
Top 5 reasons to upgrade from a Thermo Scientific™ 
Hybrid Orbitrap™ to a Thermo Scientific™ Tribrid™  
Mass Spectrometer System

proteomics. The Tribrid MS provides the highest resolution, 
heightened sensitivity, rapid acquisition rates, improved 
ETD fragmentation and exclusive analytical techniques 
(e.g. multiNotch SPS MS3) for accurate relative quantitation 
experiments. These instruments are intended to push the 
limits of detection, characterization and quantitation and 
are able to achieve proteome-wide coverage, by combining 
the versatility of a Tribrid system with the selectivity of 
Orbitrap technology, and the sensitivity and speed rivaling 
that of a triple quadrupole instrument. 

Introduction
The Thermo Scientific™ Orbitrap™ Fusion™ and Thermo 
Scientific™ Orbitrap Fusion™ Lumos™ Tribrid™ mass 
spectrometers are a new class of mass spectrometry 
instrumentation engineered with a revolutionary Tribrid 
architecture– combining the best of quadrupole, Orbitrap 
and linear ion trap mass analyzers. This Tribrid design 
enables scientists to meet their analytical challenges by 
offering unprecedented depth of analysis especially for 
highly complex, low abundance, or difficult-to-analyze 
biological samples. The Tribrid based mass spectrometers 
are equipped with well-designed hardware features and a 
user-friendly software interface allowing for easy method 
development and instrument operations. The innovations 
of the Orbitrap Fusion MS and Fusion Lumos MS systems 
make them the most sensitive, most selective and most 
versatile mass spectrometers available to date.

Goal
This document is intended to provide conclusive 
arguments to justify upgrading from an Orbitrap Hybrid MS 
to an Orbitrap Tribrid mass spectrometer system.

Summary
The Thermo Scientific™ Orbitrap™ Tribrid™ mass 
spectrometers are an essential tool for high-end life 
science research. Robustly designed, they come equipped 
with a quadrupole mass filter as well as an Orbitrap and 
linear ion trap mass analyzer. This hardware combination 
(exclusive to Orbitrap based mass spectrometers) 
provides superior analytical performance that enables 
multiple complex modes of analysis. This is due to the 
parallel isolation and detection mechanisms achievable 
with the Tribrid architecture, which was previously 
unattainable with Thermo Scientific™ Orbitrap hybrid 
MS. The most difficult analyses, including multiplexed 
quantitation of low-abundance peptides in complex 
matrices, characterization of positional isoforms of intact 
proteins, protein structure characterization using chemical 
crosslinking, and the deepest mining of challenging post-
translational modifications may be performed on the 
highly sensitive and versatile Thermo Scientific Orbitrap 
Fusion family of mass spectrometers. The Tribrid system 
can perform multiple fragmentation techniques that prove 
useful in terms of experimental flexibility for applications 
such as quantitation using isobaric tags, low level PTM 
analysis, data independent acquisition (DIA), and top-down 
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Both Orbitrap Fusion MS and Fusion Lumos MS have the 
following capabilities:

• Sensitivity comparable to a triple quadrupole mass 
spectrometer is achieved through improved ion 
transmission with a brighter ion source, advanced 
quadrupole technology and detection with the most 
sensitive detector.

• Selectivity of an Orbitrap analyzer allows the lowest 
detection limit to be achieved due to the highest 
resolution and highest mass accuracy available.

• Versatility of a Tribrid mass spectrometer provides 
multiple dissociation techniques (CID, HCD, ETD, EThCD) 
and full experimental flexibility due to its unique Tribrid 
architecture.

Table 1. Fundamental features and benefits of Tribrid technology.

Figure 1. Hardware benefits.

Features Benefits

Ultra high resolution High selectivity, ability to resolve analytes down to a few mDa

Sub ppm mass accuracy High selectivity and confidence in molecular formula

Dynamic scan management Intelligent scan scheduling allows for efficient operation at all times

Speed
Sequencing of low abundant components in complex mixture, fast scanning MSn  

compatible with UHPLC

Synchronous precursor selection Ability to carry out highly sensitive and accurate protein quantitation using TMT reagents

Easy to use software Novel drag-n-drop flexible user interface makes it easy to build complex methods

Experimental flexibility
Use of multiple analyzers and dissociation techniques (HCD, CID, ETD) for any molecule  

at any MSn stage

The Tribrid MS systems are equipped with the following:

• Ultra-high field Orbitrap mass analyzer – Offers resolution 
exceeding 500,000 resolving power at m/z 200 and scan 
speeds up to 20 Hz at 15,000 FWHM.

