Multiplexed protein quantification using the isobaric TMT method: Improving reproducibility and protein coverage with PD 2.1

Rosa Viner HUPO 2015

Proprietary & Confidential

The world leader in serving science

TMT quantification in PD 2.0 and previous

- Using reporter ion intensity values from MS/MS of MS³ spectrum
- Calculate ratios for each PSM based on intensity values
- Calculate peptide group and protein ratios using median and variability of PSM ratios
- "Normalization" of protein ratios using median ratio of "Top N" proteins

Changes to TMT quantification in PD 2.1

- 1) S/N thresholds
- 2) Protein abundances from summed peptide S/N
- 3) Scaled abundances
- 4) New UI for ratio calculation
- 5) Correction factors for TMT 10-plex
- 6) Option to include razor peptides for protein quantification

Note that almost of all these changes are also applied to isotope-labeled quantification (e.g. SILAC)

Collaboration with Harvard Medical School for TMT quantification

Gygi Method for TMT quantification – Step 1

1. Extract S/N values for each reporter ion in the MS/MS data

29May3013_DJB_mouse_tmt8_BR1_unfrac_165min_dda15_1 #8401 RT: 34.83 AV: 1 NL: 1.49E5 T: FTMS + c NSI d Full ms2 329.91@hcd35.00 [115.00-1000.00]

Why S/N?

- S/N is proportional to the number of ions in any Orbitrap detector, while intensity measurements will differ across instruments
- The measurement error is related to the number of detected ions

Distributions determined via 10,000 simulations

S/N thresholds for different resolutions

S/N Thresholds Depend on Resolution and Channel Count

Instrument	Conversion Factors for S/N Cutoff	S/N Cutoff for 6-Plex	S/N Cutoff for 8-Plex	S/N Cutoff for 10-Plex	
7.5k Velos	0.7	59	NA	NA	<u>ه</u>
15k Elite	1.0	80	NA	NA	0. 0.
30k Elite	1.4	114	152	189	Z
42k Fusion (400 m/z)	2.9	232	309	386	S

Target S/N Threshold (equivalent to ~400 ions for 6-plex)

Constant Mean # Charges per Channel

For a high-precision 10-plex TMT experiment, we recommend a minimum summed S/N of ~400 within each MS3 spectrum. This corresponds to less than 10% coefficient of variation between two equally abundant channels.

Different cutoffs may be appropriate for different applications, depending on the accuracy and precision required. For more routine applications, we require a minimum summed S/N of ~200

> Martin Wuehr Graeme McAlister

Gygi Method for TMT quantification – step 2

2. Filter peptides with precursor isolation interference

Gygi Method for TMT quantification – step 3

3. Sum S/N values for peptides to summed protein S/N

- 1. Group peptides by protein
- 2. Filter peptides based on summed S/N and isolation specificity
- 3. Sum S/N for each reporter ion across all remaining peptides

	Isolation Spec.	Sum S/N	131	130	129C	129N	128	127C	127N	126	Sequence
	0.9558	757.7	90.7	87.7	104.0	74.5	122.6	78.8	95.6	103.8	TLATDILMGVLK
\neg S/N too low	1.000	140.8	17.0	14.3	18.9	11.4	26.1	14.1	17.1	21.9	FQIYFDNCPLLTIPGR
	0.6655	151.8	15.0	21.3	17.9	13.2	24.7	16.2	18.3	25.2	REVDDLGPEVGDIK
Taamuah	0.8513	307.4	36.6	29.5	47.0	31.8	46.4	37.1	37.0	42.0	FQIYFDNCPLLTIPGR
	0.4753	1659.6	190.9	239.1	197.7	156.1	265.7	176.5	202.4	231.2	YGVIILDEAHER
	0.8195	973.1	115.0	120.2	134.2	104.3	135.6	119.3	108.9	135.6	LDLGEDYPSGK
Interference	0.9332	825	98.2	97.1	103.3	82.0	120.0	97.8	109.4	117.2	DRFTDILVR
	0.9313	416.6	52.4	55.1	59.8	37.5	59.6	39.5	52.0	60.7	EAMNDPLLER
 S/N too low 	0.9902	80.366	9.85	15.6	13.8	10.4	8.547	7.819	8.117	6.235	RGVACTQPR
	0.7475	1009.9	111.5	136.3	135.9	91.4	157.4	124.0	111.6	141.8	SLMSADNVR
 Sum totals 		^{4289.7} <	504.4	525.9	584.2	421.5	641.6	496.7	514.5	601.1	TOTALS:
	eptides	DHX15 P									

Gygi Method for TMT quantification – step 4

4. Normalization based on total protein S/N

	Gene Symbol	126	127N	127C	128N	128C	129N	129C	130N	130C	131
	SLC12A2	2591	2696	2534	2606	2597	2605	2574	2675	3662	3667
	SOX21	0	0	0	0	0	0	0	0	0	0
	ZFP91	284	172	232	111	107	98	71	287	0	0
	INCENP	2186	2317	2187	2277	2272	2313	2248	2226	2697	2796
	PHF20L1	468	435	442	473	442	487	452	445	1169	1093
	CDK12	3467	3597	3473	3453	3414	3505	3339	3412	4000	3927
	CDK13	765	732	767	829	705	869	828	725	1364	1346
	CDK13	200	196	186	183	215	208	207	207	0	0
	CDK2	5697	5797	5730	5506	5756	5538	5408	5358	4935	5357
	YES1	1162	1158	1149	1155	1187	1176	1123	1164	2275	1976
	LCK	4503	4470	4548	4497	4542	4598	4524	4536	4149	4040
	BLK	1856	1790	1861	1912	1865	1847	1864	1852	3742	3646
	CDK9	1444	1434	1421	1421	1444	1498	1457	1346	1789	1798
	LYN	9187	9006	9190	8878	8573	8822	8517	8582	9847	9408
	LYN	126	117	114	126	130	130	115	135	208	211
	CDK6	4912	4937	4805	4857	4912	4886	4905	4859	3654	3576
	CDK1	8564	8607		8221	8824		8468	8048	7740	8164
1.	Sum TMT signal For each column:	47411	47463	47221	46504	46985	46934	46101	45858	51229	51004
2.	Norm. Factors:	0.926	0.927	0.922	0.908	0.917	0.916	0.899	0.895	1.000	0.996

3. Multiply each row by normalization factors to get normalized values.

Gygi Method for TMT quantification – Step 4

4. Normalization using a single selected protein

	Gene Symbol	126	127N	127C	128N	128C	129N	129C	130N	130C	131
	SLC12A2	2591	2696	2534	2606	2597	2605	2574	2675	3662	3667
	SOX21	0	0	0	0	0	0	0	0	0	0
	ZFP91	284	172	232	111	107	98	71	287	0	0
	INCENP	2186	2317	2187	2277	2272	2313	2248	2226	2697	2796
	PHF20L1	468	435	442	473	442	487	452	445	1169	1093
	CDK12	3467	3597	3473	3453	3414	3505	3339	3412	4000	3927
	CDK13	765	732	767	829	705	869	828	725	1364	1346
	CDK13	200	196	186	183	215	208	207	207	0	0
	CDK2	5697	5797	5730	5506	5756	5538	5408	5358	4935	5357
	YES1	1162	1158	1149	1155	1187	1176	1123	1164	2275	1976
	LCK	4503	4470	4548	4497	4542	4598	4524	4536	4149	4040
	BLK	1856	1790	1861	1912	1865	1847	1864	1852	3742	3646
	CDK9	1444	1434	1421	1421	1444	1498	1457	1346	1789	1798
	LYN	9187	9006	9190	8878	8573	8822	8517	8582	9847	9408
	LYN	126	117	114	126	130	130	115	135	208	211
	CDK6	4912	4937	4805	4857	4912	4886	4905	4859	3654	3576
	CDK1	8564	8607	8582	8221	8824		8468		7740	8164
TN for Target	1T Signal Protein:	5697	5797	5730	5506	5756	5538	5408	5358	4935	5357
2. Norm	. Factors:	0.983	1.000	0.989	0.949	0.993	0.955	0.933	0.924	0.851	0.924
•											

3. Multiply each row by normalization factors to get normalized values.

Gygi Method for TMT quantification – Step 5

5. Scale total intensity across channels to 100%

Value	126	127N	127C	128N	128C	129N	129C	130N	130C	131	SUM	
Normalized Intensity	2591	2696	2534	2606	2597	2605	2574	2675	3662	3667	28207	
Fraction of Ions (Scaled to 100)	9.19	9.56	8.98	9.24	9.21	9.23	9.13	9.49	12.98	13.00		

Scaling Procedure:

- 1. Sum reporter ion intensity across all channels
- 2. Divide each column by the summed intensity
- 3. Multiply by 100

Why Bother Rescaling?

- Corrects for differences in reporter ion abundance due to different numbers of observed peptides
- 2. Enables better heat map generation
- 3. Facilitates comparison of quantitative profiles from protein to protein
- Formats data for downstream analysis (statistics, clustering, PCA, etc)

