Discover the Gold Standard for Dioxin Analysis

Thermo Scientific[™] DFS[™] Magnetic Sector GC-HRMS

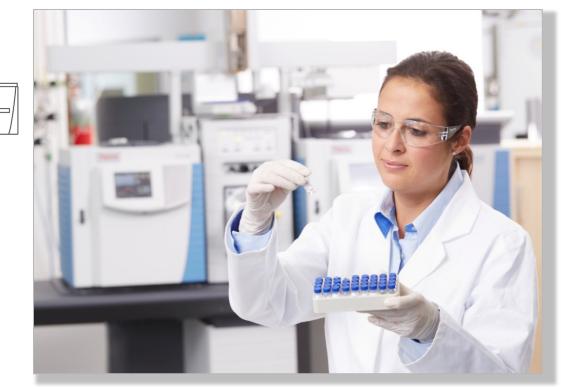
SCIENTIFIC

Latest News and Updates on DFS Magnetic Sector GC-HRMS

Heinz Mehlmann, Dirk Krumwiede

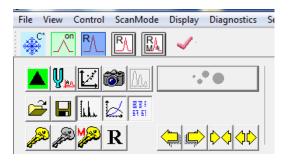
The world leader in serving science

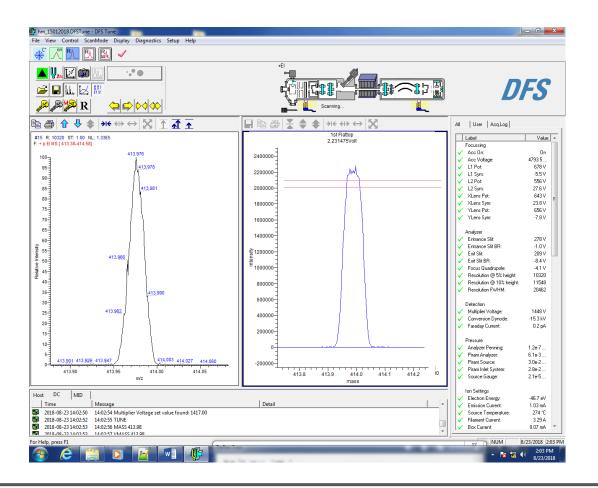
• Projects we are currently working on.


Software

- Instrument Control
- Target Quan

DualData XL


Additional Features

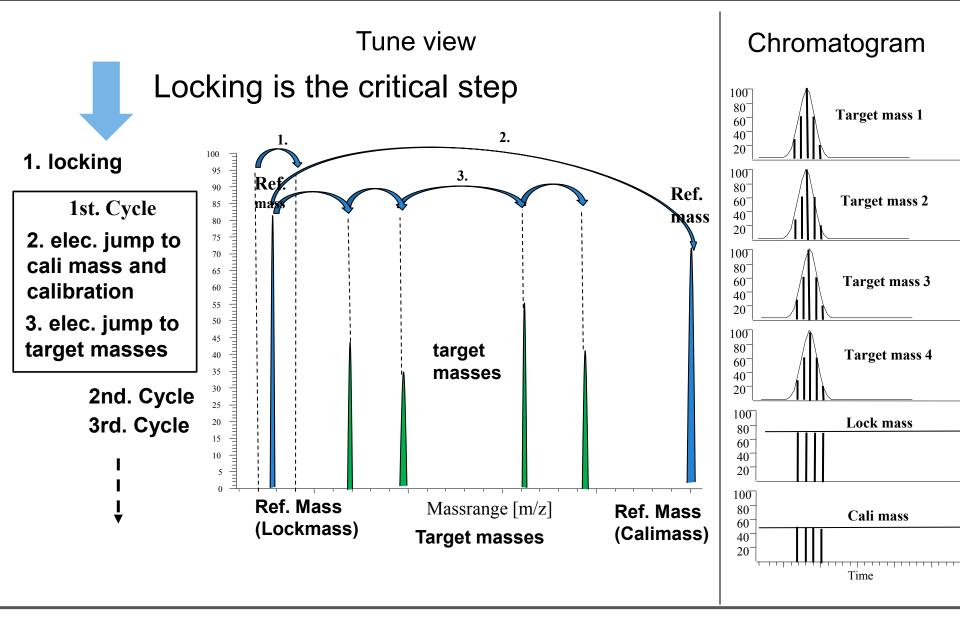


Instrument Software

- Improved MID process, faster section (window) changeover
- Smart MID
- Sequence Parameter logging.
- Function buttons.
- Automatic Resolution Setting.

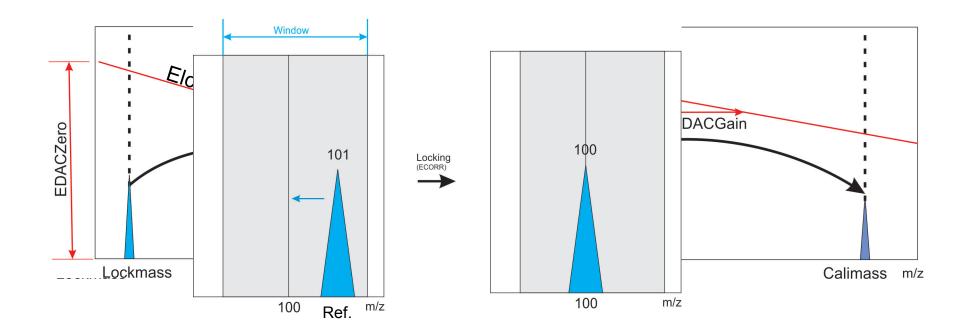
Thermo Fisher

MID (Multi Ion Detection)


• Example MID Sections

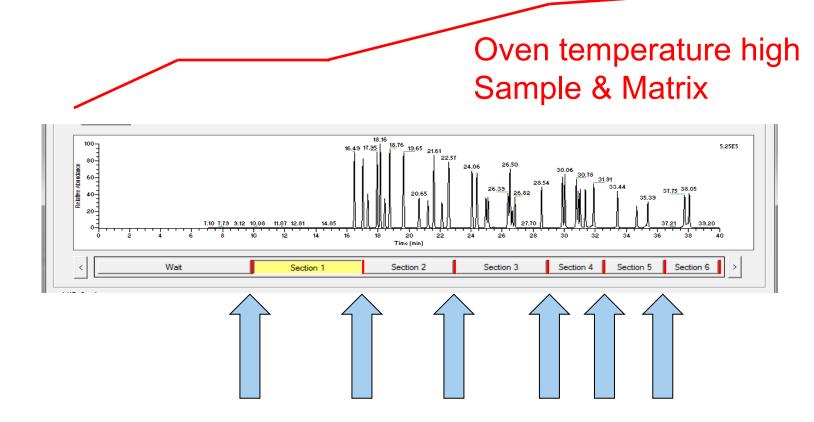
Section Tornation Tetra DF and Penta-, Hexa-PCBs

