

The Analysis of Polar Pesticides by Ion-Exchange Chromatography Tandem Mass Spectrometry; A Tale of Two (and many more) Molecules

Dr Stuart Adams

Presentation overview

- Quick introduction to Fera Science Ltd
- Polar Pesticides and Quick Universal Polar Pesticide Extraction (QuPPe) method
- Ion chromatography mass spectrometry instrumentation
- Results of current methods and validations
- Summary

Fera Science Ltd (www.fera.co.uk)

• A leading supplier of scientific solutions, evidence and advice across the Agri-Food supply chain in Europe - "from farm to fork"

Polar Pesticides: old news?

- Glyphosate approval in the EU currently in question
 - In 2015 World Health Organisation moved to classify glyphosate as a probable human carcinogen
- Ethephon approved but frequent MRL violations
 - Current 2016 figures from RASFF, 4 alerts and 3 information for attention notifications covering, grapes, tomatoes, peppers and figs
- Chlorate banned by EU in 2010 because of health risks
 - EFSA called for more data on the presence of chlorate in foods
- Perchlorate EU established MRLS of 10 µg/kg for most foods in 2015
 - Dietary exposure study done by U.S. FDA milk contributes to about 47% of total exposure (FDA website, <u>www.fda.gov</u>)

QuPPe - The Perfect Extraction Method?

- Generic extraction using acidified methanol no partition, no clean-up
- The QuPPe method developed by EURL-SRM is not perfect <u>http://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?LabID=200&CntID=1005&Theme_ID=1&Pdf=False&Lang=EN</u>
- The Cons:
 - Extracts contain high amounts of co-extractives
 - Variation in retention time
 - Internal standards required
 - Several different column chemistries required

- The Pros:
 - Continually evolving (current version (9) released in March 2016)
 - Cost effective compared to previous approaches
 - QuPPe has enabled analysis of pesticides monitored infrequently in the past
 - Labelled internal standards have become commercially available

IC-MS/MS then and now - glyphosate

 2007 Glyphosate @ 100 µg/kg in cereals with 2.5 mL injection online concentration

• 2016

Glyphosate @ 100 µg/kg in cereals with 1/10 extraction dilution of QuPPE extracts, 100 µL loop injection

IC-MS/MS at Fera - today

- Currently evaluating a Thermo Scientific™ Dionex™ ICS 5000 system
- Fully integrated with Thermo Scientific™ TSQ Quantiva™ Triple Quadrupole MS
- Controlled through one software package -Thermo Scientific[™] TraceFinder[™] 3.2
- Multi-residue analysis of polar ionic pesticides in 'QuPPe' extracts

- Using new generation IC columns with 4 µm particle size
- MS tune optimised for low mass
- High sensitivity allowing lower volume injections
- Can change ion transfer tube whilst system under vacuum

Validation - Cereals (Flour)

Compound	Concn (µg/kg)	Mean Recovery (n=5)	Mean % RSD				
Perchlorate (IS)	10	95	6		-100 Ee		
	50	90	7	Compound	Concn (µg/kg)	Mean Recovery (n=5)	Mean % RSD
	100	92	9				
Chlorate	10	93	5	Fosetyl Al	200	200 60	4
(IS)	50	88	2	TosetyrAi	200	00	•
	100	87	4		1,000	71	4
Ethephon	10	95	11		2,000	72	2
(IS)	50	86	4	Phosphonic	200	106	5
	100	85	4	acid			-
Clopyralid	50	70	5		1,000	94	4
	100	89	6		2,000	97	2
				Cyanuric acid	50	75	31
				(15)	100	88	13

Glufosinate - Cereals (Flour)

Glyphosate - Cereals (Flour)

Glyphosate in cereals - retention time stability

• Over 30 injections in a cereals batch, retention time of glyphosate starts at 15.13 minutes and moves to 15.00 minutes

fera

Glyphosate in beer - retention time stability

• Over 100 injections over 2.5 days, retention time of glyphosate starts at 14.90 minutes and moves to 14.63 minutes

Glyphosate in beer - no extraction required!

Calibration plot 0.1 - 5 μ g/L spikes Glyphosate incurred Glyphosate spike @ 0.5 µg/L residue @ 0.58 µg/L 168>62.9 168>62.9 **Standard Addition Plot (Internal** 14.85 RT: 14.90 AA: 19863 12.000 Standardisation) 950-1900-900 1800-850-10.000 1700v = 1.8353x + 1.0637 800⁻ 1600- $R^2 = 0.9992$ 750-1500-700-8.000 1400-650-1300-600-1200-550-1100-6.000 500-1000-450-900-400-800-4.000 350-700-300-600-250-500-2.000 200-400-150-300-100-200-0.000 50-100-0 2 -1 6 1 3 4 5 $\mathcal{A}\mathcal{M}$ 0-17 12 13 14 17 13 14 15 16 15 16 RT(min) RT(min)

• 1/10 dilution with water and internal standard added

Ethephon - in grapes

Compound	Concn (µg/kg)	Mean Recovery (n=5)	Mean % RSD
Ethephon (IS)	10	114	17
	50	95	14
	100	102	10

Ethephon $@50 \ \mu\text{g/kg}$ in grape

Chlorate in dairy products

Perchlorate in dairy products

Validation - Perchlorate in Infant Food

 Perhlorate in organic infant
food calculated at
P
2 µg/kg by
standard addition
(internally
standardised)

	Compound	Concn (µg/kg)	Mean Recovery (n=5)	Mean % RSD
d at	Perchlorate (IS)	7	116	2
ion	(13)	12	115	4
		52	104	1

Danger! Chlorate in Infant Food

 Chlorate in organic infant food calculated at 38 µg/kg by standard addition (internally standardised)

Validation - Glyphosate in Infant Food

Compound	Concn (µg/kg)	Mean Recovery (n=5)	Mean % RSD
Glyphosate (IS)	5	110	5
(13)	10	120	12
	50	102	4

Summary

- Currently have an in-house validated method for 13 polar pesticides in two commodity groups
- Chlorate and perchlorate QuPPe method in routine use
- Infant food more challenging but still a work in progress with validation data for both glyphosate and perchlorate
- Good sensitivity and selectivity for validated pesticide/commodity combinations

Acknowledgements

- To Jonathan Guest and Mike Dickinson at Fera for their help during this work and the numerous others that have had brief interludes with IC-MS at Fera over the years
- To Jonathan Beck, Frans Schoutsen and Richard Fussell at Thermo Fisher Scientific for support in developing applications in this area