Summed S/N values displayed in PD 2.1

🥥 Therm	no Protec	ome Dis	coverer 2.1	.0.81																						-	- 6 🗾	,
	<u>A</u> dmir	nistratio	n <u>T</u> ools	<u>W</u> indow <u>H</u> e	elp																							
11	1			7			م ليلي						8	4 🖪														
Start Pa	age 🗙	Study	y: Gygi_Yea	st_TMT_MS3	× All.SN10.N	lormalization.Scaling	× All.9	5NO.Normaliza	ition.NoScaling	×																	▼ 4	Þ
💷 🛛 Prot	teins (filt	ered)	Protein G	roups Pe	ptide Groups PSI	Ms MS/MS Spectrum	n Info Qu	uan Spectra	Result Statistics																			
					· · · · ·						Abundances	s (Grouped)	C.	100	~~~		oto	in (ī
cked Prot	tein FDR	Confider	nce Master	Accession I	Description			Exp. q-value	Sum PEP Score 👻	Coverage		- (3	ווווג	nec	וק ג	ole	III C	D/IN		# Peptides	# PSMs	# Unique Peptic	les # Protein G	roups # AAs	MW [kDa]	calc. pl Entr	4
7				DODGO 4	<u></u>			0.000	010.410	700	ñ.	-	on	=	£ 2000	<u>5</u>	40075 5	33	3	8	70	710		70	1 005	01.0	4.04 051	
1		<u> </u>		P25694	rBNA biogenesis prote	ein RRP5 OS-Saccharomy	ces cerevis	0.000	818.419	73%	28130.3	30091.9	32180.7	38165.6	42388.7	41167.8	403/5.5	38894.7	38614.8	38099.7	125	7 18 523	1	24	1 835	91.9	4.94 851	
7				P19414	Aconitate hydratase ir	mitochondrial OS=Saccharonn	romvces cer	r 0.000	799.984	74%	18535.9	18474.8	21682.4	27740.0	29650 1	34353.7	38570.9	91021.0	102502.7	110973.6	78	969	1	75	1 778	85.3	8.07 851	
1			- V	P38972	Phosphoribosylformyl	glycinamidine synthase OS	S=Saccharo	0.000	783.400	60%	22502.5	26870.2	27499.1	28258.3	28013.2	25810.0	24575.1	19357.8	18004.9	16434.6	78	555		77	1 1358	148.8	5.27 852	
3			×	P00924	Enolase 1 OS=Sacch	aromyces cerevisiae (strai	in ATCC 204	4 0.000	770.445	97%	11822.9	12648.9	21357.4	31135.6	36019.6	39955.9	40285.5	63011.4	73283.0	86054.6	57	2470		20	1 437	46.8	6.62 853	
]			V	Q00402	Nuclear migration pro	tein NUM1 OS=Saccharon	myces cerev	0.000	759.075	64%	14796.4	15665.8	16519.0	15197.5	14573.3	14656.1	14561.3	16626.6	17000.7	16564.1	125	389	1	22	1 2748	312.8	5.40 851	
]			V	P38088	GlycinetRNA ligase	1, mitochondrial OS=Sacc	haromyces:	0.000	728.809	80%	35215.9	33634.7	34081.4	34273.7	33639.7	32904.5	32294.8	26779.7	25887.6	24547.4	71	608		70	1 690	78.1	6.52	
]	•		\checkmark	P14540	Fructose-bisphosphat	e aldolase OS=Saccharon	nyces cerev	i 0.000	728.331	86%	57950.8	56607.4	56806.4	62191.2	60472.2	59347.8	56981.8	53236.0	51271.7	53489.6	30	1708		30	1 359	39.6	5.78 853	
]			<u>∕</u>	P09436	IsoleucinetRNA ligas	se, cytoplasmic OS=Sacch	naromyces o	0.000	716.056	65%	30403.4	29415.6	28969.9	33876.4	33986.1	33230.4	32680.9	25358.9	23540.4	22494.4	92	591		91	1 1072	122.9	6.06 852	
]				P22202	Heat shock protein SS	5A4 OS=Saccharomyces c	cerevisiae (s	0.000	711.419	69%	5182.7	2766.3	3616.0	18581.6	25287.0	28607.8	31460.2	26986.7	25061.8	24025.8	66	1311		33	1 642	69.6	5.14 856	
3				P22515	Obiquitin-activating en	nzyme ET TUS=Saccharo	myces cere	0.000	703.813	58%	18447.7	19468.4	21025.9	29366.5	33146.9	32400.7	314//./	28032.1	25491.8	253/0.6	58	2721		4	1 1024	26.0	5.11 853	
4																											•	
A Hide	Associat	ted Table	es																									
Protein	Groups	Pep	otide Group	s PSMs	MS/MS Spectrum	Info Annotated Modi	ifications																					
												Abundance	es (Grouped		ontic		aroi	in (Ē							
e e	Che	ecked S	equence in	Protein	Positions in Prote	in Protein Quan Usage	Confiden	ce Annotated !	Sequence	Modifications					puc	י בר	gruu	yh v			Hered.	Modifica	ations in Master	Proteins Qvali	y PEP Qvali	y q-value 🔺	# Protein 🔳	
												ŵ	~	o	=	13	5	17	25	59	33							
2 -	+ <u> </u>	K	CELEELTG	RNITDLHRD	DVI [487-507]	Used	•	[K].ELEEL	GVRNITDLHRDVIE	2×TMT6plex [N-Term	; K21]	299.9	308.7	289.0	151.4	407.8	299.7	260.3	322.7	185.8	142.1			8.0	4e-06	0	4	
3 -					10/ [308-339]	Used		[R].VISUU		1×Carbamidomethyl	C30]; Z×TMT6	5 45.3 505.2	50.5	51.6	69.3	52.6	56.2	58.2	47.3	37.9	30.8			6.0	3e-10	0		
4 - E					[627-636] =K [199-216]	Used			EVEN.[A] AVTIGENVIGOEK F	2×TMT6plex [N-Term	; K10] - K191	525.3	09.0	92.0	88.0	120.6	905.6	915.0	558.7	71.6	94.7			0.0	2e-05	0		
6 -			RIYUNSP\	I KAESI K E	[627-641]	lleed		IBL YUNS	PVI KAESI K IEI	3xTMT6plex [N-Term	· K10· K151	27.9	25.8	21.2	35.5	52.7	42.6	33.2	21.1	27.2	20.0			2	3e-05	0		
7 -		пк	NYPDPSI	LNK.Y	[609-619]	Used		[K].NYPDP	SIVLNK.[Y]	2×TMT6plex [N-Term	: K111	711.4	675.2	766.8	851.4	866.6	857.3	1068.9	671.9	642.9	585.9			3.4	9e-06	0		
8 -	+ [R	R.RFGWDTI	HGVPIEHIIDK	KK. [81-98]	Used		[R].RFGW[THGVPIEHIIDKK.[I	3×TMT6plex [N-Term	; K17; K18]	1016.7	555.5	193.6	391.4	336.9	332.1	309.1	374.8	344.4	304.3			1.9	5e-05	C		
9 -	Þ [к	CMSNIDFQ	YDDSVK.S	[675-687]	Used	•	[K].MSNID	QYDDSVK.[S]	2×TMT6plex [N-Term	; K13]	16.2	21.0	19.4	31.8	21.3	31.6	23.9	18.3	15.8	19.8			1.5	4e-07	0		
10 .	-	□ K	CDALPSVT	SEQVREYLE:	SG 1916-9341	llsed		IKI DALPS	/TSEQVREYLESG	2xTMT6plex IN-Term	· K191	25.7	28.4	36.8	28.4	42.0	40.2	25.6	28.9	20.7	11.6			4.2	5e-05	0		
4																											•	1
🔿 Hide	Associat	ted Table	es																	- E	DCN	1 C	2/NL 5	<u>alu</u>				
Protein	ns (filtere	ed) Pr	rotein Grou	ips PSMs	MS/MS Spectru	m Info														Г)/IN \	alue	52			
1 Interfere	ence [%]	Average	e Reporter :	5/N Ion Inject	t Time [ms] RT [min]	First Scan Spectrum Fil	le		lons Matched XC	orr Percolator q-Value	 Percolator 	r PEP Repor	ter Quan R	esult ID Per	tide Quan U	sage Qu	an Info	126	5 12	7N 12	7C 128	N 1	128C 129	V 129C	130N	130C	131	
	0	-	2	4.9	43.147 135.5782	45999 fusion fracti	ion 3.raw		0/0 3.	20	0 1.11	le-05	13	218812	Used	-	Unique		24.6	26.0	25.0	25.5	42.0	28.3 1	3.3 21	9 18	.4 9.1	
	51		1	0.0	150.000 157.7240	59570 m04557.raw	, –		0/0 3.	32 8.33e-	06 8.1	le-05	1	724394	Not Used	E	xcluded by M	ethod	6.9	8.3	9.9	10.9	12.5	8.9	9.3 10	5 10	.8 7.8	
		1				1			1														1					
4																											- N	
																												IJ
Ready					4772/4965 P	roteins; 4772 Protein Grou	ups; 88474 I	Peptide Groups	; 357119 PSMs; 10	50272 MS/MS Spectru	n Info; 105502	20 Quan Spe	ectra; 447 F	esult Statisti	CS													ī
\frown		· · · · ·)ſ	~]					· ·																		i.

Pros/Cons of the summed S/N approach

Pros:

- Higher abundance peptides are weighted more strongly
- Outliers due to low abundance peptides are eliminated
- Summed S/N values are easily profiled
- Summed S/N values are tolerant of missing values
 - Ratios will produce 0 or infinite values for reporter ions with 0 intensity
- Very straightforward

Cons:

• No measure of variability of individual peptide measurements

PD 2.1 TMT quantification

- Slight modifications to the Gygi approach
 - Use "Average S/N" threshold across all channels
 - More easily applied to reporter ion quantification methods with different numbers of quantification channels
 - User enters a single S/N value
 - Normalize on total peptide signal rather than protein signal
 - Summed peptide group abundances across each sample
 - More like a TIC normalization
 - Scale each channel to an average of 100% rather than a total of 100%
 - Easier to see which channels are changing
 - Easier to choose heat map colors
 - Ratios are still calculated
 - User has a choice to inspect the summed S/N values, the scaled abundances, or the ratios for any given peptide or protein

Protein and peptide quantifier node in Consensus workflow (new parameters in PD 2.1)

Show Advanced Parameters		
1. Quantification - General		Deserventides
Peptides to Use	Unique + Razor 🗲	Razor peptides
Consider Protein Groups for Peptide	True	
Replace Missing Values with Minim	J False	
Reject Quan Results with Missing C	ł False	
Maximum Allowed Fold Change	100	
Top N Peptides Used for Area Calc	3	- Corroction factors
2. Reporter Quantification		
Reporter Abundance Based On	Automatic	
Apply Quan Value Corrections	False	
Co-Isolation Threshold	100	
Average Reporter S/N Threshold	0 <	— Average S/N per channel
3. Precursor Quantification		, worage en por onarmor
Use Single-Peak Quan Channels	False	
4 4. Normalization and Scaling		
Normalization Mode	Total Peptide Amount <	New normalization option
Proteins For Normalization		
Scaling Mode	On Channels Average (Per File)	
5. Display Options		Cooling
Show Standard Errors	False	
Show Quan Value Counts	False	
Show Quan Ratios As	Normal Space Values	
6. Quan Ratio Distributions		Option to diaplay
1st Fold Change Threshold	2	\sim Option to display
2nd Fold Change Threshold	4	
3rd Fold Change Threshold	6	l log2 ratios
4th Fold Change Threshold	8	
5th Fold Change Threshold	10	

Previous versions of PD – use intensity thresholds

 User can set an intensity threshold for acceptance of a reporter ion in a given PSM for use in peptide group and protein quantification

PD 1.4

PD	2.0

Quantification Method Editor: SILAC 2plex (Arg10, Lys6) Quant Channels Ratio Calculation Protein Quantification Experimental Bias Show the Raw Quan Values Iminum Quan Value Iminum Quan Value Threshold 0.0001 Replace Missing Quan Values With Minimum Intensity 0.0 Iminum Quan Values With Minimum Intensity False Use Single-Peak Quan Channels 0.0 100 Use Single-Peak Quan Channels False Apply Quan Values If Not All Quan Channels Are Present 100 Iminum Quan Value Corrections False Naximum Allowed Fold Change 100 100 Image Consider Proteins Groups for Peptides True Use Ratios Above Maximum Allowed Fold Change for Quantification 100 Image Consider Proteins Groups for Peptide Uniqueness True Use Consider Proteins Groups for Peptides from Quantification: 100 Image Consider Proteins Groups for Peptide Uniqueness True On Summary Allowed Fold Change for Quantification: 100 Image Consider Proteins Groups for Peptide Uniqueness True Percent Co-Isolation Excluding Peptides from Quantification: 100 Image Compatible Image Compatible		
Quan Channels Ratio Reporting Ratio Calculation Protein Quantification Experimental Bias Image: Show the Raw Quan Values Image: Show the Raw Quan Values Image: Show the Raw Quan Value Threshold 0.0001 Minimum Quan Value Threshold: 0.0 Image: Show the Raw Quan Values With Minimum Intensity Replace Missing Quan Values With Minimum Intensity Replace Missing Quan Values With Minimum Intensity Image: Show the Raw Quan Value Values With Minimum Intensity 100 Image: Show the Raw Quan Value Corrections Image: Show the Raw Quan Value Corrections 100 Use Single-Peak Quan Channels False Image: Apply Quan Value Corrections Reject All Quan Value Corrections False Image: Show the Raw Quan Value Corrections False Image: Apply Quan Value Corrections Image: Single-Peak Quan Channels Are Present Fold Change: Image: Show the Raw Quan Value Corrections True Image: Show the Raw Quan Allowed Fold Change: Image: Im	Quantification Method Editor: SILAC 2plex (Arg10, Lys6)	Show Advanced Parameters
Minimum Quan Values Minimum Quan Values 0.0001 Imimum Quan Value Threshold: 0.0 Imimum Quan Values If Not All Quan Channels False Imimum Quan Value Corrections False Imimum Allowed Fold Change: 100 Imimum	Quan Channels Ratio Reporting Ratio Calculation Protein Quantification Experimental Bias	4 1. Ratio Calculation
Show the Raw Quan Values Minimum Quan Value Threshold: 0.0 Replace Missing Quan Values With Minimum Intensity Quan Values With Minimum Intensity Use Single-Peak Quan Channels Value Corrections Reject All Quan Values If Not All Quan Channels Are Present Fold Change Threshold for Up-/Down-Regulation: 2.0 Maximum Allowed Fold Change: 100 Use Ratios Above Maximum Allowed Fold Change for Quantification Percent Co-Isolation Excluding Peptides from Quantification:		Minimum Quan Value Threshold 0.0001
Minimum Quan Value Threshold: 0.0 Replace Missing Quan Values With Minimum Intensity Use Single-Peak Quan Channels Vaply Quan Value Corrections Reject All Quan Values If Not All Quan Channels Are Present Fold Change Threshold for Up-/Down-Regulation: 100 100 2.0 Maximum Allowed Fold Change: 100 100 2.0 Maximum Allowed Fold Change: 100 2.1 Percent Co-Isolation Excluding Peptides from Quantification: 100 100	Show the Raw Quan Values	Replace Missing Quan Values With Minimum Intensity Palse
Minimum Quan Value Threshold: 0.0 Minimum Quan Value Threshold: 0.0 Replace Missing Quan Values With Minimum Intensity 100 Use Single-Peak Quan Channels 1.1 Ratio Calculation for Precursor Quan Waximum Allowed Fold Change 100 Apply Quan Value Corrections False Reject All Quan Values If Not All Quan Channels Are Present 1.2 Ratio Calculation for Reporter Quan Fold Change Threshold for Up-/Down-Regulation: 2.0 Maximum Allowed Fold Change: 100 Use Ratios Above Maximum Allowed Fold Change for Quantification 100 Vertex Co-Isolation Excluding Peptides from Quantification: 100 Percent Co-Isolation Excluding Peptides from Quantification: 100	No. 10 No. 20 No	Reject All Quan Values If Not All Quan Channels Are I False
Image: Replace Missing Quan Values With Minimum Intensity Use Single-Peak Quan Channels Image: Use Single-Peak Quan Channels Image:	Minimum Quan Value Threshold:	Maximum Allowed Fold Change 100
 I.1 Ratio Calculation for Precursor Quan Use Single-Peak Quan Channels Apply Quan Value Corrections Reject All Quan Values If Not All Quan Channels Are Present Fold Change Threshold for Up-/Down-Regulation: 2.0 Maximum Allowed Fold Change: 100 100 2.0 Trotein Quantification 2.0 Use Ratios Above Maximum Allowed Fold Change for Quantification A protein Quantification Dercent Co-Isolation Excluding Peptides from Quantification: 100 100 3. Normalization 3. Normalization 	Replace Missing Quan Values With Minimum Intensity	Use Ratios Above Maximum Allowed Fold Change for False
□ Use Single-Peak Quan Channels False □ Apply Quan Value Corrections Use Single-Peak Quan Channels False □ Reject All Quan Values If Not All Quan Channels Are Present Apply Quan Value Corrections True Fold Change Threshold for Up-/Down-Regulation: 2.0 Verterin Quantification 100 Maximum Allowed Fold Change: 100 100 Interview True Use Ratios Above Maximum Allowed Fold Change for Quantification Top N Peptides Used for Area Calculation True Vercent Co-Isolation Excluding Peptides from Quantification: 100 Interview Interview Percent Co-Isolation Excluding Peptides from Quantification: 100 Interview Interview		4 1.1 Ratio Calculation for Precursor Quan
 Apply Quan Value Corrections Reject All Quan Values If Not All Quan Channels Are Present Fold Change Threshold for Up-/Down-Regulation: 2.0 Maximum Allowed Fold Change: 100 2.0 Waximum Allowed Fold Change: 100 2.0 2.0 3.12 Ratio Calculation for Reporter Quan Apply Quan Value Corrections Co-Isolation Threshold 100 2.0 2.0 Maximum Allowed Fold Change: 100 2.0 3.12 Ratio Calculation for Reporter Quan Apply Quan Value Corrections Co-Isolation Threshold 100 3.10 3.10 3.10 3.10 	Use Single-Peak Quan Channels	Use Single-Peak Quan Channels False
Apply Quan Value Corrections True Co-Isolation Threshold for Up-/Down-Regulation: 2.0 Maximum Allowed Fold Change: 100 (*) Use Ratios Above Maximum Allowed Fold Change for Quantification True Vercent Co-Isolation Excluding Peptides from Quantification: 100 (*) Image: Thread of the second of the seco	Apply Quan Value Corrections	4 1.2 Ratio Calculation for Reporter Quan
Reject All Quan Values If Not All Quan Channels Are Present Co-Isolation Threshold 100 Fold Change Threshold for Up-/Down-Regulation: 2.0 Use Only Unique Peptides True Maximum Allowed Fold Change: 100 (*) Co-Isolation Threshold True Use Ratios Above Maximum Allowed Fold Change for Quantification Top N Peptides Used for Area Calculation True Percent Co-Isolation Excluding Peptides from Quantification: 100 (*) Scoreaction Scoreaction		Apply Quan Value Corrections True
Fold Change Threshold for Up-/Down-Regulation: 2.0 Maximum Allowed Fold Change: 100 ÷ Use Ratios Above Maximum Allowed Fold Change for Quantification Use Only Unique Peptides True Descent Co-Isolation Excluding Peptides from Quantification: 100 ÷ Image: Top N Peptides Used for Area Calculation 3 Image: Percent Co-Isolation Excluding Peptides from Quantification: 100 ÷ Image: Top N Peptides Used for Area Calculation 3	Reject All Quan Values If Not All Quan Channels Are Present	Co-Isolation Threshold 100
Maximum Allowed Fold Change: 100 🚖 Use Ratios Above Maximum Allowed Fold Change for Quantification Use Only Unique Peptides Percent Co-Isolation Excluding Peptides from Quantification: 100 🚖	Fold Change Threshold for Up-/Down-Regulation: 2.0	▲ 2. Protein Quantification
Maximum Allowed Fold Change: 100 • Use Ratios Above Maximum Allowed Fold Change for Quantification Consider Proteins Groups for Peptide Uniqueness True Percent Co-Isolation Excluding Peptides from Quantification: 100 • A S. Normalization 3		Use Only Unique Peptides True
Use Ratios Above Maximum Allowed Fold Change for Quantification Percent Co-Isolation Excluding Peptides from Quantification: 100 100 Interference of the second s	Maximum Allowed Fold Change:	Consider Proteins Groups for Peptide Uniqueness True
Percent Co-Isolation Excluding Peptides from Quantification: 100 -	Use Ratios Above Maximum Allowed Fold Change for Quantification	Top N Peptides Used for Area Calculation 3
Percent Co-Isolation Excluding Peptides from Quantification: 100 -		▲ 3. Normalization
Experimental blas conection None	Percent Co-Isolation Excluding Peptides from Quantification:	Experimental Bias Correction None
Minimum Ratio Count for Median Normalization 20		Minimum Ratio Count for Median Normalization 20