• Ion Routing Multipole – Facilitates parallel analysis and 
performance of HCD at any MSn stage.

• Dual-Pressure Linear Ion Trap – Performs MSn and 
sensitive mass analysis of four fragmentation types (CID, 
HCD, ETD HD and EThcD HD).
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scan rates up to 20 Hz at 15K FWHM

Focuses ions after High  
Capacity Transfer Tube;  
broad tuning curves

Prevents neutrals and high 
velocity clusters from entering 
mass resolving quadrupole

MSn and sensitive mass analysis 
of fragments resulting from CID, 
HCD, ETD and EThcD

Improved dynamic range  
and detection limits for  
ETD/EThcD events

Enables parallel analysis; allows 
HCD at any MSn stage

Reduces pressure in UHV region, improving  
transmission to the Orbitrap analyzer

Based on Townsend discharge;  
reliable and easy to use

Segmented design improves transmission at higher resolution; 
symmetric transmission across the isolation window



Key improvements have been made to various hardware 
components on the Orbitrap Fusion Lumos MS to give 
enhanced analytical performance: 

• Brighter ion source increases overall signal by 2–5 times 
and consists of a High Capacity Transfer Tube (HCTT) and 
an Electrodynamic Ion Funnel (EDIF) to achieve increased 
ion flux and lower limits of detection. It also comes 
optional with an Easy ETD Source (based on Townsend 
discharge) which provides greater reliability and ease of 
use due to its ability to produce extremely stable anion 
flux and retain reagent longevity.

• Advanced Active Ion Beam Guide has been a proven 
technology that prevents neutrals and high velocity 
clusters from entering the mass resolving quadrupole, 
therefore keeping the quadrupole cleaner and reduces 
background contamination.

• Advanced Quadrupole technology – Segmented design 
improves transmission efficiency at higher resolution 
allowing for symmetric transmission across the isolation 
window.

• Advanced Vacuum Technology reduces pressure in UHV 
region, improving transmission of high molecular weight 
species to the Orbitrap analyzer.

• Novel ETD HD gives improved dynamic range and 
detection limit of ETD analyses, significantly increasing the 
fragment ion coverage.

Detailed product specifications for the Orbitrap Fusion 
Tribrid MS and Orbitrap Fusion Lumos Tribrid MS  
systems can be found on www.thermofisher.com or  
www.planetorbitrap.com.

Detailed product specifications for the Thermo Scientific 
Orbitrap Fusion Tribrid Mass Spectrometer. 

Detailed product specifications for the Thermo Scientific 
Orbitrap Fusion Lumos Tribrid Mass Spectrometer.

For sole source specifications, kindly contact your local 
sales representative or contact us at Grant Central. 

Top 5 reasons for upgrading from Hybrid MS 
to Tribrid MS technology
• Enabling Multiplexing with TMT technology

