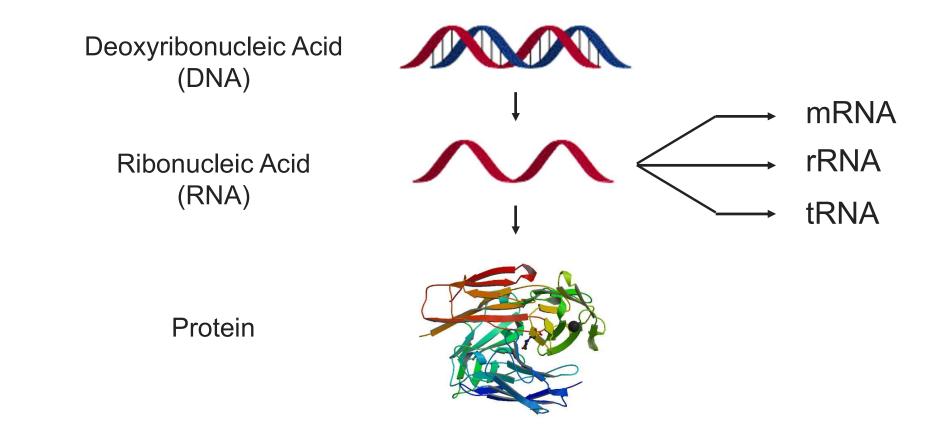
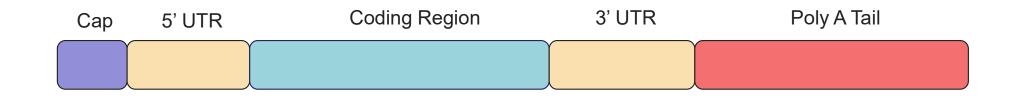


Characterizing 5' and 3' mRNA digestion products by LC-HRAM-MS/MS

Robert L Ross Senior Product Application Specialist 4/21/2023



Central Dogma of Molecular Biology


ThermoFisher SCIENTIFIC

"On Protein Synthesis" Francis Crick, London, 1957

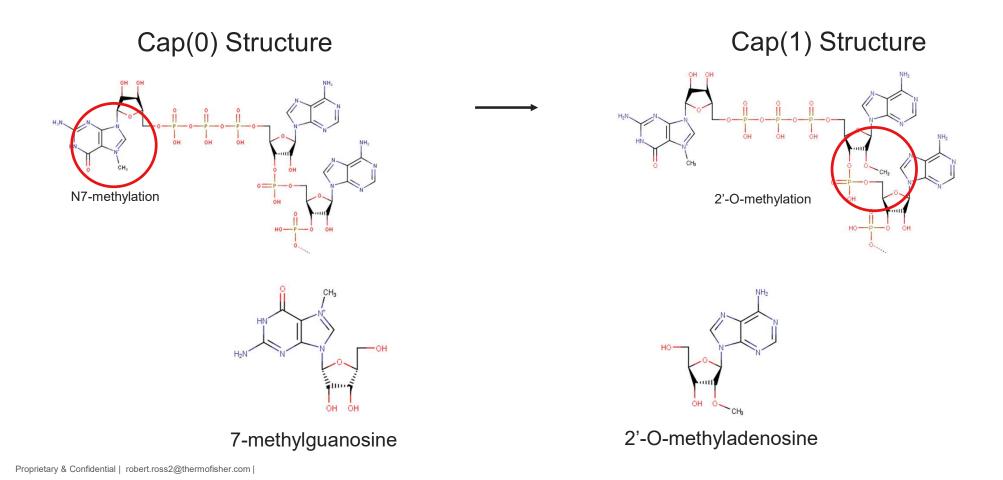
Anatomy of a mature mRNA

Carries the message

Multifunctional

- Nucleocytoplasmic transport
- Helps stabilization of mRNA against 5' exonucleolytic degradation
- Splicing
- Determinate for eLF-4E, promotes binding to the ribosome for translation

- Assists against 3' exonucleolytic degradation
- Stability of the strand
- Lengths are 100-150 bases


3 Proprietary & Confidential | robert.ross2@thermofisher.com |

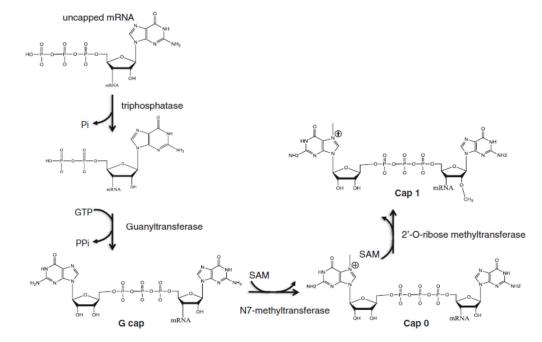
Thermo Fisher S C I E N T I F I C

Anatomy of the cap structure

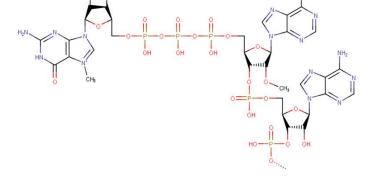
Identification between self and non-self

4

Thermo Fisher S C I E N T I F I C


Capping systems

Two modes of capping for synthetic mRNA


TriLink Biotechnologies CleanCap

alagiaa ClaanCan

De novo synthesis

Beverly, M., Dell, A., Parmar, P. et al. Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Anal Bioanal Chem 408, 5021–5030 (2016).