PD 2.1 S/N calculation

 PD 2.1 asks for an Average S/N value across all measured report ions for a given method

⊿	2. Reporter Quantification	
	Reporter Abundance Based On	Automatic
	Apply Quan Value Corrections	\ True
	Co-Isolation Threshold	∖ ,50
	Average Reporter S/N Threshold	10

• If the average S/N value is above the user set value, the PSM is included in the peptide and protein quantification:

te	r Quan Result ID	Pentide Quan Usage	Quan Info	126	127N	127C	128N	128C	129N	129C	130N	130C	131	•
	Average	e = 10.1 (> 10) Unique	19.0	23.0	19.6	19.0	17.3	16.7	12.4	17.0	14.0	9.3	-
	1486/78	Used	Unique	12.5	19.9	21.7	12.0	17.4	11.0	15.6	17.2	20.5	18.3	
	1244696	Used	Unique	3.6	10.8	8.8	15.8	11.9	12.5	9.4	7.0	11.1	10.3	
	1244694	Not Used	Excluded by Method	8.6	10.4	7.0	9.5	8.0	10.0	6.6	11.0	8.5	7.9	
	1244693	Not Used	Excluded by Method	2.2	1.6	1.5	1.5	3.4	3.4	3.0	5.8		2.3	
	1384282	Used	Unique	114.2	103.4	52.4	71.4	37.9	16.5	16.5	9.0	44.4	16.8	
	Average	_ 0 75 (<u>_</u> 1(Unique	44.3	42.7	35.9	42.2	49.9	33.4	31.6	33.0	35.9	26.3	
	Average	= 0.75 (< 10	J) Unique	57.3	46.4	54.2	60.5	66.6	63.2	82.7	48.0	60.3	51.4	
	1244688	Not Used	Excluded by Method	3.8	7.6	7.3	7.2	12.7	5.9	6.5	6.4	3.2	6.7	
	1244684	Used	Unique	27.6	24.0	17.0	20.6	18.4	10.8	16.3	12.0	11.1	11.3	

Normalization in PD 2.1

She	ow Advanced Parameters	
⊿	1. Quantification - General	
	Peptides to Use	Unique + Razor
	Consider Protein Groups for Peptide	True
	Replace Missing Values with Minimu	False
	Reject Quan Results with Missing Ch	False
	Maximum Allowed Fold Change	100
	Top N Peptides Used for Area Calcu	3
⊿	2. Reporter Quantification	
	Reporter Abundance Based On	Automatic
	Apply Quan Value Corrections	False
	Co-Isolation Threshold	100
	Average Reporter S/N Threshold	0
⊿	3. Precursor Quantification	
	Use Single-Peak Quan Channels	False
⊿	4. Normalization and Scaling	
	Normalization Mode	Total Peptide Amount 🖉
	Proteins For Normalization	F
	Scaling Mode	On Channels Average (Per File)
⊿	5. Display Options	
	Show Standard Errors	False
	Show Quan Value Counts	False
	Show Quan Ratios As	Normal Space Values
4	6. Quan Ratio Distributions	
	1st Fold Change Threshold	2
	2nd Fold Change Threshold	4
	3rd Fold Change Threshold	6
	4th Fold Change Threshold	8
	5th Fold Change Threshold	10

New normalization options: 1) Total Peptide Amount

2) Specific Protein Amount3) None

If specific protein amount is chosen, the user can choose an indexed FASTA files with the list of proteins to use for normalization.

Scaling in PD 2.1

- Averaged scaled abundance equals 100 regardless of number of channels
- Scaled abundance values are displayed for peptide groups and proteins
- Samples or channels with higher abundance will be colored red while samples or channels with lower abundance are colored blue:

· ·			1								
P1941	Aconitate hydratase, mitochondrial OS=Saccharomyces cerevisiae (strain ATCC 2045(37.6	37.4	43.8	56.2	60.1	69.7	78.4	183.9	208.0	225.0
P3897	Phosphoribosylformylglycinamidine synthase OS=Saccharomyces cerevisiae (strain A)	94.6	113.1	116.8	119.0	117.0	108.5	103.3	81.8	76.1	69.8
P0092	Enolase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=ENO1 P	28.6	30.5	51.2	74.8	86.6	96.2	97.1	151.3	176.5	207.3
Q0040	2 Nuclear migration protein NUM1 OS=Saccharomyces cerevisiae (strain ATCC 204508	94.3	100.1	106.1	97.5	93.3	94.0	93.4	106.4	108.8	106.2
P3808	GlycinetRNA ligase 1, mitochondrial OS=Saccharomyces cerevisiae (strain ATCC 20-	111.9	106.8	108.8	108.8	107.5	105.6	103.4	85.9	82.7	78.7
P1454	Fructose-bisphosphate aldolase OS=Saccharomyces cerevisiae (strain ATCC 204508	101.6	99.5	99.8	109.5	106.5	104.6	100.3	93.7	90.2	94.1
P0943	is IsoleucinetRNA ligase, cytoplasmic OS=Saccharomyces cerevisiae (strain ATCC 204	104.0	100.2	98.8	116.0	115.2	112.7	110.9	86.2	79.8	76.1
P2220	Heat shock protein SSA4 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288	27.1	14.4	18.7	97.0	132.4	149.4	164.6	140.6	130.7	124.9

Sorting scaled abundance columns in PD 2.1

• Select column name and click up or down triangle to sort:

🚱 Thermo	Proteome I	Discoverer 2.1.0.81					_											- X
File View	Administra	ation Tools Windo	w Help															
1	i) 🎸				2 💽 🖸						6	4						
Start Pag	e 🗙 St	tudy: Gygi_Yeast_TMT	_MS3 :	× All.SN	10.Normalization.Sc	aling × All.SNO.Norm	alization.NoScaling ×									、 、		▼
🗐 Protei	ins (filtered) Protein Groups	Peptide (Groups	PSMs MS/MS Sp	ectrum Info Quan Spe	ctra Result Statistics						-					
								Abundance	s (Grouped)						~		∕ ∕ _ ⊢	
Ē	Checked	Protein FDR Confider	nce Master	Accession	Description						_	~	10		10	-	\ <u>*</u>	Exp
1		_		P00221	Alcohol debudrogena	a 2 OS-Sacharomucaa o	revisiae (etrain ATCC 204509 / S	un 200. 0.1	۲- ۶/	6	=	달 16.6	17.1	19.0	54.2	255 1	>M	<u> </u>
2 -				P32907	Arconor denydrogenas	itward protein 2 OS=Sacch	aromyces cerevisiae (strain ATCC	2001 0.2	3.5	6.7	7.4	7.4	17.1	50.9	134.9	233.1	487.2	
3 =				P40076	Uncharacterized prote	in YER121W OS=Sacchar	omvces cerevisiae (strain ATCC 2	045 6.7	13.7	11.6	18.8	35.0	75.0	63.8	87.0	214.7	473.6	
4 ⊣=				Q08969	Protein GRE1 OS=Sa	ccharomyces cerevisiae (st	rain ATCC 204508 / S288c) GN=(GRE 4.3	4.7	5.1	6.2	15.7	45.3	66.0	93.0	299.0	460.5	
5 -⊨		•	- V	P40188	Respiratory growth in	duced protein 2 OS=Saccha	aromyces cerevisiae (strain ATCC	204 6.0	7.3	7.2	8.6	11.7	14.2	30.2	137.8	323.5	453.4	
6 👳		•	V	P13711	Acyl-coenzyme A oxid	lase OS=Saccharomyces o	erevisiae (strain ATCC 204508 / S	288 7.0	7.3	8.2	8.6	10.7	14.7	20.9	164.7	306.7	451.2	
7 ⊹⊐		•	V	P19657	Plasma membrane A	[Pase 2 OS=Saccharomyce	es cerevisiae (strain ATCC 204508	3/S 17.2	15.0	12.5	25.7	43.3	57.5	56.6	85.0	254.5	432.7	
8 👳		•	\checkmark	Q12031	Mitochondrial 2-methy	lisocitrate lyase OS=Sacch	aromyces cerevisiae (strain ATCO	20 5.7	6.9	8.7	9.7	11.5	11.8	18.3	205.9	306.1	415.4	(
9 🕁		•	\checkmark	P15202	Peroxisomal catalase	A OS=Saccharomyces cere	evisiae (strain ATCC 204508 / S28	38c) 14.0	14.1	13.5	15.2	17.3	17.5	28.0	172.5	296.2	411.7	
10 中		•	\checkmark	P43635	Citrate synthase 3 OS	=Saccharomyces cerevisia	e (strain ATCC 204508 / S288c) 0	àN≓ 15.1	15.6	12.2	18.9	21.6	26.0	27.5	155.9	296.4	410.8	
4																		F
Show /	Associated ⁻	Tables																
Quan Chann	el Values																	- 4 ×
900031: Alcoh 800	ol dehydrogenæse	2 08-Saccharomyces cereulsiae	s (sitein ATCC 20e	505/8225C)O	I-ADHZ PE-1 8V-3													
700 -																	600 T	
600																		
3 500																	-	
8																		
E 400 -																		
a 300														2	255 T			
200															1			
400												64						
		8	6		6	8	17	17		18	_	I						
0 +		 , -	7	1		11	13	15	1	17		25	-		29		33	
		-	,				 Quan Chanr	els				20						

21

4772/4965 Proteins; 4772 Protein Groups; 88474 Peptide Groups; 357119 PSMs; 1050272 MS/MS Spectrum Info; 1055020 Quan Spectra; 507 Result Statistics

Thermo Fisher

New custom ratio calculation in PD 2.1

Thermo Proteome Discoverer 2.1.0.75			
<u>File View Administration Tools Window H</u> elp			
🛛 💱 🕼 😓 🎲 👫 💎			2 📑 礘 🖪
Start Page X Study: PD21_test X Administration >	< 29May3013_DJB_mouse_tmt8_BR1_unfrac_165min_d	da15_1 ×	1 0 -
Add Files Add Fractions Sample	group selection	sis Template Analysis	🗌 As Batch 🧊 Run 📙 Save 🗙
Sample Group and Quan Ratio Specification	Generated Sample Groups		
Study Variables	2 of 10 sample groups not used (*) in any ratio de	finition. Consensus Step	×
 File Quan Channel Sample Type Variables printed in italics contain only a single value. 	126 126 Sample F1: 29May3013_DJB_mouse_tr 127N 127N Sample F1: 29May3013_DJB_mouse_ 127C 127C	workflow: CWF_Comprehensive_I Result File: 29May3013_DJB_mouse_sult tmt8_BR1_u Child Steps: (1) Processing Step Image: Step Workflow: DWF_OT_Result File:	Enhanced Annotation_Quan tmt8_BR1_unfrac_165min_dda15_1.pdRe Add Clone
Manual Ratio Generation Numerator: (127C) Denominator: (128N) Add Ratio Add Ratio	128N * ////////////////////////////////////	Clear All Clear All	se_tmt8_BR1_unfrac_165min_dda15_1
Uenominators to be used: Quan Channel : 126 Quan Channel : 127N Quan Channel : 127C Quan Channel : 128N Quan Channel : 128N Quan Channel : 129N Quan Channel : 129N Quan Channel : 130N Add Ratios	x 127C / 126 x 128C / 126 x 129N / 126 x 129C / 126 x 130C / 126 x 131 / 126	ected ratios for lay in report	
Ready Bulk rat	io calculation		

Custom ratios in PD 2.1 – example 2

What about statistics?