• Faster scanning MS detectors for increased 
throughput

• Improved sensitivity for extended coverage of low 
abundant proteins

• Multiple fragmentation techniques for the elucidation  
of PTMs

• User-friendly data acquisition software for non-MS 
experts

Reason 1: Multiplexing with tandem mass tag 
(TMT) technology 
About TMT
TMT reagents (Proteome Sciences®, commercially available 
from Thermo Fisher Scientific) are isobaric chemical tags 
consisting of a signature reporter group, a spacer arm, 
and an amine reactive group. The reagents covalently bind 
to the N-terminus of a peptide or to lysine residues. Upon 
MS/MS fragmentation, each version of the tag fragments 
and produces a unique reporter ion. In an experiment 
that compares several experimental conditions in a single 
analysis, the protein digest from each experimental 
condition is labeled with one of the isobaric versions of 
the TMT reagent. Afterwards, all the samples are pooled 
together and analyzed with LC-MS/MS. During the first 
dimension separation (RPLC), the same peptide labeled 
with different versions of the tag will elute together as they 
have the same chemical properties. On subsequent MS1 
analysis, these peptides will be detected simultaneously 
as a single indistinguishable precursor ion peak. Following 
MS/MS fragmentation of the precursor, the relative levels 
of each version of the tag used to label the peptide can 
be quantified by comparing the intensities of the unique 
reporter ion generated from each tag. Additionally, 
protein identification is achieved by matching the peptide 
fragment ions in the MS/MS spectrum to sequences in the 
appropriate database.

Table 2. Specifications.

Feature
Orbitrap Fusion MS and  
Orbitrap Fusion Lumos MS

Scan rate Orbitrap MS2 20 Hz

Scan rateIon Trap MS2 20 Hz

Max resolution >500,000 at m/z 200

Quad isolation Down to 0.4 amu

Ion trap isolation Down to 0.2 amu

Mass accuracy 3 ppm (external); 1 ppm (internal)

Dissociation

Source CID, CID, HCD, ETD, EThcD  

(Orbitrap Fusion MS) 

Source CID, CID, HCD, ETD HD, ETh-

cD HD (Orbitrap Fusion Lumos MS)

MSn capability Up to MS10 in ion trap or Orbitrap

Analyzers Quadrupole, Orbitrap, Ion Trap

Detectors Ion Trap, Orbitrap

www.thermofisher.com
www.planetorbitrap.com
https://tools.thermofisher.com/content/sfs/brochures/PS-63844-LC-MS-Orbitrap-Fusion-PS63844-EN.pdf
https://tools.thermofisher.com/content/sfs/brochures/PS-63844-LC-MS-Orbitrap-Fusion-PS63844-EN.pdf
https://tools.thermofisher.com/content/sfs/brochures/PS-64391-LC-MS-Orbitrap-Fusion-Lumos-Tribrid-PS64391-EN.pdf
https://tools.thermofisher.com/content/sfs/brochures/PS-64391-LC-MS-Orbitrap-Fusion-Lumos-Tribrid-PS64391-EN.pdf


Trying to understand the complexities in biology requires 
understanding the functional aspects of biology, and 
that necessitates more sophisticate levels of mass 
spectrometric performance. The Orbitrap Fusion Lumos 
MS and Orbitrap Fusion MS are suitable instruments as 
they combine the analytical capabilities equivalent to three 
instruments, all within the usability of a single instrument 
platform. 

As proteomics becomes more quantitative, the ability to 
perform relative quantitation for many samples accurately 
is absolutely critical. Typical experimental designs 
require running a separate LC-MS/MS analysis for each 
individual experiment, which results in the depletion 
of precious samples, the demand for long instrument 
analysis times, and introduction of run-to-run variations. 
Adopting the TMT isobaric tagging approach permits 
multiple time points, cell lines, or experimental conditions 
to be analyzed simultaneously (Figure 2). In addition to 
conserving samples while taking only a fraction of the 
time to run, a TMT workflow ensures reproducibility by 
analyzing all experiments under the exact same conditions. 
A straightforward workflow also allows the inclusion of 
“technical replicates” by using duplicate labels for the same 
condition for enhanced confidence and statistical analysis, 
all accomplished within a single LC-MS/MS analysis. 

Figure 2. Overview of a tandem mass tag workflow.1 The Orbitrap Fusion Tribrid mass 
spectrometers truly differentiates the TMT workflow from Orbitrap hybrid MS and quadrupole 
time-of-flight mass spectrometers by providing robust multiplexing capabilities and increasing 
throughput by over 10 folds.

The Tribrid systems are capable of carrying out accurate 
quantification of proteins on a massive scale through 
high-throughput multiplexing. The combination of isobaric 
labeling technology, tandem mass technology and the 
novel scan functionality in the Orbitrap Tribrid instruments 
enable over one hundred thousand protein quantifications 
in a single day. This performance is heavily driven by the 
new capabilities in the unique hardware architecture on 
the Orbitrap Tribrid based MS systems. Parallelization 
of complex modes of analysis is accomplished by the 
concurrent isolation of ions with one analyzer and detection 
with the two other analyzers.