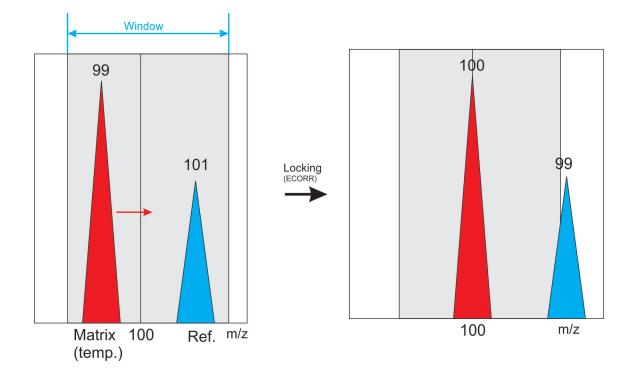
100- 30- 201820- 100- 40- 110- 40- 111- 111- 111- 111-	Segment Settings Times Start [min]:		End [min]: 2	3.00	•	Measure (min):	5.85 <u>•</u> Cyc	le [sec]: 0.93 🔹
월 40- 태 원 20-	Section 2	L/C	Mass	Gr.	Int.	Time[ms]	Compound	Comment 🔺
	1	Lock	292.98189	1	15	4	PFK	C7F11+
	2		303.90160	1	1	63	TeCDF	M+
	3		305.89870	1	1	63	TeCDF	(M+2)+ E
	4		315.94190	1	2	31	13C-TeCDF	M+
- MID Settii	5		317.93890	1	2	31	13C-TeCDF	(M+2)+
Methode:	6		319.89650	1	1	63	TCDD	M+
Segments	7		321.89360	1	1	63	TCDD	(M+2)+
	8		325.88040	1	1	63	PeCB	(M+2)+
Acquire T	9		327.87750	1	1	63	PeCB	(M+4)+
	10	Cali	330.97869	1	15	4	PFK	C7F13+
Data Typ	11		331.93680	1	2	31	13C-TCDD	M+
	12		333.93390	1	2	31	13C-TCDD	(M+2)+
Width 1st	13		337.92070	1	2	31	13C-PeCB	(M+2)+
Sweep Pe	14		339.91780	1	2	31	13C-PeCB	(M+4)+
Offset [μV	15		359.84150	1	1	63	HxCB	(M+2)+
Measure/	16		361.83850	1	1	63	HxCB	(M+4)+ 👻
Magnetic	17		371.88170	1	2	31	13C-HxCB	(M+2)+
Electric D	18		373.87880	1	2	31	13C-HxCB	(M+4)+
Electric D	19		0.00000	0	0	0		· ·
			16		0.00	0000 0	0 0	
			10		0.00	000 0	0 0	


MID (Multi Ion Detection)

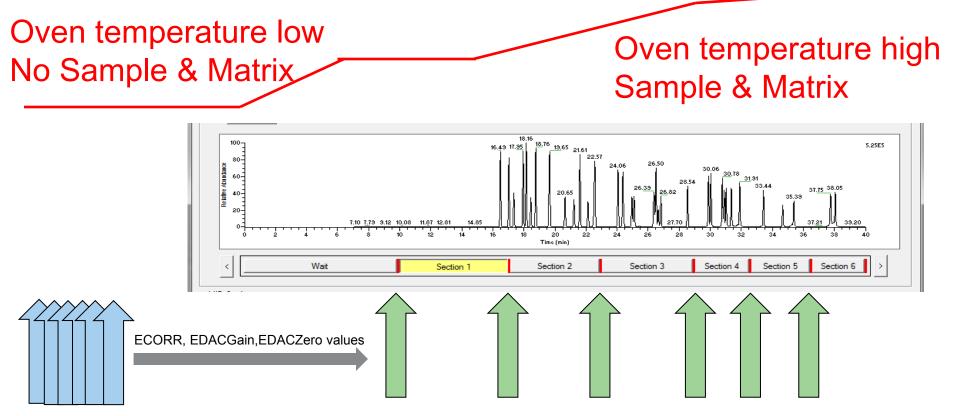
SCIENTIFIC

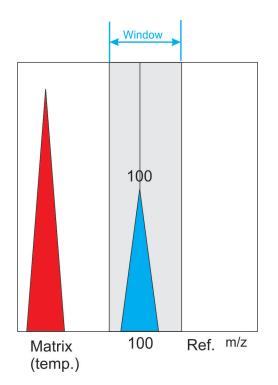
Smart Locking


Standard Locking Process


Smart Locking

- Standard Locking Process
- High chance of matrix interferance


Matrix can disturb the Locking Process


Smart Locking

- Smart Locking Process
- Determination of the calibration paramaters are done before injection.
- Low chance of matrix interferance during calibration determination.

- Locking during the measurement based on predefined parameters
- Matrixeffects does not effect the calibration process during the run.

New Key features in TQ-DFS Magnetic Sector GC-HRMS:

- New Tab and features for overview table view
- Ability to process active (unfinished) sequences
- Changes for Noise determination and Detection/Quantitation Limit
- New Parameters for the different TEF and TEQ Systems with corresponding upper, medium and lower bound values

TargetQuan for DFS Magnetic Sector GC-HRMS: New tab and <u>functions for Overview</u>

TargetQuan for DFS Magnetic Sector GC-HRMS

📄 Sequence 🦗 Quantitation 🖾 Response 🎟 Overview

Overview function was moved to a new Tab

Overview			
🖹 街 STO	QC UNK BLX	5 15	unk

- New filter function for recovery standards, internal standards and native compounds
- A graph view was added

TargetQuan for DFS Magnetic Sector GC-HRMS: New tab and <u>functions for Overview</u>

Displays the Retention times from all Internal Standards of all samples (unknowns) in a sequence

🗋 💕 Щ 🛛			1 🕼 🖬 🖪 🖣	🖓 🖓 🖓 🌆	123 🔙 🙊 🖀 🖣	R 🔞 🔛 🔤		⇒ ≱ 🕜	
Sea		tation	× ×						1
Math Graph		ution	the nesponse of						
Overview									
🕒 📶 STO	QC UNK BLK S	s unk	📴 QM Retentio	n Time					
ID	Compound	M	MUESTRA_TIF99	MUESTRA1_120	MUESTRA2_RIBEY	MUESTRA4133	Average	Std.Dev	RSD[9
2378-TCDF	2378-TCDF 13	25.59	25.62	25.62	25.61	25.59	25.61	0.02	0.0
2378-TCDD	2378-TCDD 13	26.60	26.65	26.65	26.63	26.62	26.63	0.02	0.0
1234-TCDD	1234-TCDD 13	25.84	25.88	25.89	25.86	25.85	25.86	0.02	0.0
12378-PeCDF	12378-PeCDF 1	31.86	31.90	31.88	31.88	31.87	31.88	0.02	0.0
23478-PeCDF	23478-PeCDF 1	33.64	33.68	33.66	33.66	33.65	33.66	0.02	0.0
12378-PeCDD	12378-PeCDD	34.27	34.29	34.30	34.28	34.26	34.28	0.02	0.0
123478-HxCDF	123478-HxCDF	40.67	40.71	40.70	40.70	40.68	40.69	0.02	0.0
123678-HxCDF	123678-HxCDF	41.03	41.09	41.07	41.08	41.05	41.06	0.02	0.
234678-HxCDF	234678-HxCDF	42.93	42.99	42.97	42.98	42.96	42.97	0.02	0.
123789-HxCDF	123789-HxCDF	45.83	45.89	45.85	45.85	45.83	45.85	0.03	0.
123478-HxCDD	123478-HxCDD	43.55	43.61	43.59	43.60	43.58	43.59	0.02	0.
123678-HxCDD	123678-HxCDD	43.90	43.97	43.95	43.95	43.93	43.94	0.02	0.
123789-HxCDD	123789-HxCDD	44.79	44.85	44.83	44.81	44.79	44.82	0.03	0.
1234678-HpC	. 1234678-HpCD	50.52	50.55	50.52	50.54	50.52	50.53	0.01	0.0
1234789-HpC	. 1234789-HpCD	52.61	52.62	52.62	52.63	52.61	52.62	0.01	0.
1234678-HpC	. 1234678-HpCD	52.02	52.03	52.01	52.04	52.02	52.03	0.01	0.0
OCDD	OCDD 13C12 S	55.82	55.84	55.81	55.86	55.81	55.83	0.02	0.0
Sum	Sum	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
•									

• Table view:

Selected Parameter:

Quantitation Mass Retention times

Selected Sample Type Filter:

Unkowns

Selected Entry Type Filter:

Internal standards

TargetQuan for DFS Magnetic Sector GC-HRMS: New tab and <u>functions for Overview</u>

Displays the Quantitation Mass Area from the Recovery standards of Samples and Standards in a sequence

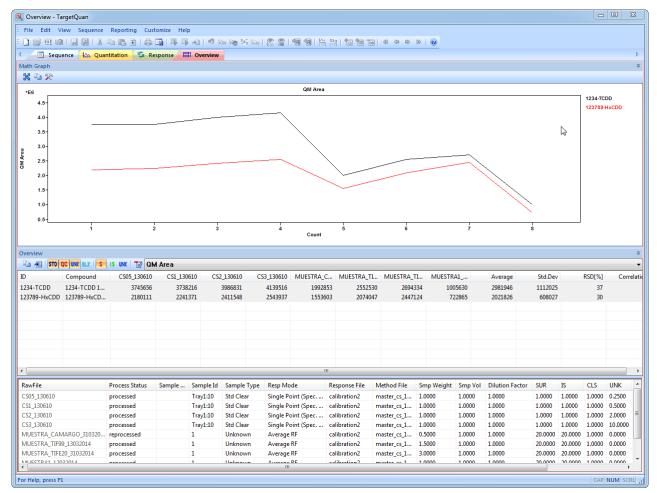


Table view: Selected Parameter: Quantitation Mass Area Selected Sample Type Filter: Unkowns and Standards Selected Entry Type Filter: Recovery Standards Graph view:

•

Results of Recovery

Standards

TargetQuan for DFS Magnetic Sector GC-HRMS: Processing of unfinished Sequences

	Sample Type	File Name	Path
1	Std Bracket	CS05_130610	F:\Targetquan\SequenceFolder
2	Std Bracket	CS1_130610	F:\Targetquan\SequenceFolder
3	Std Bracket	CS2_130610	F:\Targetquan\SequenceFolder
4	Std Bracket	CS3_130610	F:\Targetguan\SequenceFolder
5	Unknown	MUESTRA1_12032014	F:\Targetquan\SequenceFolder
6	Unknown	MUESTRA_TIF99_13032014	F:\Targetquan\SequenceFolder
7	Unknown	MUESTRA_TIFE20_31032014	F:\Targetquan\SequenceFolder
8	Unknown	MUESTRA_CAMARGO_31032014	F:\Targetquan\SequenceFolder

RocessIncompleteSequence.qseq * - TargetQuanDFS
File Edit View Sequence Reporting Customize Help
: 🗋 📂 👯 🚳 🛃 🔛 🌡 🗈 隆 🗟 🌧 🖼 🖶 🕒
🖣 🖉 🔄 Sequence 🗽 Quantitation 🐄 Response 🗰 Over
Setup
Global
Sequence File
Method Quan File
Response File
Xcalibur Sequence File
Raw Source Path
Report Layout
Export Layout(s)
Sum Area/Height Type
Limitcheck Dependency

	RawFile	Process Status
۲	CS05_130610	processed
	CS1_130610.raw	not processed
	CS2_130610.raw	not processed
	CS3_130610.raw	not processed
	MUESTRA1_12032014.raw	RawFile not valid
	MUESTRA_TIF99_13032014.raw	RawFile not valid
	MUESTRA_TIFE20_31032014.raw	RawFile not valid
	MUESTRA_CAMARGO_31032014.raw	RawFile not valid

ProcessIncompleteSequence.qseq * - TargetQuanDFS
File Edit View Sequence Reporting Customize Help
: 🗋 💕 🏨 🦛 🗶 🔛 🕉 🖬 🖏 🖬 🖏 🖓 🖓 🐴
🔹 🔄 Sequence 🔛 Quantitation 🖾 Response 🎟 Oven
Setup
Global
Sequence File
Method Quan File
Response File
Xcalibur Sequence File
Raw Source Path
Report Layout
Export Layout(s)
Sum Are Height Type
Limitcheck Dependency

	RawFile	Process Status
۲	CS05_130610	processed
۲	CS1_130610.raw	processed
۲	CS2_130610.raw	processed
۲	CS3_130610.raw	processed
	MUESTRA1_12032014.raw	not processed
	MUESTRA_TIF99_13032014.raw	not processed
	MUESTRA_TIFE20_31032014.raw	not processed
	MUESTRA_CAMARGO_31032014.raw	not processed

• Rescan function :

Q	Pro	cessIncompleteS	equence.q	eq * - Targe	tQuanDFS
:	File	Edit View	Sequence	Reporting	Customize
:		New			Strg+N
<	2	<u>O</u> pen			Strg+O
•		<u>S</u> ave			Strg+S
0		Save <u>A</u> s			
		Close Sequence			
	Шţ	Rescan SId-File	ar .		

- Additional raw files are added to the TQ sequence has been measured
- New entries can be processed
- Note: Integration, etc. of previous processed entries are not changed
- Evaluation of calibration could be carried out

TargetQuan for DFS Magnetic Sector GC-HRMS: New Parameters for Noise and Quantitation Limit

	Quan Parameter			
	QualBrowser Compatibility	Compatibility off		
	Sum Area/Height	Sum QM RM1		
	Quantitation Status	Dependend on Area		
2	TEQ on Area [hTOA]	Dependend on Area		
	Injection Volume [hIJV]	1.0		
	Sample Volume [hSV]	1.0		
	Sample Weight [hSWT]	2.0		
	Dilution Factor [hDF]	1.0		
	Det. Limit Factor [hDLF]	3.0		
	Quan. Limit Factor [hQLF]	10.0		
	Noise Sigma [hSIG]	4		
	Response Factor Mode	Average RF		
	Fit Calc. Mode	Linear Fit		
	Regression Mode	Non weighted Regression		
	Weighted Regression Factor	1.0		

- New Parameters:
 - Quantitation limit
 - Quantitation limit factor
 - Sigma factor for Noise

		CAA	DLA	QLA
Entry	Compound Name	Calculated Amount (A)	Detection Limit (A)	Quantitation Limit (A)
1	2378-TCDF	n.d. < 0.367	0.048	0.160
2	2378-TCDD	n.d. < 0.108	0.032	0.108
3	12378-PeCDF	0.199	0.054	0.180

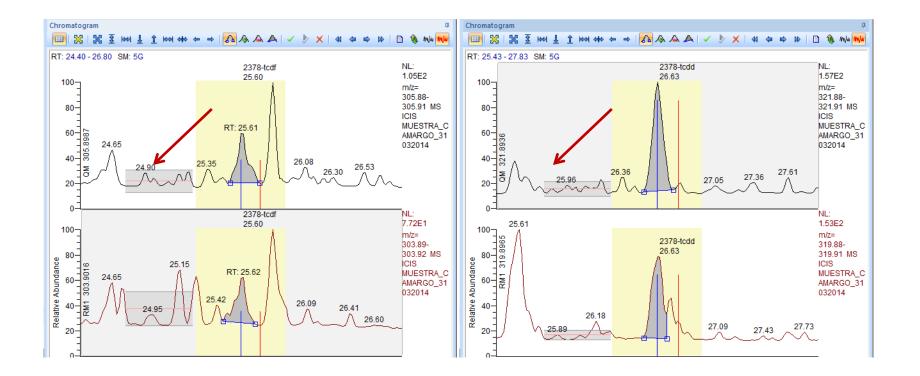
			V	
		CAA	DLA	QLA
Entry	Compound Name	Calculated Amount (A)	Detection Limit (A)	Quantitation Limit (A)
1	2378-TCDF	8.922	0.211	0.703
2	2378-TCDD	n.d. < 0.374	0.112	0.374
3	12378-PeCDF	1.213	0.191	0.638