- Ratio variabilities no longer available for a single experiment
- However, when analyzing replicates, standard errors are calculated for ratios
- How do I know when I have replicate data?

Generated Sample Groups		
Lung		*
126 Sample Lung 129C Sample Lung 129N Sample Lung	F3: 29May3013_DJB_mouse_tmt8_BR3_unfrac_1 F2: 29May3013_DJB_mouse_tmt8_BR2_unfrac_ F1: 29May3013_DJB_mouse_tmt8_BR1_unfrac_	65n = 165 165
Liver	F3: 29May3013_DJB_mouse_tmt8_BR3_unfrac_	165
127N Sample Liver 127N Sample Liver 129C Sample Liver	F2: 29May3013_DJB_mouse_tmt8_BR2_unfrac_ F1: 29May3013_DJB_mouse_tmt8_BR1_unfrac_	165
130C Sample Liver	IF4: 29May3013_DJB_mouse_tmt8_BR4_unfrac_	165 +

- Value in final result will be the average of the four datasets
- Standard errors will be calculated for each peptide and protein across replicates

Results from biological replicate search

2093/3355 Proteins; 2093 Protein Groups; 12714 Peptide Groups; 67954 PSMs; 164965 MS/MS Spectrum Info; 167345 Quan Spectra; 499 Result Statistics

Replicates grouped into ratios + standard errors

Quan Channels

Ready

TMT 10-plex correction factor certificate

**Reporter Ion Isotopic Distributions:

Mass Tag	Reporter lon	-2	-1	Monoisotopic	+1	+2
TMT ¹⁰ -126	126.127726	0.0%	0.0%	100%	5.0% <mark>(</mark> 127C)	0.0% <mark>(</mark> 128N)
TMT ¹⁰ -127N	127.124761	0.0%	0.4%	100%	5.0% (128N)	0.0% (128C)
TMT ¹⁰ -127C	127.131081	0.0%	0.2% (126)	100%	4.6% (128C)	0.3% <mark>(</mark> 129N)
TMT ¹⁰ -128N	128.128116	0.0%	0.9% (127N)	100%	4.7% (129N)	0.2% (129C)
TMT ¹⁰ -128C	128.134436	0.0% <mark>(</mark> 126)	0.5% (127C)	100%	3.2% (129C)	0.0% <mark>(</mark> 130N)
TMT ¹⁰ -129N	129.131471	0.0% (127N)	0.7% (128N)	100%	3.3% (130N)	0.0% (130C)
TMT ¹⁰ -129C	129.137790	0.0% (127C)	1.3% (128C)	100%	2.5% (130C)	0.0% (131)
TMT ¹⁰ -130N	130.134825	0.0% (128N)	1.2% (129N)	100%	2.8% (131)	2.7%
TMT ¹⁰ -130C	130.141145	0.0% (128C)	1.5% (129C)	100%	1.8%	0.0%
TMT ¹⁰ -131	131.138180	0.0% (129N)	2.1% (130N)	100%	2.0%	0.0%

Stability: One year from date of product receipt.

Storage: Store at -20°C.

New user interface for adding correction factors

sidue Modific Terminal Mod T Reporter Io	ification: TMT6plex / +22	29.163 Da		• K]			
Mass Tag	Reporter Ion Mass	-2	-1	Main	+1	+ 2	Active	
126	126,127726	0	0	100	5	0	Used	
127N	127.124761	0	0.4	100	5	0	Used	
127C	127.131081	0	0.2	100	4.6	0.3	Used	
128N	128.128116	0	0.9	100	4.7	0.2	Used	
128C	128.134436	0	0.5	100	3.2	0	Used	
129N	129.131471	0	0.7	100	3.3	0	Used	
129C	129.13779	0	1.3	100	2.5	0	Used	
130N	130.134825	0	1.2	100	2.8	2.7	Used	
130C	130.141145	0	1.5	100	1.8	0	Used	
131	131.13818	0	2.1	100	2	0	Used	
T: Main peak	s are always 100%, only co	prrection fa	octors can	be edited				

Correction factors are not required for high resolution TMT 6-plex or iodo-TMT experiments

Example Dataset – Gygi group MCP paper on diauxic shift in yeast

- TMT 10-plex experiment on an Orbitrap Fusion using the TMT MS3 method
- Monitored yeast protein abundances while monitoring glucose depletion
- 10 time points (5, 7, 9, 11, 13, 15, 17, 25, 29, 33 hr), 3 replicates, each with 12 fractions

Research

O 2015 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org

Comprehensive Temporal Protein Dynamics during the Diauxic Shift in Saccharomyces cerevisiae

© ASBMB

J. Patrick Murphy‡, Ekaterina Stepanova‡, Robert A. Everley‡, Joao A. Paulo‡, and Steven P. Gygi‡§

Yeast (Saccharomyces cerevisiae) has served as a key model system in biology and as a benchmark for "omics" technology. Although near-complete proteomes of log identification in logarithmically-growing yeast has expanded to near-comprehensiveness (>4000 identified proteins) (2-3). However, the yeast proteome is dynamic, and understanding

Yeast datasets are available for download from PRIDE

PRIDE > Archive >	PXD001334]
Project PRIDE Assigned TA Summary	PXD001334	Replicate 1	oad Project Files	
Title Comprehensive Description Yeast (Saccharo technology, Alth dynamic partic	PRIDE > Archive > PXD002 Project PXC PRIDE Assigned Tags: 21 Summary	1092 1002092 Replicate 2 3iological Dataset	wnload Project Files	
during this trans quiescent cells. <u>Read more</u> Sample Proce	Title Comprehensive tempor Description Yeast (Saccharomyces of technology. Although ne dynamic, particularly du during this transition, te	PRIDE > Archive > PXD002093 Project PXD002093 PRIDE Assigned Tags: © Biological Dataset Summary	۰. Dow	nload Project Files
	quiescent cells. Here, w Read more Sample Processing I Samples from cultured digested, separated into	Title Comprehensive temporal protein dynamics during the diauxic shift in Saccharomyces cerevisiae, part 3 Description Yeast (Saccharomyces cerevisea) has served as a key model system in biology and as a benchmark for "omics" technology. Although near-complete proteomes of log phase yeast have been measured, protein abundance in yeast i dynamic, particularly during the transition from log to stationary phase. Defining the dynamics of proteomic changes during this transition, termed the diauxic shift, is important to understand the basic biology of proliferative versus quiescent cells. Here, we perform temporal quantitative proteomics to fully capture protein induction and repression	Species Saccharomyces cerevisiae (Baker's yeast) s Instrument Orbitrap Fusion	Tissue Not available Software Not available
		Read more Sample Processing Protocol Samples from cultured yeast were harvested over 33h of culture and labelled using TMT10 reagents. Samples were digested, separated into 12 fractions and analyzed using an Orbitrap Fusion mass spectrometer.	iodoacetamide derivatized residue TMT6plex-126 reporter+balance reagent acylated residue	

Step 1 – Create new quantitative method using correction factors from TMT CofA

🤡 Thermo Proteome Discoverer 2.1.0.81		
File View Administration Tools Window Help		
💱 🥡 🌮 📙 🎒 👚		3
Start Page X Administration X		- 4 ▷
Process Management	Add X Remove / Edit 1 Import L Export Statux Method Name Description	Is Active
Job Queue	Dimethylation 3plex (C2H6, C2H2D4, 13C2D6) Dimethylation 3plex (C2H4, C2D4, 13C2D4) Method Full 180 Labeling (02 L1802) 180 Labeling method for fully Labeled samples	
	Tecomplete 199 Jabelies (02 J 0190 J 1902) 1902 Holding antibodifection methodifection methodife	
Content Management	Create New Quantification Method	ens V ems V em Mass V
FASTA Indexes	From Factory Defaults: TMT 10plex	Proteome
FASTA Parsing Rules	From Existing Method: Dimethylation 3plex (C2H6, C2H2D4, 13C2D6) S8) Method	
Spectral Libraries	From Scratch: Precursor Ion Method S0 Method ag® of Proteome Science g® of Proteome Science	ences plc
Chemical Modifications	(advanced mode) ag® of Proteome Sci ag® of Proteome Sci	ences plc
Cleavage Reagents	Create Cancel	nces pic
Annotation Aspeds		
Quantification Methods		
License Management		
R Licenses		
Configuration	*	
 □- ↓ Processing Settings □ ↓ ↓		•
Ready		

Step 1 (cont.) -

 Type in percentages exactly as shown in certificate (numbers between 0 and 100):

Mass Tag	Repo	rter lon	-2	-1	Mon	oisotopic	+	1	+2	
TMT ¹⁰ -126	126	127726	0.0%	0.0%		100%	5.0%	(127C)	0.0% (128)	
TMT ¹⁰ -127N	127	Quantificat	tion Method Edit	or: TMT 10 plex QI	D212963					
TMT ¹⁰ -127C	127	Quan Cha	annels							
TMT ¹⁰ -128N	128	Residue	Modification:	TMT6plex / +229.1	63 Da	• K	•			
TMT ¹⁰ -128C	128	N-Termi	nal Modification:	TMT6plex / +229.1	63 Da		•			
TMT ¹⁰ -129N	129	TMT Rep Mass	orter Ion Isotope [Tag Report	Distributions ter Ion Mass	- 2	-1 Mair	1 +1	+ 2	Active	
TMT ¹⁰ -129C	129	126 127N	126.12	7726 4761	0	0 100 0.2 100	5 5.9	0	Used Used	
TMT ¹⁰ -130N	130	12/C 128N 128C	127.13 128.12 128.13	1081 8116 4436	0 0 0 0	0.6 100 0.4 100 0.6 100	6.4 3.4 4.2	0	Used Used Used	
TMT ¹⁰ -130C	130	129N 129C	129.13 129.13	1471 779	0	0.7 100 1.3 100 1.2	3.1	0	Used Used	
TMT ¹⁰ -131	131	130N 130C 131	130.13 130.14 131.13	14825 1145 1818	0 0 0.3	1.3 100 1.6 100 1.7 100	2.8 1.7 1.6	1.7 0 0	Used Used Used	Save Ouantification Method
		TMT: Ma	in peaks are alway	/s 100%, only corre	ction facto	ors can be edit	ed	(ОК	Save as New Method: TMT 10 plex QD212963 Save Cancel Help

• Save as new method.