Quantification with higher plexing isobaric tags requires 
the highest resolution for all reporter ion channels and 
unexpected interferences in the reporter ion region of the 
mass spectrum. The multiplexing capabilities of the TMT 
tags have been extended by simply using a more complex 
isotopologue design (dependant on the 6.32 mDa mass 
difference between 13C and 15N) in which the heavy 
atoms are strategically placed in different positions of the 
mass reporter to provide 10 different distinct masses to 
report out each channel (Figure 3). High resolution (at least 
50K at m/z 200) is absolutely crucial to obtain complete 
resolution of all 10 mass reporter channels which differ by a 
very small mass difference.



All Orbitrap instruments are capable of resolving the 
closely-spaced reporter ions (Figure 3). It is evident, 
however, that the Tribrid-based MS systems yield the 
highest resolution in the shortest time due to faster 
scanning speeds and the ultra-high field Orbitrap analyzer. 
Although quadrupole time-of-flight mass spectrometers 
are known for their fast scan rates, they can be limited in 
achieving high resolution to resolve the tightly-spaced TMT 
reporter ions with good detection sensitivity. Additionally, 
improvements of the ion source and ion optics on the 
Orbitrap Fusion Lumos MS increase the number of 
quantifiable peptides, which is especially beneficial at lower 
sample concentrations (Figure 4).

Figure 3. The TMT10-127 (13C and 15N labeled) and TMT10-129 (13C and 15N labeled) reagents differ only by a mass difference of  
~6.32 mDa. High resolution Tribrid mass spectrometers have the unique ability to resolve these neighboring isobaric istopologues distinctly.2 
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Figure 4: Standard HeLa digest labeled with TMT0 analyzed with an 
85 min gradient using SPS MS3 on both Fusion and Fusion Lumos 
tribrids. The increase in number of quantifiable unique peptides across 
varying dilution factors becomes apparent at lower concentrations.
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Figure 5. SPS is capable of selecting multiple MS2 fragments, resulting in increased number of reporter ions in the MS3 spectrum.

Achieving greater accuracy in quantitation using 
Synchronous Precursor Selection (SPS MS3) capability
The Orbitrap Fusion MS and Orbitrap Fusion Lumos 
MS offer the ability to perform “Synchronous precursor 
Selection (SPS)” for added experimental throughput while 
providing the depth and coverage needed for a TMT 
experiment. A common problem affecting the accuracy 
and precision in TMT quantitation experiments is the 
co-isolation and co-fragmentation of interfering ions. 
This causes reporter ion ratio distortions and inaccurate 
reporting of true fold changes or reporter ion intensities. 
While the MS3 method was found to be effective in 
mitigating the interference issue and restoring accuracy 
and precision of TMT quantitation3, an overall drop in 
sensitivity was observed. 

Therefore, the SPS MS3 method is the ideal solution to 
address the above-mentioned issues observed from a 
TMT experiment. This method uses isolation waveforms 
with multiple frequency notches to co-isolate and co-
fragment multiple MS2 fragment ions (up to 20) (Figure 5), 
effecting increased number of reporter ions in the MS3 
spectrum over standard MS3 method.4  The dynamic 
range of reporter ion quantitation is better, signal variance 
decreases and higher quality quantitative measurements 
are obtained with the SPS MS3 method. This dramatically 