TargetQuan for DFS Magnetic Sector GC-HRMS: New Noise Determination Features

- Noise Determination Methods
 - Automatic noise determination (algorithm is applied on the complete time range of measured mass trace, default method)

New:

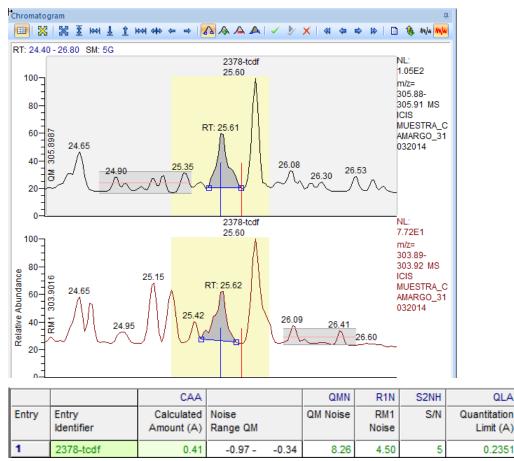
- Automatic noise determination with pre-selected time range (for example 1 to 0.5 minutes before the peak)
- Manual noise range determination by selection of a time range in the chromatogram with the mouse

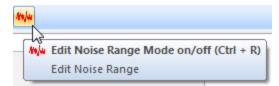

Automatic Noise determination with pre-selected time range

		CAA				
Entry	Entry Identifier	Calculated Amount (A)	Noise Range QM		Noise Range RM1	
1	2378-tcdf	0.41	-1.00 -	-0.50	-1.00 -	-0.50
2	2378-tcdd	2.18	-1.00 -	-0.50	-1.00 -	-0.50
3	12378-pecdf	n.d. < 1.05	-1.00 -	-0.50	-1.00 -	-0.50
4	23478-pecdf	1.08	-1.00 -	-0.50	-1.00 -	-0.50
5	12378-pecdd	n.d. < 0.91	-1.00 -	-0.50	-1.00 -	-0.50
6	123478-hxcdf	n.d. < 0.52	-1.00 -	-0.50	-1.00 -	-0.50
7	123678-hxcdf	1.42	-1.00 -	-0.50	-1.00 -	-0.50
8	234678-hxcdf	0.51	-1.00 -	-0.50	-1.00 -	-0.50
9	123789-hxcdf	n.d. < 1.36	-1.00 -	-0.50	-1.00 -	-0.50
10	123478-hxcdd	n.d. < 1.40	-1.00 -	-0.50	-1.00 -	-0.50
11	123678-hxcdd	3.00	-1.00 -	-0.50	-1.00 -	-0.50
12	123789-hxcdd	n.d. < 0.60	-1.00 -	-0.50	-1.00 -	-0.50
13	1234678-hpcdf	2.51	-1.00 -	-0.50	-1.00 -	-0.50
14	1234789-hpcdf	n.d. < 0.29	-1.00 -	-0.50	-1.00 -	-0.50
15	1234678-hpcdd	18.81	-1.00 -	-0.50	-1.00 -	-0.50
16	ocdf	n.d. < 0.23	-1.00 -	-0.50	-1.00 -	-0.50
17	ocdd	41.54	-1.00 -	-0.50	-1.00 -	-0.50

- User defined Noise
 Range for every entry:
- Noise Range Quantitation Mass
- Noise Range Ratio Mass
- In this example the defined range is 1 minute to 0.5 minutes before the Peak
- Range is displayed in the chromatograms

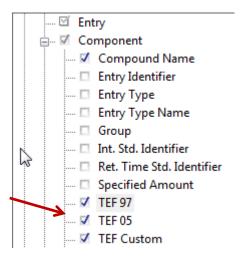
TargetQuan for DFS Magnetic Sector GC-HRMS: New Noise Features

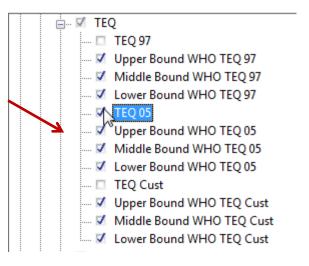

 Predefined Noise range (-1 min to -0.5 min) displayed in the chromatograms Example: TCDF and TCDD:



TargetQuan for DFS Magnetic Sector GC-HRMS: New Noise Features

Manually selected time range for noise determination





- Noise time range of Quan Mass and Ratio Mass are independent
- Ranges can be drawn where the most characteristic noise can be found

TargetQuan for DFS Magnetic Sector GC-HRMS: Additional TEF and TEQ Factors

New Parameters in TargetQuan:

- Additional TEF factors:
 - TEF 97: TEF WHO 1997 values
 - TEF 05: TEF WHO 2005 values
 - TEF Cust: for example TEF Nato values
- Corresponding TEQ values:

For example:

- TEQ 05
- Upper Bound WHO TEQ 05
- Medium Bound WHO TEQ 05
- Lower Bound WHO TEQ 05

TargetQuan for DFS Magnetic Sector GC-HRMS: Additional TEF and TEO Factors

Calculation of upper, middle and lower bound TEQ for the TEF system required by the method

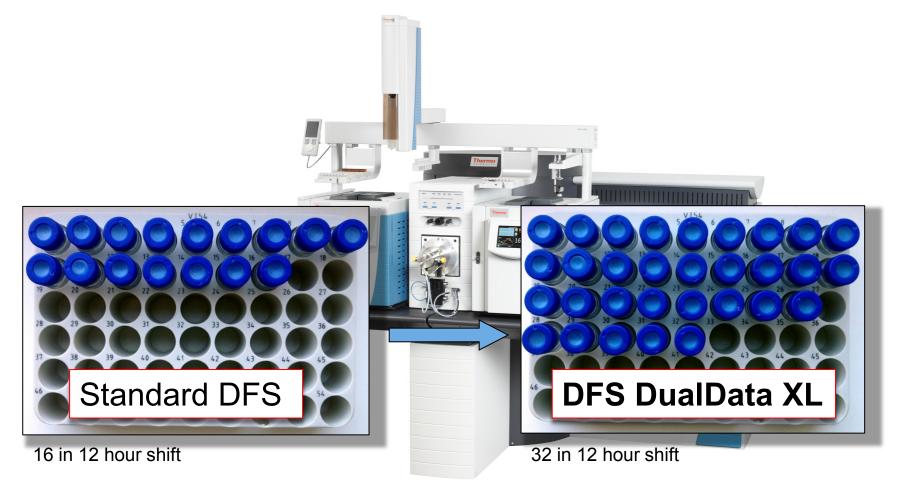
		CAA	QLA	TEF05	U	TQ05	MTQ05	LT	Q05	
Entry	Compound Name	Calculated Amount (A)	Quantitation Limit (A)	TEF 05	Upper E WHO TE		Middle Bound WHO TEQ 05	Lower Bo WHO TEO		
1	2378-TCDF	0.409	0.3393	0.1000	0	.0409	0.0409	0.0	0409	
2	2378-TCDD	2.179	0.4135	1.0000	2	.1790	2.1790	2.1	1790	
3	12378-PeCDF	n.d. < 1.394	1.0499	0.0300	0	.0315	0.0157	0.0	0000	
4	23478-PeCDF	1.081	0.2846	0.3000	0	.3242	0.3242	0.3	3242	
5	12378-PeCDD	n.d. < 1.986	0.9143	1.0000	0	.9143	0.4572	0.0	0000	
6	123478-HxCDF	n.d. < 0.871	0.5240	0.1000	0	.0524	0.0262	0.0	0000	
7	123678-HxCDF	1.421	0.8611	0.1000	0	.1421	0.1421	0.1	1421	
8	234678-HxCDF	0.510	0.6256	0.1000	0	.0510	0.0510	0.0	0510	
9	123789-HxCDF	n.d. < 1.360	1.3602	0.1000	0	.1360	0.0680	0.0	0000	
10	123478-HxCDD	n.d. < 1.398	1.3985	0.1000	0	.1398	0.0699	0.0	0000	
11	123678-HxCDD	3.000	0.5326	0.1000	0	.3000	0.3000	0.3	3000	
12	123789-HxCDD	n.d. < 0.602	0.6016	0.1000	0	.0602	0.0301	0.0	0000	
13	1234678-HpCDF	2.510	0.2142	0.0100	0	.0251	0.0251	0.0	0251	
14	1234789-HpCDF	n.d. < 0.289	0.2886	0.0100	0	.0029	0.0014	0.0	0000	
15	1234678-HpCDD	18.807	0.4397	0.0100	0	.1881	0.1881	0.1	1881	
16	OCDF	n.d. < 0.231	0.2306	0.0003	0	.0001	0.0000	0.0	0000	
17	OCDD	41.539	0.3568	0.0003	0	.0125	0.0125	0.0	0125	
18	Sum	71.455	0.4519	0.0000	4	.6000	3.9314	3.2	2628	
			CAA		QLA	TEF	05	UTQ05	MTQ05	LTQ05
Entry	Compound Name	4	Calculated Amount (A)	Quant Lin	itation nit (A)	TEF		Bound TEQ 05	Middle Bound WHO TEQ 05	Lower Bound WHO TEQ 05
1	Sum		71.455	0).4519	0.00	00	4.6000	3.9314	3.2628