Step 2 - Create New Study

Thermo Proteome Discoverer 2.1.0.81				
<u>File View A</u> dministration <u>T</u> ools <u>W</u> indow <u>H</u> elp				
		Ma Lulu		
Start Page X Administration X				▼ 4 ▷
Proteome Dis		1		
	New Study and Analysis			
	Study Name: Gvgi Dauvic Shift			🙀 Add Files 🛛 🍓 Add Fractions 🛛 💥 Remove 🗌 Treat as Replicates
Start Rece	Study Root Directory			
New Study/Analysi s	C:\Studies			
Open Study Create a new study and optic	Processing Workflow:			
Open Result	(empty workflow)		▼	Choose guan method that
🖬 T	Consensus Workflow:			was just areated
	(empty workflow)		•	was just created
	Quantification Method:			
	Falact Captrol Chapter	2	•	
	126	129C	The optiona	ally selected quantification method will be used for the selected input files.
	1270	1250		
	E 12/N	130N		
	127C	130C		
	128N	131		
	128C			
	🔲 129N			
				OK Cancel
Ready				

Step 3 – Set up study factors

Thermo Proteome Discoverer 2.1.0.81				
File View Administration Tools Window Help				
Image: Start Page X Administration X Starty Gygi Dauxic Shift * X				- 4 Þ
Image: Add Files Add Fractions Kernove Files Open Containing For Study Definition Input Files Samples Analysis Results	lder 🌐 New Analysis 🥡 C	Dpen Analysis Template		
Study Summary		Quantification Methods		
Study Name: Gygi Dauxic Shift Study Directory: C:\Studies\Gygi Dauxic Shift Last Changed: 9/23/2015 4:56:50 PM		Dimethylation 3plex (C2H6, C2H Dimethylation 3plex (C2H4, C2D4, 13C2D4) Method	iTRAQ 4plex	Low Resolution TMTe 6plex Method for low resolution 6-plex Ta Tag® of Proteome Sciences plo
Creation Date: 9/23/2015 4:56:50 PM		Full 180 Labeling (02 1802)	iTRAQ 8plex Method for iTRAQ [™] 8-plex mass tags by Applied Biosystems	SILAC 2plex (Arg10, Lys6) SILAC 2plex (Arg10, Lys6) Method
Study Description	Time (hr)		Low Resolution iodo TMT 6plex	SILAC 2plex (Arg10, Lys8) SILAC 2plex (Arg10, Lys8) Method
	Time (m)		plex Tandem Mass Tag® of Proteome Sciences plc	SILAC 2plex (Ile6) SILAC 2plex (Ile6) Method
	Factor Unit:	dem		
	Values:			۱.
		5 🔺		Paste Copy Add
		7 9 11 13 15	Catego Numer	rical Factor ic Factor
		17 25 29 33		
	A	Add Delete		
Ready				

Step 4 – Import data files

 Choose "Add Fractions" to combine all data files from a multidimensional separation into a single logical file:

Add Practions						×
Computer	▶ New Volume (E:) ▶ Data ▶ Gygi_			✓ ⁴ → Sean	ch Gygi_TMT_MS3	2
Organize 🔻 New folder					:≡ ▼ 🔳	0
👉 Favorites	Name	Date modified	Туре	Size		*
	📠 Elite_fraction_11.raw	6/20/2015 12:36 AM	Xcalibur Raw File	153,191 KB		
Downloads	📠 Elite_fraction_12.raw	6/20/2015 12:38 AM	Xcalibur Raw File	151,861 KB		
Becent Places	🛄 fusion_fraction_1.raw	6/20/2015 12:04 AM	Xcalibur Raw File	400,356 KB		
incenter laces	🛄 fusion_fraction_2.raw	6/19/2015 11:58 PM	Xcalibur Raw File	352,605 KB		
🚍 Libraries	🛄 fusion_fraction_3.raw	6/20/2015 12:03 AM	Xcalibur Raw File	340,517 KB		E
Documents =	🛄 fusion_fraction_4.raw	6/20/2015 12:02 AM	Xcalibur Raw File	359,609 KB		
Music	🛄 fusion_fraction_5.raw	6/19/2015 11:58 PM	Xcalibur Raw File	345,624 KB		
Pictures	🛄 fusion_fraction_6.raw	6/20/2015 12:01 AM	Xcalibur Raw File	355,786 KB		
Videos	🛄 fusion_fraction_7.raw	6/20/2015 12:01 AM	Xcalibur Raw File	357,771 KB		
	🛄 fusion_fraction_8.raw	6/19/2015 11:57 PM	Xcalibur Raw File	348,383 KB		
💶 Computer	🛄 fusion_fraction_9.raw	6/19/2015 11:58 PM	Xcalibur Raw File	371,616 KB		
SDisk (C:)	🛄 fusion_fraction_10.raw	6/20/2015 12:00 AM	Xcalibur Raw File	351,427 KB		
New Volume (Et)	🛄 fusion_fraction_11.raw	6/20/2015 12:00 AM	Xcalibur Raw File	361,902 KB		
My Passport (F:)	usion_fraction_12.raw	6/20/2015 12:05 AM	Xcalibur Raw File	350,017 KB		
Sabel-Free-Ouan	🛄 Hap2_fraction_1.raw	6/22/2015 1:36 PM	Xcalibur Raw File	156,609 KB		
	📠 Hap2_fraction_2.raw	6/22/2015 1:42 PM	Xcalibur Raw File	147,006 KB		-

A 6

Step 5 – Assign Quan Method to each sample

Inermo Proteome Discoverer 2.1.0.81								
Start Page X Administration X Study: Gygi Dauxic Shift * X								
🙀 Add Files 🏽 🖓 Add Fractions 💥 Remove Files 📢 Open Containing Folder 🎡 New Analysis 🥡 Open Analysis Template								
Study Definition Input Files Samples Analysis Results								
ID Name File Type Quan Method Sample Information								
F1 Replicate 1 .raw Sample Type: [Sample], Time: [n/a]								
F2 Replicate 2 .raw TMT 10 plex QD212963 vpe: [Sample], Time: [n/a]								
F3 Replicate 3 .raw F3 Replicate 3 .raw Sample Type: [Sample], Time: [n/a]								
Ready								

Step 6 - Assign study factors to reporter ions

(-														_	
🕥 The	Thermo Proteome Discoverer 2.1.0.81														
<u>F</u> ile <u>V</u> i	ile <u>Vi</u> ew <u>A</u> dministration <u>T</u> ools <u>W</u> indow <u>H</u> elp														
Star	Start Page X Administration X Study: Gygi Dauxic Shift * X														
67 A	🛛 Add Files 🖉 Add Fractions 🔰 Remove Files 🕡 Ones Containing Folder 🤲 New Analysis 👘 Ones Analysis Template														
ш _ф А	od Files 🔤	Add Fractions 🙏 Remove Files 候 Open Containing	Folder 🤤 Ne	w Analysis	(iii) Of	en Analysi	s i emplate								
Study	Study Definition Input Files Samples Analysis Results														
	ID Name File Type Quan Method Sample Information														
	F1 Replic	ate 1 .raw TMT 10 plex QD212963 - Sample 1	ype: [Sample], Ti	me (hr): [5	,7,9,11	, 13 , 15 ,	17 . 25 . 29	, 33]							*
	Sample	Sample Identifier	Sample Type	Quan	Channel	Time (hr)									
	1	Replicate 1 - [126]	Sample	* 126		5	*								
	4	Replicate 1 - [127N]	Sample	+ 127N		7	•								
	5	Replicate 1 - [127C]	Sample	+ 127C		9	•								
	6	Replicate 1 - [128N]	Sample	+ 128N		11	•								
	7	Replicate 1 - [128C]	Sample	+ 128C		13	-								
	8	Replicate 1 - [129N]	Sample			15	+								
	9	Replicate 1 - [129C]	Sample	+ 129C		17	-								
	10	Replicate 1 - [130N]	Sample	+ 130N		25	+								
	11	Replicate 1 - [130C]	Sample	+ 130C		29	•								
	12	Replicate 1 - [131]	Sample	+ 131		33	-								=
						n/a	-								
	Files:					5									
	ID	Name	Date	Modified		7									
	F1.1	\\ussio-9smd9y1\e\$\Data\Gygi TMT MS3\fusion fraction 1	.raw 6/20/2015	12:04:00	AM 409	e é									
	F1.2	\\ussio-9smd9y1\e\$\Data\Gygi TMT MS3\fusion fraction 1	0.raw 6/20/2015	12:00:00	AM 3598	3 9									
	F1.3	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_1	1.raw 6/20/2015	12:00:00	AM 370	5 11									
	F1.4	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_1	2.raw 6/20/2015	12:05:00	AM 3584	4 13									
	F1.5	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_2	.raw 6/19/2015	11:58:00 F	PM 3610	15									
	F1.6	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_3	.raw 6/20/2015	12:03:00	AM 348	5									
	F1.7	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_4	.raw 6/20/2015	12:02:00	AM 3682	2 17									
	F1.8	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_5	.raw 6/19/2015	11:58:00 F	PM 353	25									
	F1.9	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_6	.raw 6/20/2015	12:01:00	AM 3643	3 29									
	F1.10	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_7	.raw 6/20/2015	12:01:00	AM 3663	22									
	F1.11	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_8	.raw 6/19/2015	11:57:00 F	PM 356	33									
	F1.12	\\ussio-9smd9y1\e\$\Data\Gyqi TMT MS3\fusion fraction 9	.raw 6/19/2015	11:58:00 F	PM 380	534130107	er						 		Ŧ
Ready															

Step 7 – Create New Analysis

🕥 The	Thermo Proteome Discoverer 2.1.0.81										
<u>F</u> ile <u>V</u> i	ew <u>A</u> dminist	tration <u>T</u> ools <u>W</u> indow <u>H</u> elp									
1											
Start	t Page 🗙	Administration X Study: Gygi Dauxic Shift * X								- ⊲ ⊳	
Ling, Ac	dd Files 🚳	Add Fractions 💥 Remove Files 😡 Open Containing	Folder 🌕 New /	Analysis 🌾	Open Analysis Te	emplate					
Study	/ Definition	Input Files Samples Analysis Results Workflow	vs Grouping & (Quantificatio	n		Analysis	;	As Batch	🎲 Run 📙 Save 🗙	
	ID Name	File Type Quan Method Sample Ir	nformation								
	F1 Replica	ate 1 .raw TMT 10 plex QD212963 ▼ Sample T	ype: [Sample], Time	(hr): [5 , 7 , 9	9,11,13,15,17,2	25 . 25 🔺	Conse	nsus Step 🗛		<u>/</u> ×	
	Sample	Sample Identifier	Sample Type	Quan Cha	nnel Time (hr)						
	1	Replicate 1 - [126]	Sample -	126	5 -		Work	low:			
	4	Replicate 1 - [127N]	Sample -	127N	7 -		Resul	t File: Enter result file nan	ne.		
	5	Replicate 1 - [127C]	Sample -	127C	9 -		T Chi	ld Stens: (1)		bbΔ	
	6	Replicate 1 - [128N]	Sample -	128N	11 +		* C///	0 01000. (1)			
	7	Replicate 1 - [128C]	Sample -	128C	13 -		Proc	essing Step 💫		Clone 🛕	
	8	Replicate 1 - [129N]	Sample -	129N	15 +						
	9	Replicate 1 - [129C]	Sample -	129C	17 -		Wo	rkflow:			
	10	Replicate 1 - [130N]	Sample +	130N	25 -		Re	sult File: Enter result file n			
	11	Replicate 1 - [130C]	Sample -	130C	29 -	_	Inp	ut Files: (0)			
	12	Replicate 1 - [131]	Sample +	131	33 •						
•	Files:							Dro	op your input files here		
	ID	Name	Date Me	odified	Size						
	F1.1	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_1.	raw 6/20/2015 12	2:04:00 AM	409963882 [Byte]						
	F1.2	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_10).raw 6/20/2015 12	2:00:00 AM	359860868 [Byte]						
	F1.3	<pre>\lussio-9smd9y1\e\$\Data\Gygi_1M1_M53\fusion_fraction_11 \lussio-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_12</pre>	.raw 6/20/20151. .raw 6/20/20151.	2:00:00 AM	370587452 [Byte] 358417404 [Byte]						
	F1.5	//ussio-9smd9y1/e\$/Data/Gygi_TMT_MS3/fusion_fraction_12	raw 6/19/20151	1:58:00 PM	361066850 [Byte]						
	F1.6	\\ussio-9smd9y1\e\$\Data\Gygi TMT MS3\fusion fraction 3.	raw 6/20/2015 12	2:03:00 AM	348689230 [Byte]						
	F1.7	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_4.	raw 6/20/2015 12	2:02:00 AM	368239074 [Byte]						
	F1.8	$\label{eq:listic_state} $$ \stat_MS3\fusion_fraction_5.$$	raw 6/19/2015 1	1:58:00 PM	353918202 [Byte]						
	F1.9	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_6.	raw 6/20/2015 12	2:01:00 AM	364324070 [Byte]						
	F1.10	\\ussjo-9smd9y1\e\$\Data\Gygi_TMT_MS3\fusion_fraction_7.	raw 6/20/2015 12	2:01:00 AM	366356810 [Byte]						
	F1.11 E1.12	\\usebusyluses\Usebusyluse Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\Usebusyluses\U	raw 6/19/20151	1:57:00 PM	356/43250 [Byte]	-					
	F1.1Z	nussio-astriuay negulatarayat timit maasirusion fraction 9.	aw 0/13/20101	1.36.00 PM	300034136 [Byte]						
Ready											

Step 8 – Choose processing workflow

Thermo Proteome Discoverer 2.1.0.81		
<u>File view A</u> dministration <u>I</u> ools <u>Window H</u> elp		
Start Page X Administration X Study: Gygi	auxic Shift * x	▼ 4 ▷
🙀 Add Files 🛛 Add Fractions 🛛 💥 Remove Files	🔍 Open Containing Folder 🛛 🎡 New Analysis 🛛 🧔 Open Analysis Template	
Study Definition Input Files Samples Analysis	Results Workflows Grouping & Quantification	Analysis 🗌 As Batch 🎲 Run 🛃 Save 🗙
Parameters	🦹 Open 📸 Open Common 🛔 Save 👪 Save Common 🧏 Auto Layout	» •
Show Advanced Parameters	Workflow: PWF_Fusion_Reporter_Based_Quan_SPS_MS3_SequestHT_Percolator	Consensus Step 💫 🙏 🗙
▲ 1. Peak Integration	Description: Processing workflow for SPS MS3 reporter ion-based quantification.Identification	Show workflow
Integration Tolerance 20 ppm Integration Method Most Confident Centroid	based on CID spectra using SequestHT with Percolator validation. Specify the FASTA database. label used, and any additional modifications.	Worknow:
4 2. Scan Event Filters	Weddflew Tree	
Mass Analyzer FTMS MS Order MS3	WORNOW Hee	▼ Child Steps: (1) Add
Activation Type		
Min. Collision Energy		
Max. Collision Energy 1000	Spectrum Files 0	Workflow: PWF_Fusion_Reporter_Based_Quan_SPS_M
		S3_SequestHT_Percolator
	•	
Poportor ion quantification		Input Files: (0)
Reporter for quantification	uantifier 4 Spectrum 1	
to MS3 by default in this		
, mathad		Default processing workflow
method	· · · · · · · · · · · · · · · · · · ·	for TMT SPS MS3 method
Minimum value = 0.0001 Da 0.01 ppm Maximum value = 0.6 Da 5000 ppm	Sequest HT 2	
ake sure to select vesst		
are sule to select yeast		
atabase and add approp	iate PTM's (e.g.	
ivi i o piex, carbamidome		-
Workflow Nodes Parameters	* III •	
Ready		