increases the signal intensity, improves the ratio accuracy 
(due to counting statistics) and boosts overall quantitative 
sensitivity by leveraging on such intense multiplexing 
capabilities obtainable only with the Tribrid technology 
mass spectrometers. Sensitivity and interference ion 
issues are eliminated to bring back accuracy and precision 
to the TMT experiment. To demonstrate this capability, 
we performed an SPS MS3 experiment on the Orbitrap 
Fusion Lumos. Human HeLa cells were spiked with 
yeast samples labeled with four TMT channels in equal 
amounts, to simulate interference effects in TMT labeled 
samples (Figure 6). The true benefits of SPS MS3 in 
recovering accurate ratios in TMT experiments are evident 
from this example. Results from the analysis show that 
the MS2 acquisition (in blue), even at 0.7 amu isolation 
width, produced significant reporter ion ratio distortions 
compared to theoretical ratio values. The implementation 
of the SPS MS3 method greatly reduced the ratio distortion 
effect and gave a minimal difference from the expected 
values. The SPS Multi-notch MS3 functionality can be 
implemented only on Tribrid systems and is advantageous 
over the previous generation top-tier hybrid instruments 
which can only perform single notch MS3 methods without 
the multiple precursor isolation (SPS). This workflow, 
unique to the Orbitrap Tribrid systems, cannot be achieved 
with TOF-based analyzers. 
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Reason 2: Faster scanning speeds give 
more data points for more accurate relative 
quantitation
The improvements in speed for Tribrid instrumentation give 
more data points across the liquid chromatographic (LC) 
peak. From figures 7 and 8, the Orbitrap Fusion Tribrid 
MS produces more data scans compared to the Thermo 
Scientific™ Orbitrap Elite™ Hybrid mass spectrometer. 
This provides better MS-based quantitation and potentially 
increases the number of sequencing attempts and 
identifications. The ultra-high field Orbitrap analyzer is 

capable of fast acquisition rates of up to 20Hz, thereby 
fueling the possibilities for various quantitative experiments 
and greater instrument throughput. The number of protein 
groups in 1ug of HeLa cell lysate was also determined to 
be more in the Tribrid MS system. In half the analysis time, 
the Tribrid-based MS identified more protein groups over 
the Orbitrap Elite hybrid MS (Figure 9). This brings greater 
success when it comes to carrying out identification and 
characterization studies, providing depth in analysis and 
understanding of the biological significance of the results.
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Scans in 40’s

Orbitrap Fusion MS

Orbitrap Elite MS

16

245

76

MS/MS

424

MS

Protein Groups  in 1 µg HeLa

Orbitrap Fusion MS

Orbitrap Elite MS

3939

3604

2861

70 min

4996

140 min

Figure 7. Many more data points are observable across the chromatographic peak for Orbitrap Tribrid MS systems compared to the Orbitrap 
Hybrid MS systems (1 µg HeLa, 140 min run).

Figure 8. Number of MS and MS/MS scans across the Hybrid and 
Tribrid platform.

Figure 9. Number of protein groups identified from the Hybrid and 
Tribrid MS systems at 70 and 140 min gradients.
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Reason 3: Most sensitive and fastest  
performing Orbitrap mass spectrometer 
guarantees increased productivity and reliable 
experimental results.
Detection of low abundance proteins is the key to 
understanding biological systems. Most of the peptides 
and proteins at low concentration have important 
biological functions such as protein biomarkers for disease 
markers, proteins involved in cellular signaling and cancer 
processes. Therefore it is vital to attain a lower detection 
limit to identify these significant proteins. Scientific 
research needs and technological demands have driven 
the development of more sensitive and faster scanning 
mass spectrometers to push the limits of performance. 
The Orbitrap Tribrid mass spectrometers can achieve 
better low-level detection, particularly for low abundance 
proteins compared to the Orbitrap Elite and Q Exactive 
hybrid mass spectrometers (Figure 10, 12). This difference 
in detection limits is attributed to the revolutionary hardware 
enhancements that are found only in the Tribrid hardware 
architecture: increased sensitivity due to brighter ion source 
design; improved ion optics and segmented quadrupole 
for better ions transmission; fast acquisition rates and high 
resolution of the ultra-high field Orbitrap analyzer which 
gives more detection. The fold change in the number of 
peptides identified of the Orbitrap Fusion MS versus other 
Orbitrap hybrid platforms was tremendous and is of great 
scientific significance when it comes to the identification 
of important protein biomarkers and transcription factors 
(Figure 11).
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Figure 10. Unique peptides identified across three different Orbitrap-
based MS systems.

Figure 11. Fold improvement determined for all three Orbitrap-based 
MS systems.

Figure 12. Comparison of number of protein groups identified in HeLa 
digest across different MS platforms.