TargetQuan for DFS Magnetic Sector GC-HRMS: Additional TEF and TEQ Factors

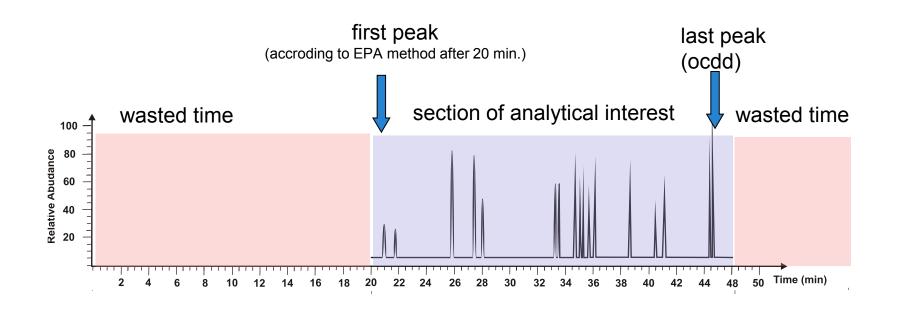
Calculation and Comparison of Upper Bound TEQs for different TEF Systems

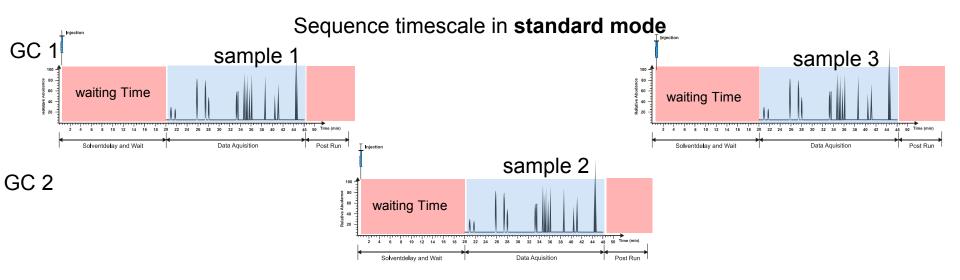
		CAA	QLA	TEF97	TEF05	TEFC	UTQ97	UTQ05	UTQC
Entry	Compound Name	Calculated Amount (A)	Quantitation Limit (A)	TEF 97	TEF 05	TEF Custom	Upper Bound WHO TEQ 97	Upper Bound WHO TEQ 05	Upper Bound WHO TEQ Cust
1	2378-TCDF	0.41	0.2515	0.1000	0.1000	0.1000	0.0409	0.0409	0.0409
2	2378-TCDD	2.18	0.4538	1.0000	1.0000	1.0000	2.1790	2.1790	2.1790
3	12378-PeCDF	n.d. < 1.39	0.5796	0.0500	0.0300	0.0500	0.0290	0.0174	0.0290
4	23478-PeCDF	1.08	0.5876	0.5000	0.3000	0.5000	0.5403	0.3242	0.5403
5	12378-PeCDD	n.d. < 1.99	1.0887	1.0000	1.0000	0.5000	1.0887	1.0887	0.5443
6	123478-HxCDF	n.d. < 0.87	0.6174	0.1000	0.1000	0.1000	0.0617	0.0617	0.0617
7	123678-HxCDF	1.42	0.6323	0.1000	0.1000	0.1000	0.1421	0.1421	0.1421
8	234678-HxCDF	0.51	0.7380	0.1000	0.1000	0.1000	0.0510	0.0510	0.0510
9	123789-HxCDF	n.d. < 0.92	0.9228	0.1000	0.1000	0.1000	0.0923	0.0923	0.0923
10	123478-HxCDD	n.d. < 0.99	0.4725	0.1000	0.1000	0.1000	0.0472	0.0472	0.0472
11	123678-HxCDD	3.00	0.5005	0.1000	0.1000	0.1000	0.3000	0.3000	0.3000
12	123789-HxCDD	n.d. < 0.54	0.5410	0.1000	0.1000	0.1000	0.0541	0.0541	0.0541
13	1234678-HpCDF	2.51	0.3686	0.0100	0.0100	0.0100	0.0251	0.0251	0.0251
14	1234789-HpCDF	n.d. < 0.41	0.4101	0.0100	0.0100	0.0100	0.0041	0.0041	0.0041
15	1234678-HpCDD	18.81	0.6591	0.0100	0.0100	0.0100	0.1881	0.1881	0.1881
16	OCDF	n.d. < 0.51	0.5128	0.0001	0.0003	0.0010	0.0001	0.0002	0.0005
17	OCDD	41.54	0.7892	0.0001	0.0003	0.0010	0.0042	0.0125	0.0415
18	Sum	71.46	0.5534	0.0000	0.0000	0.0000	4.8478	4.6285	4.3413

	UTQ97	UTQ05	UTQC	
Compound Name	Upper Bound WHO TEQ 97	Upper Bound WHO TEQ 05		
Sum	4.8478	4.6285	4.3413	

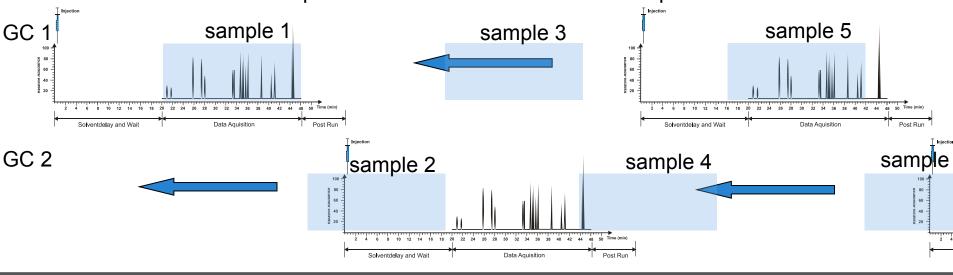

- Column exchange without venting.
- Independent makeup- and column flow regulation.
- Dual column per GC setup using 5 port wafer.

What is DFS Magnetic Sector GC-HRMS DualData XL?


• Productivity: up to 2 times the number of samples in the same timeframe.


DFS DualData XL: Background & Basic Idea

- Targeted Application: **Dioxins/Furans** following EPA 1613
- The first and last peak of a chromatogram defines the time section of analytical intrest.