Step 9 – Choose consensus workflow

Thermo Proteome Discoverer 2.1.0.81	
<u>File View Administration Tools Window H</u> elp	
🚺 📢 🌍 😓 🎒 👫 🔊	
Start Page X Administration X Study: Gygi	Dauxic Shift * 🗙
🗽 Add Files 🛛 🖓 Add Fractions 🛛 💥 Remove Files	🔍 Open Containing Folder 🛯 🏐 New Analysis 🏾 🎲 Open Analysis Template
Study Definition Input Files Samples Analysis	Results Workflows Grouping & Quantification 🛛 🗛 Batch 🮲 Run 📙 Save 🗙
Parameters	👫 Open 📳 Open Common 🍶 Save 🥵 Save Common 瀦 Auto Layout 🙄
Show Advanced Parameters	Workflow: CWF Comprehensive Enhanced Annotation Quan
1. Quantification - General Peptides to Use Unique + Razor Consider Protein Groups True Replace Missing Values False	Description: Result filtered for high confident peptides, with enhanced peptide and protein annotations.Add FASTA file with common contaminants to the Protein Marker node. Quan abunaces are normalized to the same total peptide amount per
Reject Quan Results wit False	Workflow Tree
Maximum Allowed Fold (100	Protein Scorer 4
A 2. Reporter Quantification	
Reporter Abundance Ba Automatic	
Apply Quan Value Corre False	Workflow: PWF_Fusion_Reporter_Based_Quan_SPS_M
Average Reporter S/N 0	Protein FDR 9 Protein 5 S3_SequestHT_Percolator
3. Precursor Quantification	Validator Grouping Result File: Enter result tile name.
Use Single-Peak Quan (False	Input Files: (0)
4. Normalization and Scaling Nomalization Mode Total Pentide Amount	
Peotides to Use	Peptide in Peptide and Workflows with "Quan" in title
Specifies which peptides are used for quantification.	Protein 6 Protein 7 in a lucida Danaticita anal Dratain
Unique: Only peptides that are not shared between different	Include Peptide and Protein
proteins or protein groups are used for the protein	Past-Processing Nodes Outpatifier node
quantineauon.	
Unique + Razor: Uses all peptides that are not shared between different proteins or protein groups. All shared	
peptides are used for the protein that has more identified	(The Result to Data to Carter Data
peptides but not for the other proteins they are contained in.	Statistics Distributions
All: All peptides are used for the protein quantification.	
	·
Workflow Nodes Parameters	
Ready	

Step 10 – Modify Peptide and Protein Quantifier

(
Marco Proteome Discoverer 2.1.0.81		
File View Administration Tools Window Help		
Start Page X Administration X Study: Gygi Dauxic Shift	x	▼ 4 ▷
Add Files 🙀 Add Fractions 💥 Remove Files 😡 Open Co	ntaining Folder 🛯 🌐 New Analysis 🎲 Open Analysis Template	
Study Definition Input Files Samples Analysis Results	Vorkflows Grouping & Quantification	Analysis 🛛 As Batch 🞲 Run 📙 Save 🗙
Parameters	🥂 Open 📳 Open Common 🚠 Save "	
Show Advanced Parameters	Workflow: CWF_Comprehensive_Enhanced Annotation_Quan	Consensus Step 🙀
1. Quantification - General Peptides to Use Unique + Razor Consider Protein Groups for Pe, True Replace Missing Values with M False	Description: Result filtered for high confident peptides, with enhanced peptide and protein annotations.Add FASTA file with common contaminants to the Protein	Workflow: CWF_Comprehensive_Enhanced Annotation_Quan Result File: Enter result file name.
Reject Quan Results with Missi False		▼ Child Steps: (1) Add
Top N Pentides Used for Area 3		
4 2 Beporter Quantification	Protein FDR 9 Protein	Processing Step 💫 Clone 🦺
Reporter Abundance Based Or Automatic		
Apply Quan Value Corrections True		Workflow: PWF_Fusion_Reporter_Based_Quan_SPS_MS3_Sequest
Co-Isolation Threshold 50		HI_Percolator
Average Reporter S/N Thresh: 10		Result File: Enter result file name.
	📻 Peptide in 🛛 🛃 Peptide	Input Files: (A)
Use Single-Peak Quan Channe False	Protein 6 Di Protein	input riles. (0)
4 4. Normalization and Scaling	Annotation Quantif	
* Normalization Mode Total Peptide Amount		
Proteins For Normalization		Drop your input files here
Scaling Mode On Channels Average (Per File)		
▲ 5. pisplay Options	•	
Show Standard Errors False	×	
Show Quan Value Counts False	Post-Processing Nodes	
Show Quan Ratos As Normal Space Values	A	
Pentides to Use		
Specifies which peptides are used for quantification.	Pasult Data	
Unique: Only peptides that are not shared between different proteins or protein groups are used for the protein quantification.	Statistics 11	
Starred settings are recom	mended	
Ready		

Step 11- Drag files into analysis

S Thermo Proteome Discoverer 2.1.0.81	
<u>File View A</u> dministration <u>T</u> ools <u>W</u> indow <u>H</u> elp	
Start Page X Administration X Study: Gygi Dauxic Shift * X	▼ 4 ▷
🙀 Add Files 🙀 Add Fractions 🧩 Remove Files 🔍 Open Containing Folder 🏐 New Analysis 🎲 Open Analysis Template	
Study Definition input Files Samples Analysis Results Workflows Grouping & Quantification	Analysis As Batch 👸 Run 🛃 Save 🗙
ID Name File Type Quan Method Sample Information	
Fi Treplicate 1	Consensus Step 💫 🗙
F2 Replicate 2 raw IMT 10 plex QD212963 Sample Type: [Sample], Time (h), [5, 7, 9, 11, 13, 15, 17, 25, 29, 33] F3 Replicate 3 .raw TMT 10 plex QD212963 Sample Type: [Sample], Time (h), [5, 7, 9, 11, 13, 15, 17, 25, 29, 33]	Workflow: CWF_Comprehensive_Enhanced Annotation_Quan Result File: Replicate 3.pdResult
	Child Steps: (1) Add
Select all three files above and then	
left dick hold and dreg to input	Processing Step
files box in analysis	Workflow: PWF_Fusion_Reporter_Based_Quan_SPS_M S3_SequestHT_Percolator
	Result File: Replicate 3.msf
	🚽 Input Files: (3)
	F3 Replicate 3 TMT 10 plex QD212963 Sample Type: [5
	x F1 Replicate 1 TMT 10 plex QD212963 Sample Type: [5]
	x F2 Replicate 2 TMT 10 plex QD212963 Sample Type: [5
Ready	

Step 12 – Grouping and Quantification tab

Search results - >4700 proteins, >88000 unique peptides

🕥 🛛 Thermo P	Fhermo Proteome Discoverer 2.1.0.81																					
File View A	dministra	tion Tools Window	Help																			
26 1 - F	a 🏊						3 0															
🗤 W	1 🕨	🖬 🔡 1		Y	🕺 🔜 🗠 LL L. 🛋 🖽 🕮 LII L) 🕵	, (7)	🏘 🧕												
Start Page	× St	udy: Gygi Yeast TMT M	53	× All.s	N10.Normalization.Scaling × All.SN0.Normalization.NoScaling × Study:	Gygi Diaux	ic Shift	x													-	A b
Protoing	Proteins (filtered) Protein Groups Peptide Groups PSMs MS/MS Spectrum Info Quan Spectra Result Statistics																					
TOtems	(ilitereu)	Fibielin Groups	reput	le circups	Toms More opecial fills												1	1				_
	Checked	Protein EDR Confidence	Mast	er Accession	n Description	Abundance	es (Grouped)									Exp. g-value	Sum PEP Score -	Coverage	# Pentides	# PSMs	# Unique Pentides #	
8-	onoutou	The contraction	11100			ŝ	~	0	Ξ	13	5	11	22	29	33	Lop. q value	Cullin Er Coolo -	Covolugo	# T Optidoo		r onique r opudes // .	
1 👳		•	V	P07259	Protein URA2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=URA	58.9	44.5	59.1	111.5	139.4	131.3	126.3	113.0	108.0	107.8	0.000	1485.629	68%	159	1517	153 2	21
2 👳			\checkmark	P19097	Fatty acid synthase subunit alpha OS=Saccharomyces cerevisiae (strain ATCC 20450)	102.0	107.9	109.4	112.9	110.1	102.4	99.7	87.8	84.7	83.1	0.000	1477.540	62%	141	1339	140 18	88
3 🗇			\checkmark	P10591	Heat shock protein SSA1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288(58.6	68.6	74.9	108.4	105.9	110.2	105.2	124.5	122.1	121.6	0.000	1328.855	90%	83	3055	21 (64:
4 🗇			\checkmark	P10592	Heat shock protein SSA2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c	79.5	85.2	80.2	120.2	115.0	112.5	107.7	102.9	95.5	101.3	0.000	1286.627	90%	83	3061	19 (63!
5 👳			\checkmark	Q00955	Acetyl-CoA carboxylase OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c)	117.1	116.0	110.0	96.1	98.0	92.6	92.5	91.3	93.0	93.4	0.000	1252.103	66%	171	813	164 23	23:
6 👳		•	\checkmark	P00549	Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=(91.1	90.5	90.2	113.8	126.7	120.0	108.9	90.7	82.5	85.6	0.000	1201.588	96%	68	3748	66	50
7 🕀		•	\checkmark	P15108	ATP-dependent molecular chaperone HSC82 OS=Saccharomyces cerevisiae (strain A	65.9	64.3	63.2	115.9	121.0	118.5	126.2	112.6	106.2	106.0	0.000	1196.036	82%	99	2393	19	70!
8 👳		•	\checkmark	P32324	Elongation factor 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=	113.7	105.1	101.2	115.1	118.3	113.2	109.7	81.1	71.6	71.1	0.000	1181.444	84%	89	2210	89 1	84:
9 👳			\checkmark	P02829	ATP-dependent molecular chaperone HSP82 OS=Saccharomyces cerevisiae (strain A	45.4	38.4	43.7	111.0	123.2	120.4	130.1	137.6	123.8	126.3	0.000	1144.380	79%	97	2265	17	70!
10 👳			\checkmark	P16521	Elongation factor 3A OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN	131.0	115.4	107.4	119.2	113.1	104.8	102.8	75.1	67.1	64.1	0.000	1126.348	71%	86	1714	58 10	04.
11 👳			\checkmark	P06105	Protein SCP160 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=S(102.6	115.3	121.1	114.7	114.1	106.2	101.2	80.3	73.9	70.7	0.000	1103.160	69%	118	860	118 12	22:
12 👳			V	P00925	Enolase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=ENO2 P	91.1	92.5	91.8	112.0	114.8	108.8	108.8	92.5	91.8	95.9	0.000	1075.483	98%	63	4715	26	43
13 🗝			×,	P07149	Fatty acid synthase subunit beta OS=Saccharomyces cerevisiae (strain ATCC 204508	101.4	107.4	111.4	112.3	108.1	103.1	102.7	86.5	84.3	82.9	0.000	1042.680	54%	117	832	117 2	35
14 🕂		-	V	P32589	Heat shock protein homolog SSE1 OS=Saccharomyces cerevisiae (strain A1CC 2045)	91.1	79.5	72.7	117.2	119.7	116.9	119.4	100.8	92.3	90.3	0.000	1005.152	81%	//	1295	66 0	69.
15 🕁				P00560	Phosphoglycerate kinase OS=Saccharomyces cerevisiae (strain ATCC 2045087 S2886	82.6	91.5	96.8	111.8	104.0	105.5	104.3	98.1	98.6	106.8	0.000	948.671	96%	56	2924	56 4	410
16 🕂				P31539	Heat shock protein 104 US=Saccharomyces cerevisiae (strain ATCC 2045087 S288c)	31.2	26.7	37.1	86.5	109.0	119.7	129.0	157.5	154.9	148.4	0.000	939.395	1/%	110	1005	109	90i
1/ -=		-		P0C350	Heat shock protein SSC1, mitochondrial US=Saccharomyces cerevisiae (strain ATCC .	122.0	100.7	72.4	112.0	101.8	105.9	109.4	134.2	77.0	129.9	0.000	907.517	81%	/0 57	2719	64 1	45
10 10				P02334	Elongation racion rapina OS=Saccharomyces cerevisiae (strain ATCC 2045087 32687	103.5	103.7	97.0	110.0	114.2	111.0	112.5	92.3	77.0	90.7	0.000	893.474	71%	57	2170	37 4	+01 561
20 -				P40150	Hast abork protein SSB2 OS-Saccharomyces careviniae (atrain ATCC 204508 / S289/	00.5	102.3	09.3	106.5	111.0	104.9	101.0	04.5	00.8	90.9	0.000	879.364	71%	62	1927	6	61
20				P16861	ATP-dependent 6-phosphofructokinase subunit alpha OS=Saccharomyces cerevisiae (87.5	89.7	93.8	104.2	113.7	112.0	112.0	100.0	92.5	94.6	0.000	858 615	70%	78	816	77 9	98
21				P11484	Heat shock protein SSB1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288)	117.4	111.1	104.9	104.2	118.1	107.1	99.0	77.2	68.8	73.1	0.000	850.638	76%	63	1982	6	61
22 -				P17255	V-type proton ATPase catalytic subunit A OS=Saccharomyces cerevisiae (strain ATCC	90.0	88.8	94.8	108.0	118.9	114.4	110.9	97.4	89.4	87.5	0.000	845 933	67%	88	1018	88 1	07
23 -			- V	Q02455	Protein MLP1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MLP	97.8	104.1	110.3	118.6	113.8	110.8	103.4	83.0	80.1	78.1	0.000	844 791	67%	165	454	162 1	87
24			L.	402100		07.0	101.11		11010			10011	00.0	00.1	70.1	0.000			1		102	
																						r
Show As	sociated 7	l'ables																				
Quan Channel'	Values																				•	₽ ×

