414

0.0

0.4

130.08626

144.10193

130.08634

144.10193

129.07843

143.09408

0.6

0.2

5.87

6.23

Molecular Formula = $C_6H_{11}NO_2$

Molecular Formula = $C_7H_{13}NO_2$

PCI-MS/MS allows full unambiguous structural elucidation

MS/MS can be performed on any ion

 Full sub-structural composition can be performed

Thermo Scientific™ Mass
 Frontier™ software can be used
 for comprehensive sub structural
 peak identification

More confidence in search

- Spectra can be identified through proprietary nominal mass library search:
 - NIST
 - WILEY
 - Pfleger / Maurer / Weber
 - Existing in-house libraries

More confidence in search

- Spectra can be identified through proprietary nominal mass library search:
 - NIST
 - WILEY
 - Pfleger / Maurer / Weber
 - Existing in-house libraries

- Or high resolution accurate mass MS/MS libraries
 - Thermo Scientific™ High-Resolution Accurate-Mass MS/MS Spectral Libraries

 mzCloud.org freely available to search online

www.mzcloud.org

- mzCloud™
 - Free
 - Advanced high resolution mass spectral database
 - Search spectrum, name, structure, substructure, and m/z
 - Identify compounds even when they are not present in the library through substructure search

The Q Exactive GC MS has been evaluated for both qualitative and quantitative analysis in support of pharmaceutical uses.

The Q Exactive GC MS has been evaluated for both qualitative and quantitative analysis in support of pharmaceutical uses.

"The accurate mass measurement across a dynamic range, linearity and the ability to identify impurities in both EI & CI have shown that **this instrument is a powerful tool**."

The Q Exactive GC MS has been evaluated for both qualitative and quantitative analysis in support of pharmaceutical uses.

"The accurate mass measurement across a dynamic range, linearity and the ability to identify impurities in both EI & CI have shown that **this instrument is a powerful tool**."

"The speed and efficiency of the **Q Exactive GC gives** confidence in impurity identification with only one elemental formula being identified."

Requirements for Identification of Unknowns

Requirements for Identification of Unknowns

Find out more

www.thermoscientific.com/QExactiveGC

Data in press:

Rapid Communications in Mass Spectrometry, circa April 2016