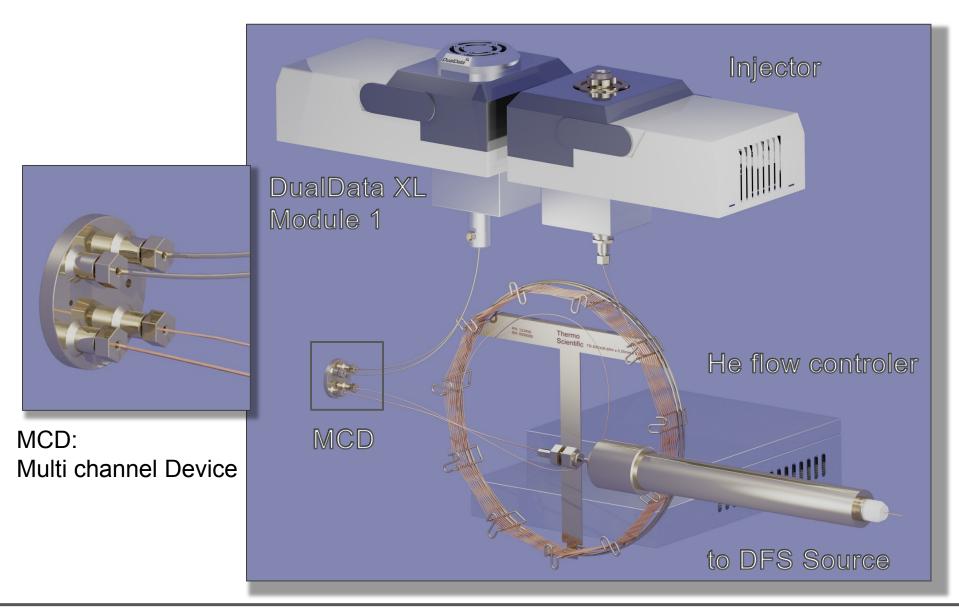
Chromatogram of a typical Dioxin run on a 60 meter column

Comparison: Standard DFS Magnetic Sector GC-HRMS vs. DFS Magnetic Sector GC-HRMS DualData XL

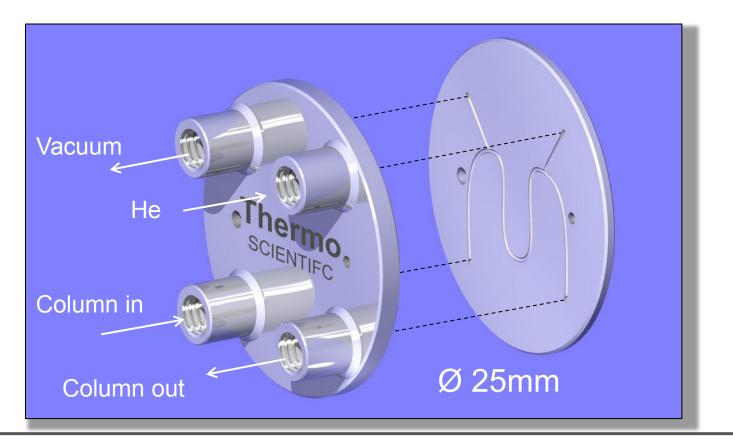
Sequence timescale with **DualData XL** Option

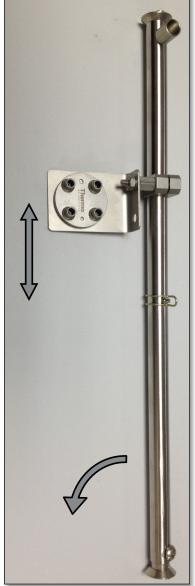
Hardware: DFS Magnetic Sector GC-HRMS with 2 Trace 1310 GC & 1 <u>RSH Autosampler</u>

Standard Dual GC DFS

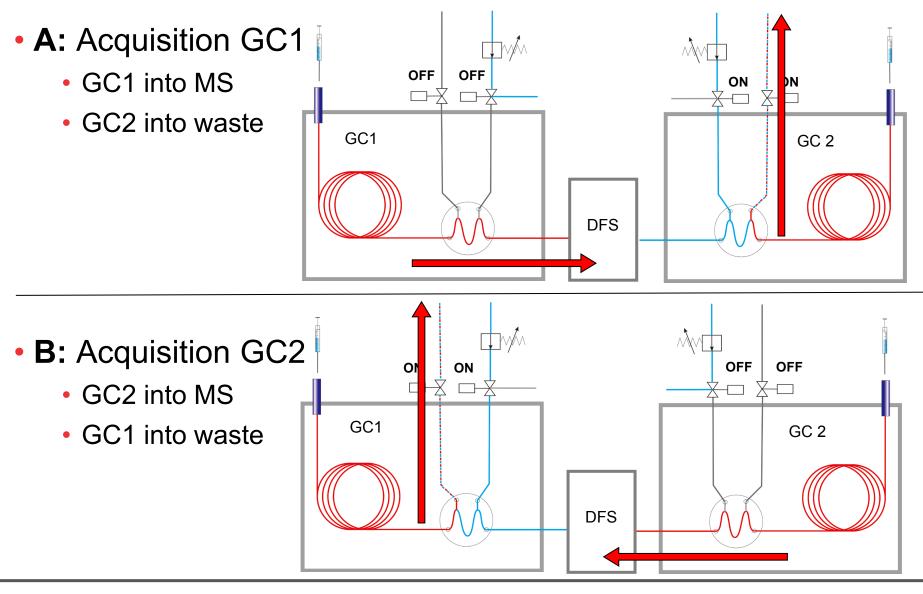

Hardware: DualData XL modules & MCD in each GC

• DFS Magnetic Sector GC-HRMS DualData XL GC-HRMS

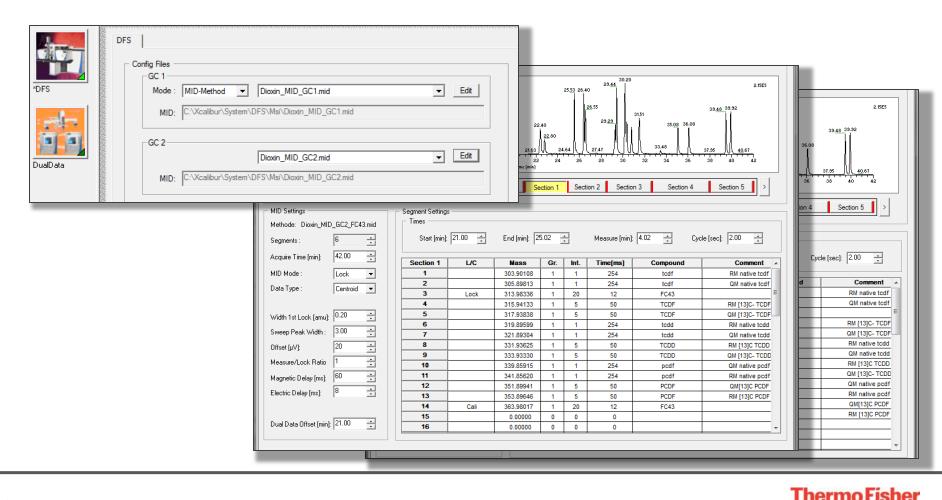

Hardware: DualData XL modules, MCD & Carrier Gas module



DFS DualData XL: Micro Chanel Device Wafer


- Easy installation of capillaries
- Completly leaktight
- No deadvolume, perfect peakshapes
- Additional benefit: change column without venting DFS Source.