Search results - >4700 proteins, >88000 unique peptides

<i>•</i>																							
🥥 Thermo	🥖 Thermo Proteome Discoverer 2.1.0.81																						
File View	e View Administration Tools Window Help																						
1 🞲																							
Start Pag	Start Page 🗙 Study: Gyg_Veast_TMT_MS3 🗙 All.SN10.Normalization.Scaling 🗙																						
Prote	ins (f	iltered) Pi	rotein Groups	Peptid	e Groups	PSMs MS/MS Spectrum Info Quan Spectra Result Statistics																	
				· ·	·		Abundanco	a (Groupod)															
2	Ch	ecked Protei	n FDR Confidence	Maste	Accession	Description	Abundance	a (Groupeu)									Exp. q-value	Sum PEP Score -	Coverage	# Peptides	# PSMs	# Unique Peptides	# AA
							ŝ	~	0	Ξ	2	5	11	25	29	Ř			-				
97 👳			•	\checkmark	P38968	Protein transport protein SEC31 OS=Saccharomyces cerevisiae (strain ATCC 204508	81.8	90.5	102.2	124.2	118.0	113.3	108.5	91.7	86.9	82.8	0.000	519.298	49%	52	313	52	127:
98 🗝			-		P10964	DNA-directed RNA polymerase I subunit RPA190 OS=Saccharomyces cerevisiae (stra	270.3	235.4	227.5	62.4	34.1	31.1	28.4	36.1	36.6	38.2	0.000	519.095	52%	91	296	89	166
99 👳				\checkmark	P43597	Uncharacterized protein YFR016C OS=Saccharomyces cerevisiae (strain ATCC 2045)	60.4	64.5	76.6	116.4	116.9	127.1	126.7	108.7	102.4	100.3	0.000	518.728	62%	81	219	81	123:
100 +=			-	\checkmark	P04807	Hexokinase-2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=HXK	104.9	112.6	106.4	97.6	101.2	102.7	98.3	93.0	91.1	92.4	0.000	518.449	83%	38	777	35	48
101 +=			-	\checkmark	P53852	CysteinetRNA ligase OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (95.2	90.6	91.9	119.3	119.9	114.4	109.7	92.3	86.4	80.3	0.000	515.990	66%	63	359	63	76
102 +=			-	\checkmark	P38708	Putative prolinetRNA ligase YHR020W OS=Saccharomyces cerevisiae (strain ATCC	123.3	114.0	105.7	106.5	111.0	106.4	96.5	83.9	78.4	74.3	0.000	514.722	69%	55	376	55	68
103 +=			-	\checkmark	P10081	ATP-dependent RNA helicase eIF4A OS=Saccharomyces cerevisiae (strain ATCC 204	111.5	104.7	100.0	104.5	115.6	107.1	105.8	87.0	82.3	81.5	0.000	512.466	73%	39	654	39	39!
104 🗠			•	\checkmark	P46655	GlutamatetRNA ligase, cytoplasmic OS=Saccharomyces cerevisiae (strain ATCC 204	103.5	96.8	96.9	117.5	119.0	110.7	107.2	88.9	81.2	78.3	0.000	511.220	73%	68	539	68	70
105 🕂			-	\checkmark	P12709	Glucose-6-phosphate isomerase OS=Saccharomyces cerevisiae (strain ATCC 204508	76.1	77.2	84.0	110.1	107.4	116.2	116.6	105.2	99.6	107.7	0.000	508.927	74%	42	734	42	55
106 🕂			-	\checkmark	P07251	ATP synthase subunit alpha, mitochondrial OS=Saccharomyces cerevisiae (strain ATC	42.4	43.0	54.7	65.7	79.3	84.4	89.9	170.2	182.5	188.0	0.000	507.354	79%	62	645	61	54
107 🕂			-	\checkmark	Q07878	Vacuolar protein sorting-associated protein 13 OS=Saccharomyces cerevisiae (strain A	87.4	102.6	112.5	109.8	108.8	107.6	103.9	91.2	89.0	87.2	0.000	504.682	34%	98	222	98	314
108 🕂			-	\checkmark	P19657	Plasma membrane ATPase 2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S	17.2	15.0	12.5	25.7	43.3	57.5	56.6	85.0	254.5	432.7	0.000	504.642	32%	44	748	3	94
109 🕂			-	\checkmark	P23615	Transcription elongation factor SPT6 OS=Saccharomyces cerevisiae (strain ATCC 204	93.8	97.5	98.0	113.8	120.0	116.4	110.5	87.4	82.9	79.9	0.000	500.121	51%	78	259	78	145
110 +=			-	\checkmark	P20967	2-oxoglutarate dehydrogenase, mitochondrial OS=Saccharomyces cerevisiae (strain A	32.0	33.9	40.8	46.4	58.0	65.3	76.6	205.0	222.4	219.5	0.000	494.463	55%	65	352	65	101
111 🖛			-	\checkmark	P33416	Heat shock protein 78, mitochondrial OS=Saccharomyces cerevisiae (strain ATCC 204	26.3	26.2	39.6	75.0	89.9	111.7	119.7	172.5	167.6	171.4	0.000	493.380	73%	82	391	81	81
112 +=			-	\checkmark	P04802	AspartatetRNA ligase, cytoplasmic OS=Saccharomyces cerevisiae (strain ATCC 204	83.4	80.4	82.2	103.2	120.5	116.3	117.0	100.8	101.2	95.0	0.000	492.610	72%	59	391	58	55
113 🖛			•	\checkmark	P33892	Translational activator GCN1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S	112.3	115.7	118.0	118.3	95.2	99.0	106.3	82.1	76.5	76.5	0.000	487.072	31%	92	303	92	267:
114 🕂			•	\checkmark	P32454	Aminopeptidase 2, mitochondrial OS=Saccharomyces cerevisiae (strain ATCC 204508	58.0	66.3	78.8	105.6	117.7	115.9	121.0	111.8	113.4	111.5	0.000	483.410	55%	62	305	57	95
115 +=			-	\checkmark	P07264	3-isopropylmalate dehydratase OS=Saccharomyces cerevisiae (strain ATCC 204508 /	88.2	79.5	79.3	108.3	124.1	115.3	115.0	100.4	97.4	92.5	0.000	483.133	70%	60	302	59	77
116 +=			-	\checkmark	P16140	V-type proton ATPase subunit B OS=Saccharomyces cerevisiae (strain ATCC 204508	86.7	86.7	95.0	117.1	124.6	118.5	116.6	91.5	83.5	79.9	0.000	480.468	83%	49	534	49	51
117 +=			-	\checkmark	P38707	AsparaginetRNA ligase, cytoplasmic OS=Saccharomyces cerevisiae (strain ATCC 20	112.4	108.7	105.4	109.7	110.1	101.9	105.2	86.2	82.4	77.9	0.000	477.351	58%	46	311	46	55
118 🗢			•	\checkmark	P47035	Nucleolar protein NET1 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c)	89.7	87.1	96.1	122.4	104.8	107.4	111.2	96.8	95.0	89.5	0.000	474.035	58%	79	294	78	118
119 +=			-	\checkmark	P40457	Protein MLP2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GN=MLP	96.1	104.4	111.1	117.4	106.5	100.8	98.0	85.8	91.9	88.0	0.000	471.108	58%	104	223	103	167
120 +=			•	\checkmark	P31688	Trehalose-phosphatase OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c)	36.2	41.7	59.8	93.8	120.9	131.5	137.1	130.7	126.0	122.4	0.000	470.570	59%	72	293	72	891 🖵
4																							F
Show	Asso	iated Tables																					

Extra credit – Profiling of scaled intensities in ProteinCenter

- 1) Export the proteins page to Excel
- 2) Rename the column with accession numbers as "KEY"
- 3) Rename the grouped abundance columns to AQR1, AQR2, AQR3, etc.

X	🛛 🗐 •	(°									All-(01).	.csv - Micro	soft Excel										- • ×
	File H	ome Ins	ert Page	Layout	Formulas	Data F	Review Y	view Ac	robat													~	, 🕜 🗆 🖶 🔀
Fr Ac	om From cess Web	From Fro Text S	om Other ources = Co	Existing onnections	Refresh All +	Connection Properties Edit Links	^s 2↓ 2 Z↓ So	rt Filter	🐨 Clear 🚡 Reapply 🏷 Advance	Text to Column	D Remove ns Duplicate	Data s Validation	Consolida	te What-If Analysis *	Group U	ngroup Sub	●∃ Sh ■∃ Hic total	ow Detail le Detail	Data Ana	Ilysis			
	D1	occent	- (0	<i>f</i> ∡ KEY	com			Jorcari				0.000				ouun			Fillingers				¥
	А	В	С	D	E	F	G	н	I	J	К	L	M	N	0	Р	Q	R	S	Т	U	V	W
1	Checked	Protein F	E Master	KEY	Descripti	Entrez Ge	Gene ID	Chromoso	Biological	Cellular C	Molecular	Pfam IDs	AQR1	AQR2	AQR3	AQR4	AQR5	AQR6	AQR7	AQR8	AQR9	AQR10	Abundanc Al
2	FALSE	High	Master Pr	A5Z2X5	UPF0495	5142379	YPR010C-/	0XVI		membran	e	Pf06522	25.9	25.7	34.9	41.1	50	67.1	L 89.9	194.3	229.4	241.7	22.41
3	FALSE	High	Master Pr	D6VTK4	Pheromo	r 850518	STE2; YFL0	VI	cell organ	membran	receptor a	Pf02116	220.6	263.6	311.8	81.1	29.7	22.6	5 25.2	16	5 15.3	14	11.97
4	FALSE	High	Master Pr	013297	mRNA-ca	855873	CET1; YPL:	XVI	metabolic	nucleus	catalytic a	Pf02940	92.7	97.9	99.6	94.6	104.4	104.8	3 104.5	99.5	5 101.9	100	13.07
5	FALSE	High	Master Pr	013329	DNA repl	851688	FOB1; YDF	IV.	cell organ	nucleus	DNA bind	ing;metal i	135.8	139.4	128	106.4	97.8	96.2	2 89.7	69.9	71.3	65.4	9.04
6	FALSE	High	Master Pr	013525	Ubiquino	r 851785	COQ4; YD	IV	metabolic	membran	e;mitocho	Pf05019	48.2	55.1	68.9	89.7	102.7	110.8	3 119.1	124.2	137.7	143.6	9.63
7	FALSE	High	Master Pr	O13535	Transpos	856623	YHR214C-	eviii	cell organ	cytoplasm	catalytic a	Pf00665, P	188.1	213.8	175.4	114.5	62.1	58.5	5 41.1	46.7	7 45.2	54.4	
8	EALSE	High	Master Pr	013539	THO com	856572	THP2: VHP	570	call organ	nuclaus	nrotein hi	Pfn9/132	112.7	118.2	120.5	97 3	9/1 7	96.6	96.9	91.7	7 91.9	89.5	11 /13

4) Save as .csv

Profiling in ProteinCenter

- Import .csv into ProteinCenter
- Click on the dataset and navigate to Profiling tab
- Move all "AQR#" values to "Selected"
- Choose an appropriate group count (10-15 works)

Click "Profile"			
Workbench Administration Import µLIMS Peptides Protein Data All ▼ Proteins ▼	Proteins Genes Clus using group count 15 with	sters Profiling Heat Maps ProteinCard auto adjust allow missing values 0 allow	Statistics Report Export Cha core 0.8 Profile
Available IemPAI (Exponentially modified protein abundan	ce index (Imported))	AQR1 (Average quantitation ratio 1) [37] AQR2 (Average quantitation ratio 2) [36] AQR3 (Average quantitation ratio 3) [36] AQR4 (Average quantitation ratio 3) [36] AQR5 (Average quantitation ratio 5) [36] AQR6 (Average quantitation ratio 6) [36] AQR6 (Average quantitation ratio 7) [36] AQR8 (Average quantitation ratio 8) [37] AQR9 (Average quantitation ratio 9) [36] AQR10 (Average quantitation ratio 10) [36]	