A complete yeast proteome analysis is accomplished in 
half the analysis time for the Orbitrap Fusion Tribrid MS 
compared to the Q Exactive hybrid mass spectrometer 
(Figure 13). A comparable number of unique peptides 
and protein groups identified on the Orbitrap Fusion MS 
in a 2 hour gradient means faster analysis time, improved 
experimental efficiency and greater throughput. To further 
demonstrate the benefits of a Tribrid instrument on whole 
proteome analysis, high pH fractions of the K562 cell line 
were analyzed on the Orbitrap Fusion MS and Orbitrap 
Fusion Lumos MS (Figure 14). Not only did the Orbitrap 
Fusion Lumos MS identify 20% more protein groups 
per run, it showed a 2× improvement in experimental 
throughput. Fewer fractions (2× less) were needed on 
the Orbitrap Fusion Lumos MS to get the same level of 
coverage as the Orbitrap Fusion instrument, potentially 
reducing precious analysis time and providing higher 
throughput.
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The Tribrid MS systems come equipped with an ultra-
high-field Orbitrap analyzer while the Hybrid platforms 
use the standard high-field Orbitrap analyzer. This 
upgraded Orbitrap detector on Fusion-based instruments 
has faster scanning speeds (20 Hz vs. 4 Hz) and higher 
resolving power (500,000 vs. 240,000 at m/z 200). With 
these enhanced features based on the innovative Tribrid 
architecture, more MS2 scans are obtained on the Tribrid 
than Hybrids due to faster scan performance and the ability 
to basically detect more spectral features, therefore giving 
rise to better identification (Figure 15).
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Figure 15. Enhanced hardware improvements gives better analytical 
performance on the Tribrids vs. Hybrids.

Reason 4: The Orbitrap Tribrid mass 
spectrometers have multiple fragmentation 
techniques available (CID, HCD, ETD, EThCD) 
that provides versatility to explore more 
experimental possibilities.
As the Orbitrap Fusion Tribrid MS and Orbitrap Fusion 
Lumos Tribrid MS are equipped with three mass analyzers, 
these platforms are capable of performing complex 
parallelization experiments by concurrent isolation of ions in 
one analyzer and detection in the remaining two analyzers.5 
Another dimension of experimental flexibility is added 
through multiple fragmentation techniques that are available 
exclusively on the Tribrid mass spectrometers. These 
include collision induced dissociation (CID), higher-energy 
collisional dissociation (HCD) and optional electron transfer 
dissociation (ETD, ETD HD, EThcD and EThcD HD).  Each 
of these fragmentation techniques can be performed at 
any stage of MSn, with detection of the fragment ions in 
either the dual-pressure linear ion trap or ultra-high-field 
Orbitrap mass analyzer. These multiple fragmentation 
capabilities on the Orbitrap Tribrid mass spectrometers 
unlock new experimental approaches to determine and 
quantify PTMs, including phosphorylation, acetylation 
and glycosylation. This capability is uniquely exploited in 
the Tribrid architecture through product ion dependent 
scanning functions.



ETD fragmentation is one such example that is especially 
useful for glycan structure characterization in glycan 
analysis or for glycoproteomics.6 The ETD ion source used 
in Orbitrap Fusion MS is based on Townsend discharge 
ion source which generates a highly stable reagent ion 
flux with minimal user input for optimization and tuning 
as was required on previous ETD sources equipped on 
the hybrid platforms. Additionally, the Orbitrap Tribrid 
instruments have been implemented with intelligent, 
automated precursor ion sorting routines, reagent filtering 
using the quadrupole mass filter, and charge-state-
specific calibration of ETD reaction times that maximize 
the quality of ETD spectra and increase the number of 
glycopeptides identified compared to previous generation 
mass spectrometers. A comparison of Orbitrap Elite MS to 
Orbitrap Fusion MS for the identification of human serum 
glycopeptides is shown here (Figure 16). The Orbitrap Elite 
MS selects precursors based on intensity while Orbitrap 
Fusion MS can acquire data with intelligent precursor 
selection giving priority to highest charge precursors which 
are optimal for ETD fragmentation.
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Figure 16. ETD performance on Tribrid mass spectromters outperform 
Hybrid mass spectrometers due to utilization of intelligent precursor 
selection feature implemented on Orbitrap Fusion MS and Orbitrap 
Fusion Lumos MS.