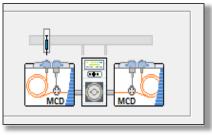
SCIENTIFIC

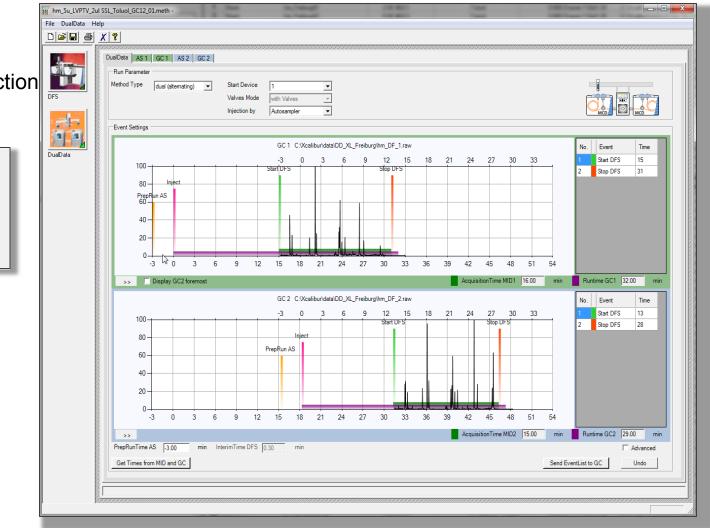

Alternating Flow switching with both GCs

Thermo Fisher SCIENTIFIC

DFS DualData XL Software

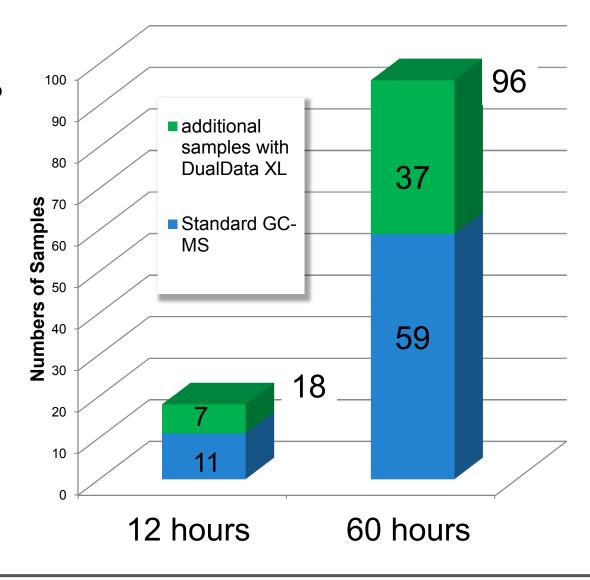
- DualData XL = 2 x GC-HRMS Systems (2 Devices)
- Each device with with individual GC, Autosampler and MS settings.



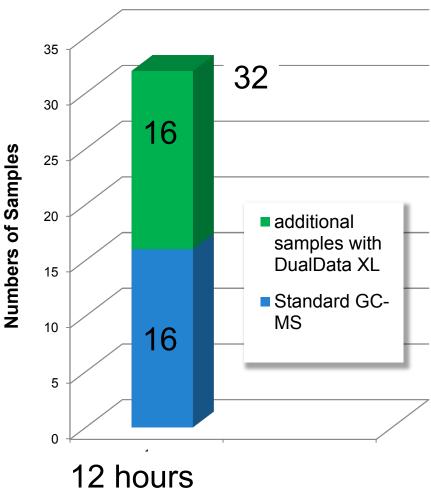

SCIENTIFIC

34

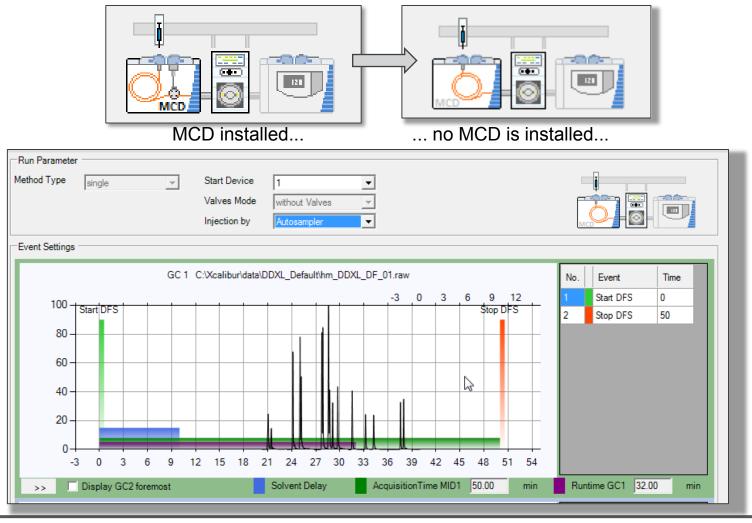
DFS DualData XL Software: Workflow


- Automatically calculation of all timing events based on MS and GC method.
- Example:
 - Staggered Injection
 - Starting GC1

Beta Tester results: DFS DualData XL method


- With the standard method of the Lab:
- Increase in efficiency 63 %
- Efficiency could be increased by further method optimization up to aprox. 88%

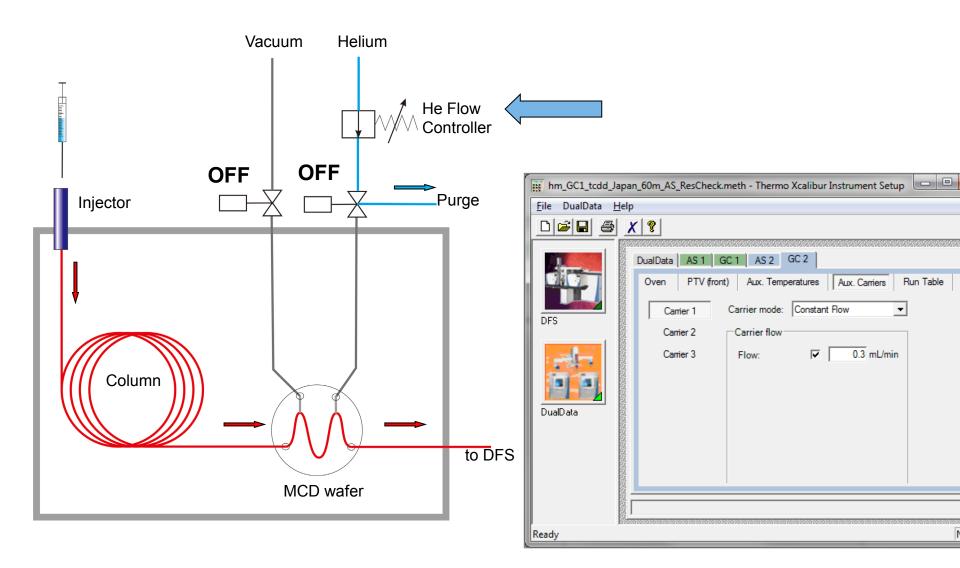
Time optimized method using DFS DualData XL


- Optimized method example:
 - GC 1& GC 2: GC = 43 min, MID =21 min
- Increase in efficiency aprox. **100%**

DFS DualData XL Software: Flexibility

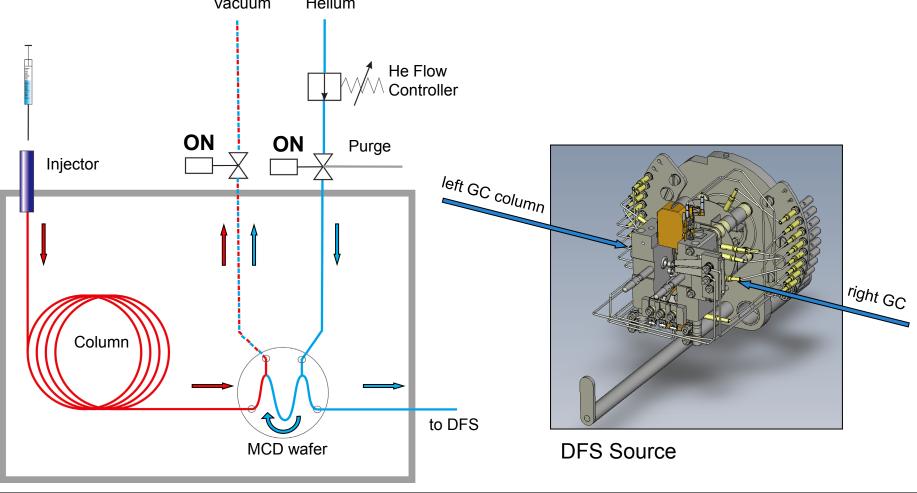
- Example: no Hardware change necessary when no wafer is installed.
 - GC column direct installed.

