

Ultra-high-pressure ion chromatography with suppressed conductivity detection at 70 MPa using columns packed with 2.5 µm particles

Christopher A. Pohl¹, Sam Wouters², Yan Liu¹, Sebastiaan Eeltink² ¹Thermo Fisher Scientific, Sunnyvale, USA ²Vrije Universiteit Brussel, Department of Chemical Engineering, Brussels, Belgium

Column Hardware and Media

System Configuration

System Configuration

6 ppm (mg/L)

Performance of 2.5 µm Dionex IonPac AS16 Prototype

Thermo Fisher

Performance Gains with Particle Size Reduction

Van Deemter Analysis (Optimized System)

Fast IC Using Short Columns at the Kinetic Performance Limit

Comparison of 2.85 Micron Particles and 10 Micron Dionex IonPac AS17C Column

UV Detection and Conductivity Detection at 30 °C

ThermoFisher SCIENTIFIC

van Deemter and Kinetic Plots

Consequences of New Operating Regimes: Heating Effects

Thermo Fisher SCIENTIFIC

Thermal Heating Effects in Ultra-High-Pressure IC

Percolation of a liquid through columns packed with 2.5 µm particles at ultra-high pressure induces frictional heating, which in turn induced axial and radial temperature gradients over the column

- Temperature sensors connected to column end-fittings (providing quantitative information)
- Heat-mapping camera for visualization

Column inlet

70 Mpa on SS column packed with 2.5 μm particles

Column outlet

Consequences of New Operating Regimes: Heating Effects

 T_{in} = 29.1°C $T_{out} = 33.2^{\circ}C$ $\Delta T = 4.1^{\circ}C$

Conclusions

2.5 µm particles versus 4 µm

- Efficiency doubled (plates/m)
- 2-3 times faster (maintaining plates/column)
- Highly efficient: enables reduction of column length
- 100 mm column operated at kinetic performance limit: 25% loss in plates/column, but 5 times faster

Future requirements

- Ultra-low dispersion suppressor
- Low dispersion conductivity cell
- Column oven with still air mode

High pressure compatible upgrade requirements

- Inert pump
- Eluent generator, degasser and electrolytic trap column
- Injection valve and tubing
- Column hardware