On the Orbitrap Fusion Tribrid MS, an intelligent acquisition 
strategy termed HCD product-dependent ETD workflow 
(HCD-pd-ETD) that enables on-the-fly identification of 
glycopeptides was implemented which improves overall 
productivity of glycopeptide analyses. In this approach, 
the Orbitrap Fusion mass spectrometer acquires HRAM 
HCD spectra in a data-dependent fashion. The instrument 
identifies glycan oxonium ions on the fly in the HCD 
spectra and triggers ETD spectra on the glycopeptide 
precursors only (Figure 17). This results in streamlined 
data analysis and improvements in dynamic range and 
duty cycle. The HCD-pd-ETD method is provided within 
the instrument control software for Orbitrap Tribrid based 
mass spectrometer. In addition to HCD-pd-ETD, the 
Tribrid instruments can trigger any fragmentation based on 
oxonium ion presence including CID and HCD (HCD-pd-
CID, HCD-pd-HCD). Triggering CID fragmentation based 
on the detection of oxonium ions is useful for elucidating 
glycan composition information as CID tends to produce 
more detailed glycan backbone fragmentation (Figure 17). 
This approach is useful as glycans are heterogeneous 
PTMs; multiple glycans can be present at a single amino 
acid site and requires complete characterization of all 
detected compositions.



Figure 17. Representation of HCD-pd-ETD and HCD-pd-CID acquisition methods. The HCD spectrum shows diagnostic glycan oxonium ions in the 
low m/z region which are used to trigger ETD and/or CID spectrum. The ETD spectrum gives important information about the peptide and glycosylation 
site. The CID spectrum provides glycan composition information.

Reason 5: Availability of universal methods – 
Intelligence built into a new software interface 
gives non-MS experts access to highly complex 
technology.  
The technological developments in mass spectrometers 
have grown more powerful and sophisticated, but at 
the same time more difficult to operate. The Orbitrap 
Fusion Tribrid mass spectrometer delivers higher-quality 
information from more sample types, at a rate faster than 
any mass spectrometer available today. The intelligence 
built into the Orbitrap Fusion Tribrid instruments and 
software makes it possible to achieve exemplary results 
with far less effort than required by previous generations 
of mass spectrometers. This built-in intelligence provides 
researchers with greater experimental flexibility, allowing 
them to focus more on their science instead of intensive 
method development and instrument operation. 

Built-in intelligence features include: 

• Dynamic Scan Management schedules scan events to 
maximize MS efficiency, as well as intelligently prioritizing 
precursors for data dependent analysis with their 
optimum fragmentation mode and mass analyzer.

• A library of method templates with application specific 
defaults is available for common experiments allowing 
you to run guided methods with less effort. For unique 
experiments, customized method development is 
available for maximum flexibility.

• Automated Synchronous Precursor Selection (SPS) for 
MS3 significantly increases the number of peptides and 
proteins identified and quantified by TMT isobaric mass 
tagging workflows.

• Top-speed (Top S) mode efficiently schedules MS and 
data-dependent MSn scans based on user-definable 
parameters and maximizes the number of high-quality 
MSn spectra acquired.

• Simultaneous identification, quantitation, and confirmation 
are achieved by a combination of high-resolution, 
accurate-mass, low-detection-limit SIM quantification with 
the Orbitrap mass analyzer and sensitive full-scan MS/MS 
confirmation with the ion trap.
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Why choose Orbitrap Mass Spectrometry?
Research trends and analytical needs have driven mass 
spectrometry innovation especially in the past decade. 
Mass spectrometers of today must be equipped with 
superior performance features such as high resolution, 
mass accuracy, dynamic range and fast scanning 
capabilities in order to fulfil rigorous experimental demands 
and handle extremely complex samples. In today’s 
research, these same instruments have to provide the 
flexibility to carry out a variety of analytical techniques 
including multiplexing, multi-stage fragmentation and 
multiple dissociation techniques, in addition to being 
highly robust and giving consistent performance for 
high throughput analysis. Since its introduction in 
2005, the Orbitrap technology has revolutionized mass 
spectrometry based research to meet these various 
challenges across multiple application fields of interest. 
The exceptional value of Orbitrap-based MS systems in 
delivering uncompromised analytical performance and 