Profiling results

🚾 An Ear for Proteins' Bells a 🗙 👹 ProteinCenter 🛛 🗙 🚺 Downloads	× V 🍿 PRIDE Archive	
← → C The trial2.proteincenter.proxeon.com/ProXweb/contentvi	ew/WORKSPACE/PROFILING/bdd	d6501d-9403-4b8a-a7c3-b1db623a8f74 572
Apps 🗋 Thermo 🗋 Publications 🗋 Proteomics		
Ø ProteinCenter		david <u>Logout</u>
		Settings Feedback About Help
	Workbench Administration	
Workspace	Import µLIMS Peptides	Protein Data Proteins Genes Clusters Profiling Heat Maps ProteinCard Statistics Report Export
	All Proteins	▼ using group count 115 with auto adjust 2 allow missing values 0 alpha core 0.8 Profile
DataSets		
🛨 🚾 alba	Data types	
🗟 Andreas	Avai	railable Selected
article proteins (23)	IemPAI (Exponentially modified prote	tein abundance index (Imported))
article proteins lipox (40)		AUK2 (Average quantitation ratio 2) [30]
E BDDL		AQR4 (Average quantitation ratio 4) [36]
🕀 📾 Bian		AQR5 (Average quantitation ratio 5) [36]
🕀 📾 Biomass		AQR6 (Average quantitation ratio 6) [56]
Carla's sample compared to macrophomina phaseolina (616)		AGRY (verage quantitation ratio 1/100)
🗉 📾 carlos		AQR9 (Average quantitation ratio 9) [36]
🕀 🔤 Choi		down AQR10 (Average quantitation ratio 10) [36]
🖽 🏧 Comparison (38081)		
🖻 🚾 David		
🖓 29May3013_DJB_mouse_tmt8_BR4_unfrac_165min_dda15_1-(01)_TargetProtein (2094)	Result summary	
	15 Groups total (15 after applying alpha core) 38 Excluded proteins	^e Click to acculiat of protaina
··· 🗁 All-(01) (4497)	0 Calculated value(s)	
	a #1) 374 members - sum=487.0	7.05
	-6325114 1.00 2.00	
🕀 🔤 Heck	-6320974 1.00 1.50	
E LB	-9755341 1.00 0.50	
🛨 🔚 Pandey	-6322531 1.00 -398364731 1.00 0.00	
de novo peptides (0)	-398364607 1.00 -0.50	
± 🔟 Devin		
Hans.Jespersen	-1.50	4081 4082 4083 4084 4085 4085 4087 4088 4089 40810
	q #2) 374 members - sum=455.	5.10
	-6323701 1.00 2.50	
L theo 5% alucero 5% eil calcium (156)	-6579192 1.00 2.00 -6325262 1.00 1.50	
	-6322701 1.00 1.00	
	-6321374 1.00 0.50	
🔁 Epises (37)	-6322708 1.00 -0.50 -6319412 1.00 -0.50	
M.phaseolina for protein center (0)	-6321622 1.00 -1.00	
Acrophomina phaseolina proteome (13838)	[365 more] -1.50	
æ 🖻 Meiring		AQR1 AQR2 AQR3 AQR4 AQR5 AQR6 AQR7 AQR8 AQR9 AQR10
- - NCBI comparison L. theobromae glucose and oil (7236)	(17) 308 members - 510-417	7.67
New DataFolder (47)	-398365725 100 2.00 F	
New DataFolder_2 (22)	-6320644 1.00 1.50	
New DataFolder 3 (23)	6323321 1.00 1.00	· · · · · · · · · · · · · · · · · · ·

Cluster 1 – Proteins listed in order of decreasing emPAI

			- <u></u>											
🝸 Filter: 1 selected 🔀 🗟 🐕														
123	4 5 6	7 8 9 10 11	20	21	Page size	20 Sho	owing 1-20 of	413						
Acc. Key 🖯 I	No 🖯 o 🤆	Description \varTheta	s 🖯)	Cluster 🖯	Gene 🖯	AA 🖯 AS Fr	Tax 🖯	Molecular Functions	Cellular Components	Biological Processes	тм \varTheta ыр 🖯 р	ep 🖯 Ie	mPAI med 🖯 A
<u>6323617</u>	1	ribosomal 405 subunit prote		€	-	RPS17A	136	Sce				0	0	3.7276E+08
<u>6324741</u>	1	ribosomal 405 subunit prote		₹	-	RPS28A	67	Sce				0	0	1.7783E+08
398365605	1	Ribosomal 405 subunit prote	•	`₩	-	RPS30A+	63	Sce				0	0	2.1544E+07
6320065	1	Ribosomal 605 subunit prote	•	`₩	-	RPL35A+	120	Sce				0	0	1.0000E+07
6324298	1	histone H4		`₩	-	HHF1+	103	Sce				0	0	4.6416E+06
6324445	1	ribosomal 605 subunit prote		`₩	-	RPL25	142	Sce				0	0	4.2170E+06
398365321	1	ribosomal 405 subunit prote		`₩	-	RPS6A+	236	Sce				0	0	4.1246E+06
6321408	1	ribosomal 605 subunit prote		°¥	-	RPL30	105	Sce				0	0	3.7276E+06
6321798	1	ribosomal 605 subunit prote		<u>ک</u>	-	RPL27A	136	Sce				0	0	3.1623E+06
<u>6322984</u>	1	ribosomal 605 subunit prote		<u>ک</u>	-	RPL8B	256	Sce				0	0	1.3111E+06
<u>6320128</u>	1	ribosomal 605 subunit prote		ا⊯	-	RPL31A	113	Sce				0	0	1.0000E+06
6321335	1	ribosomal 605 subunit prote		`₩	-	RPL28	149	Sce				0	0	1.0000E+06
<u>6321754</u>	1	ribosomal 605 subunit prote		ا⊯	-	RPL8A	256	Sce				0	0	1.0000E+06
<u>6324085</u>	1	Translation initiation fact		<u>ڳ</u>	-	SUI1	108	Sce				0	0	1.0000E+06
6323376	1	ribosomal 605 subunit prote		<u>َنْ</u>	-	RPL26A	127	Sce				0	0	7.4989E+05
<u>6322270</u>	1	ribosomal 405 subunit prote		<u>ڳ</u>	-	RPS14B	138	Sce				0	0	5.9948E+05
398364349	1	ribosomal 605 subunit prote		ا⊯	-	RPL2A+	254	Sce				0	0	3.9811E+05
398364725	1	Ribosomal 605 subunit prote	•	`₩	-	Cluster	137	Sce				0	0	3.9811E+05
6324637	1	Ribosomal 605 subunit prote	•	÷.	-	RPL3	387	Sce				0	0	3.8312E+05
<u>6323567</u>	1	ribosomal 605 subunit prote		`¥	-	RPL6A	176	Sce				0	0	2.1544E+05
	7													

Cytoplasmic ribosomal proteins are highly overrepresented in this cluster. On average, ribosomal proteins are decreasing in abundance as the number of cells increase in time.

Cluster 4 – proteins that increase in abundance after glucose depletion

#4) 302 members - sum=382.87

Over-represented Wiki pathways

Glucose Repression (WP2836)

Anaerobic respiration (WP575)

Sulfur degradation (WP440)

Aerobic Glycerol Catabolism (WP224)

• • • •				T Filter: 1 sek	ctea 📈					
Analysis data set: All-(01) Reference data set: Sac	charomyces cerevisia	ae (SP)		1234	Page	size 20 Showing 1-20 of 7	79			
1 2				Acc. Key 🖯 N	, 😑 о (Description	s 😔	Cluste	\varTheta 🖯 Gene 🖯	AA 🖯 A
	Occurrence	6		<u>6323335</u>	1	aconitate hydratase ACO1	~	`₩	ACO1	778
Description	occurrence	Count 🖤 Ref.	、	6322765	1	Malate dehydrogenase MDH1	~	°¥ -	MDH1	334
Principle Pathways of Carbon Metabolism (WP112)		22	· · · · · · · · · · · · · · · · · · ·	6324328	1	citrate (Si)-synthase CIT1	~	≩ -	CIT1	479
TCA Cycle (WP490)		18	Protains from TCA Cucla	398365505	1	Phosphoenolpyruvate carboxy	~	∛ -	PCK1	549
TCA Cycle - Detailed (WP296)				398364491	1	Isocitrate lvase 1	~	≩ ∕-	ICL1	557
Serine-isocitrate iyase pathway (WP390)				6324291	1	isocitrate debydrogenase (N		2./ .	TDH1	360
Giveniysis and Giuconeogenesis (WP515)	-	0	are overrepresented	6324251		isociciate denyarogenase (n	·		10111	500
Patty acto oxidation (WP91)			are evenoprecented	<u>6324212</u>	1	malate synthase MLS1	•	₩ - 2.	MLSI	554
Glutamate degradation VII (WP559)	<u> </u>	5		<u>6322987</u>	1	succinate dehydrogenase iro	~	₩ -	SDH2	266
Gluconeogenesis (WP156)		4		6322066	1	alpha-ketoglutarate dehydro	✓	≩⁄-	KGD1	1014
Glutamate degradation III (WP503)		3		6323203	1	isocitrate dehydrogenase (N		🖨 🗛 🕹	basket P2	412
Superpathway of Glutamate Biosynthesis (WP191)	-	2		6321376	1	pyruvate carboxylase 1	~	₩ ·	PYC1	1178
Panothenate and Coenzyme A Biosynthesis (WP462)		2	•	398365347	1	succinateCoA linase (GDP	~	€ -	LISC1	329
Glutamate biosynthesis (WP77)		2		<u></u>	-	Succinate Cox ligase (op) in	•	т Э.	2501	525
Cell Cycle and Cell Division (WP414)	· · · · · · · · · · · · · · · · · · ·	2		6319264	1	acetateCoA ligase 1	~	₩ .	ACS1	713
Mitochondrial tRNA Synthetases (WP62)	-	2		<u>116006499</u>	1	malate dehydrogenase MDH2	~	≩⁄-	MDH2	377
Allantoin Degradation (WP328)		2		6322701	1	Succinate dehydrogenase fla	~	≩ -	SDH1	640
Proteasome Degradation (WP158)		1		6320125	1	malate dehydrogenase Mdh3	~	≩/ -	MDH3	343

1

1

1

ThermoFisher SCIENTIFIC

CIT2

FBP1

SDH4

GUT1

460

348

181

709

▼ ≩ -

▼ 🐳 -

V 👻 -

V 🗑 -

citrate (Si)-synthase CIT2

glycerol kinase

Fructose 1,6-bisphosphate 1...

succinate dehydrogenase mem...

6319850

6320383

6321755

当 🗙 🔽 |

398366041

Cluster 5 – proteins that match glucose concentration

Cluster 11 – pattern not identified in Gygi paper

#11) 121 members - sum=186.35

123	4 5 6	7 Page size 20 Sl	howing 1	l-20 o	f 121								
Acc. Key \varTheta	No ⊖ o €	Description \varTheta	s 🖯		Cluster 🖯 Gene 🤆	● ▲ ● ▲	SFr _{Tax} 🖯	Molecular Functions	Cellular Components	Biological Process	8	тм 🖯 ър 🖯	Pep \varTheta IemPAI I
<u>6325073</u>	1	putative mitochondrial 545	F [*]	`₩'	- RTC6	93	Sce					0	0
<u>6323634</u>	<u>1</u>	mitochondrial 545 ribosomal	. 🔊	`₩	- MRPL39	70	Sce					0	0
398364237	1	Mitochondrial 545 ribosomal	· K	×	- RML2	393	Sce					1	0
398366569	1	mitochondrial 545 ribosomal	. 🟹	Ŷ	- MRP20	263	Sce					0	0
6323644	1	Mix17p	~	÷	- MIC17+	156	Sce					0	0
6325380	1	Ctr1p	~	`₩		Mar	ov mi	tachandr	rial ribaca	mol 🛄		2	0
398364681	1	Tec1p	~	`₩	- TECI	Iviai	iy iiii	lochonui	101110050			0	0
6324045	1	mitochondrial 545 ribosomal	. 🗸	`₩	- MRPL1	nrof	teins					1	0
398366545	1	phenylpyruvate decarboxylas.	🗸	`₩	- R010	pior						1	0
6323942	1	mitochondrial 54S ribosomal	· 7/	X	- MRPL33	86	Sce					0	0
37362666	1	mitochondrial 54S ribosomal	. 🗸	`₩	- MRPL49	161	Sce					0	0
<u>6324732</u>	1	mitochondrial 375 ribosomal	. 🗸	`₩	- PET123	318	Sce					0	0
6322755	1	Yju2p	~	`₩	YJU2	278	Sce					0	0
6322678	1	mitochondrial 545 ribosomal	. 🗸	1	- MRPL38	138	Sce					0	0
6324608	1	Akr2p	<u> </u>	/₩	- AKR2	749	Sce					6	0 0
398366647	1	mitochondrial 375 ribosomal	. 🗸	`₩	- RSM28	361	Sce					0	0
<u>6321902</u>	1	Erp5p	~	`₩	- ERP5	212	Sce					1 }	0
<u>330443704</u>	1	mitochondrial 545 ribosomal	. 🗸	`₩	- MRPL22	309	Sce					0	0
398365695	1	peptidylprolyl isomerase fa	~	`₩	- CPR8	308	Sce					1 }	0
<u>6319894</u>	<u>1</u>	mitochondrial 545 ribosomal	. 🗸	°€⁄	- IMG1	169	Sce					0	0
📸 🗙 🖂													

Conclusions

- With scaled abundances, ratio calculations become less important
 - Immune to "0" values in the denominator
 - Can export for profiling
- New user interfaces are much easier to use than in previous releases
 - Ratio calculation page much improved over 2.0
 - Correction factors easy to add
- Best quantitative results from any PD release so far!