DFS DualData XL Software: Methods

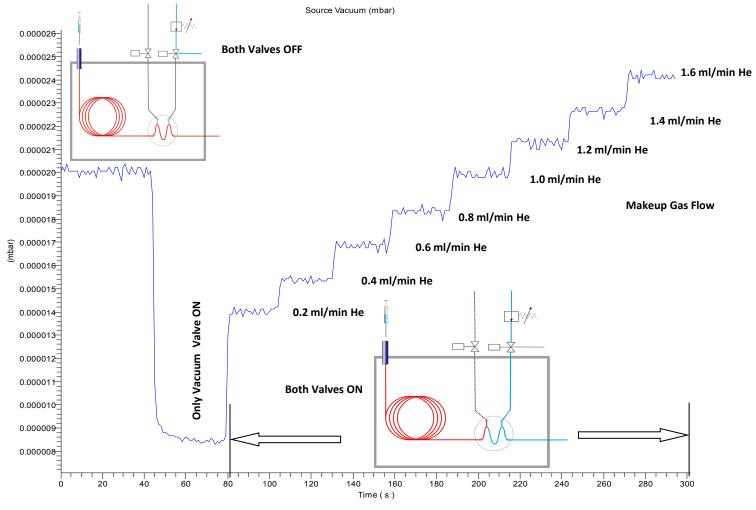

• Create different experiments with a few clicks.

 Single method GC1 	Run Parameter Method Type	single	Start Device Valves Mode Injection by	1 with Valves	
 Single method GC2 	-Run Parameter Method Type	single 💌	Start Device Valves Mode Injection by	2 with Valves	
 Manually Injection GC1 	Run Parameter Method Type	dual (alternating)	Start Device Valves Mode Injection by	1 with Valves ▼ manually ▼	
 Manually Injection GC2 	Run Parameter Method Type	dual (alternating)	Start Device Valves Mode Injection by	2 with Valves ▼ manually ▼	

DualData XL Carrier Gas module

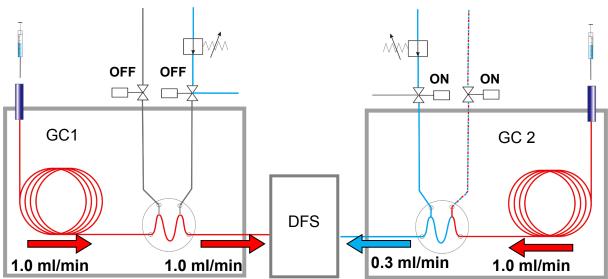

Hardware: Carrier Gas module

Hardware: Carrier Gas module


- Valves ON: the ionsource pressure is independent from the column flow.
- It only depends on the makeup gas flow.
- The makeup gas can be far lower than the columnflow.

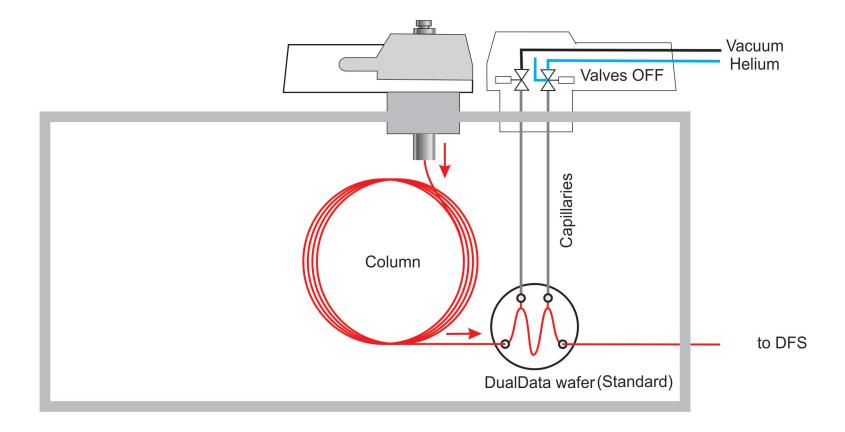
DFS DualData XL: Dynamic Flow Switching System

Ion source pressure with different valve position and makup gas flows

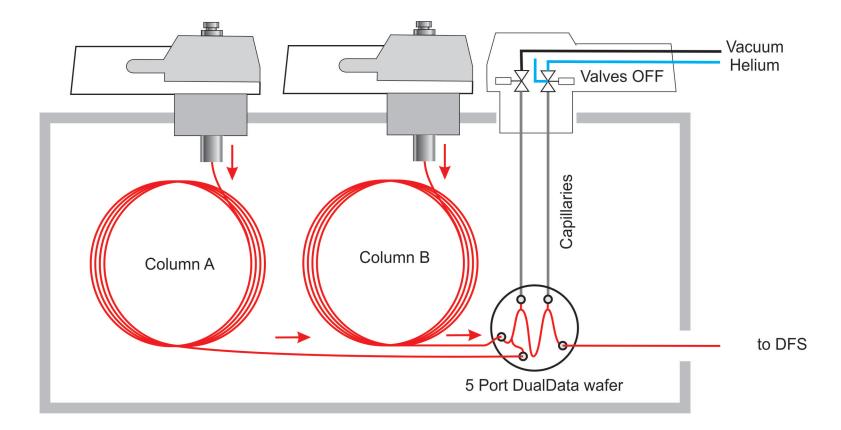


Ion source Pressure Profile with different gas flow rates delivered from the auxiliary gas module.

Alternating Flow switching with reduced Makeup Gasflow


- Within a sequence one column is always guided to the vacuum.
- The total flow load into the Ion Source is therefore makeup gas plus only one column flow.
- Example:
- Column GC1: 1.0 ml/min
- Column GC1: 1.0 ml/min
- Makeup Flow: 0.3 ml/min
- He into DFS: 1.3 ml/min

• It is also possible to run DualData with different column flows per GC.



DFS DualData XL: New Micro Chanel Device Wafer

DFS DualData XL: 5 Port Micro Chanel Device Wafer

• Setup Example using two 5 Port MCDs

	Injector	Column Type	Dimentions	
GC 1 Column A	SSL	DB5 MS	30m x 0.25mm 0.1um	PBDEs
GC 1 Column B	PTV	TR-PCB 8 MS	50m x 0.25mm 0.25um	PCBs
GC 2 Column A	PTV	VF5 MS	10m x 0.15mm 0.15um	BDE 209
GC 2 Column B	SSL	TR-Dioxin	60m x 0.25mm 0.25um	PCDD/F

- Increase of sample thoughput.
- Faster results
- Full Flexibility like standard dual GC DFS Magnetic Sector GC-HRMS.
 - Different Applications per GC (eg. GC1 Dioxin; GC2 BFRs etc.)
- Easy installation of capillaries
- Completly leaktight
- No deadvolume, perfect peakshapes
- MCD technology proven in routine.
- Additional benefit:
 - Fast change column without venting DFS Magnetic Sector GC-HRMS Source.
 - Condition one column while you measure on the other.
 - Less dirt into the Ion Source.

Discover the Gold Standard for Dioxin Analysis

Thermo Scientific DFS Magnetic Sector GC-HRMS