Figure 18. Instrument method set-up interface on Orbitrap Fusion based MS instruments, displaying a simple and easy-to-use guided 
method editor.
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Figure 19. Rising trend in number of Orbitrap MS based research 
publications in Nature and Science journals since introduction in 
2005.

achieving greater experimental possibilities have been 
well recognized by the scientific community. Adoption of 
Orbitrap technology over the years has grown exponentially 
with the proven increase in numbers of Nature and Science 
family publications  
(Figure 19).
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Which Orbitrap system is right for my research?

Instrument  
Attributes

Q Exactive 
Focus MS 

Q Exactive 
MS 

Q Exactive 
Plus MS

Q Exactive 
HF MS

Orbitrap  
Elite MS

Orbitrap  
Fusion MS 

Orbitrap  
Fusion  

Lumos MS

Analyzer Orbitrap Orbitrap Orbitrap
Ultra High 

Field Orbitrap

Hybrid:  
Linear ion trap, 

Orbitrap

Tribrid:  
Quadrupole 

with dual  
pressure linear 

ion trap,  
Orbitrap D20

Tribrid:  
Quadrupole with 

dual pressure 
linear ion trap, 
Orbitrap D20

Mass Range
m/z  

50–2000
m/z 

50–6000
m/z  

50–6000
m/z  

50–6000

m/z  
50–2000;  

m/z  
200–4000

m/z  
50–6000

m/z  
50–6000

Maximum  
Resolution  
@ m/z 200

70,000 140,000 140,000 240,000 240,000 500,000 500,000

Scan Speed 12 Hz 12 Hz 12 Hz 18 Hz 4 Hz 20 Hz 15 Hz

Top N/MSn Top 2  
ddMS2

Top 2  
ddMS2

Top 2  
ddMS2

Top 2  
ddMS2

MSn, n = 1  
to 10

MSn, n = 1  
to 10

MSn, n = 1  
to 10

Mass Accuracy - 
Internal Calibration

< 1ppm < 1ppm < 1ppm < 1ppm < 1ppm < 1ppm < 1ppm 

Polarity switching <1 sec <1 sec <1 sec <1 sec No <1 sec <1 sec

Multiplex No
Yes, up to  

10 precursors
Yes, up to 10 

precursors
Yes, up to  

10 precursors
No

Yes, up to  
10 precursors

Yes, up to  
10 precursors

Intact Protein Mode No No Yes Yes Yes Yes Yes

Enhanced  
Resolution

No No
280,000 
(Option)

N/A N/A N/A N/A

Collision Energy CE only
Normalized 

CE
Normalized 

CE
Normalized 

CE

Dissociation HCD HCD HCD HCD CID, ECD
CID, HCD, 

ETD, EThCD
CID, HCD, ETD 
HD, EThCD HD

ETD Option No No No No
Yes, efficiency  

> 15%
Yes, efficiency 

> 15%
Yes, efficiency  

> 15%

Table 3. Orbitrap selection guide.

Table 4. Which Orbitrap system best suits my experimental requirements?

Performance  
Features

Q Exactive 
MS

Q Exactive Plus 
MS

Q Exactive HF 
MS

Orbitrap Elite 
MS

Orbitrap Fusion 
MS

Orbitrap  
Fusion Lumos MS

Resolution      

Sensitivity      

Speed      

Dynamic Range      

Mass Accuracy      

Multiplexing      

Fragmentation      

MSn Capability – – –   

ETD – – – –  

MultiNotch – – – –  



Application
Q Exactive 

MS
Q Exactive Plus 

MS
Q Exactive HF 

MS
Orbitrap Elite 

MS
Orbitrap Fusion 

MS

Orbitrap  
Fusion Lumos 

MS

Peptide IDs      

TMT Quantitation      

SILAC      

Label Free Quantitation      

Top Down      

Intact Analysis      

PTM Phosphorylation      

PTM Glycosylation      

Table 5. Which Orbitrap system best suits my area of research?
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