Determination of 5' capping efficiency

Two approaches

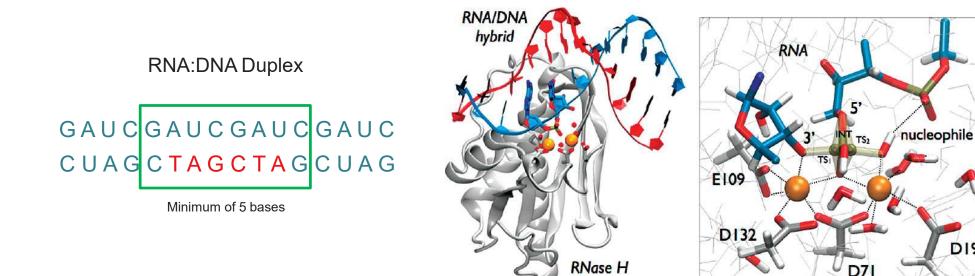
RNase H Digestion

- DNA/RNA chimeric probe
- · Complementary to the 5' end
- Cleavage HIS side chain Mg²⁺

Ribozymes

- Short oligonucleotides
- Designed for 5' end
- Cleavage coordinated metal ion
- Mg²⁺ or Mn²⁺

Beverly, M., et al. Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Anal Bioanal Chem 408, 5021–5030 (2016).


Vlatkovic, I.; et.al., Ribozyme Assays to Quantify the Capping Efficiency of In Vitro-Transcribed mRNA. *Pharmaceutics* **2022**, *14*, 328.

6 Proprietary & Confidential | robert.ross2@thermofisher.com |

Thermo Fisher SCIENTIFIC

RNase H Digestion

Cleaves the RNA strand in an RNA:DNA duplex

J. Am. Chem. Soc. 2008, 130, 33, 10955-10962

Thermo Fisher s c | E N T | F | C

D192

Digestion and purification with RNase H

Biotinylation of probe provides purification

Hybridize probe to transcript Bind to magnetic bead Cleave with Rnase H Isolate cleaved product Separate oligomer from probe and analyze by LC-MS/MS

sequence for illustrative purposes only

8 Proprietary & Confidential | robert.ross2@thermofisher.com |

Thermo Fisher

Thermo Fisher

Data Analysis

BioPharma Finder[™]

Data processing using BioPharma Finder[™]

BioPharma Finder™ is an easy-to-use tool for mapping your oligonucleotide data

th	científic BioPharma Finder	
ſ	Home	
€	Select an experiment type.	
ſ	Experiment Types	
	Sequence Manager	\geq
	Peptide Mapping Analysis	>
	Oligonucleotide Analysis	\geq
	Intact Mass Analysis	>
	Top Down Analysis	>

Sequence Manager

- Enter your mRNA sequence
- Build the modifications
- Add the modifications into the sequence

BioPharma Finder™ Sequence Manager

Thermo Fisher SCIENTIFIC

Input and modify your mRNA sequence

Sequence identifiers

mRNA sequence

 Sequence Informat 				 Manual Input Sequence
Target Oligonucleoti	de	Chain		Chain Name mRNA Sequence
Name	5 Capping Experiment	Chain	1	Input plain format (ATCGA) or thermo triplet format (Ad-pTd-pCd-pGd-pAd) notations. Both formats are case sensitive.
Description		Monoisotopic Mass	154158.0293	Use upper case for BASE.
Sample Type	Oligonucleotide	Average Mass	154229.49	ACUGGUCAACUGGU
Category	Sequencing ~			ACUGGUCAACUGUCAACUGUCAACUGGUCAACUGGUCAACUGGUCAACUG
Monoisotopic Mass	154,158.0293			ACUGGUCAACUGUCAACUGUCAACUGGUCAACUGGUCAACUGGUCAACUG
Average Mass	154,229.49			ACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCAACUGGUCA
Formula	C4560H5641O3358N1800P479 Apply			
 Oligo Sequence Ma 	ap			
>1: mRNA S				^
	pG -pG -pU -pC -pA -pA -pC -pU -pG -pG -pU -pC -p.			
	-pA -pA -pC -pU -pG -pG -pU -pC -pA -pA -pC -pU -p			
	pG -pG -pU -pC -pA -pA -pC -pU -pG -pG -pU -pC -p			Apply
	-pA -pA -pC -pU -pG -pG -pU -pC -pA -pA -pC -pU -p			
от ра-рс-ро-	pG -pG -pU -pC -pA -pA -pC -pU -pG -pG -pU -pC -p	а -ра -рс -ро -ро -		

mRNA sequence in triplet format $5' \rightarrow 3'$

Building Blocks & Sequence Editor

Build your custom modifications and add them to your sequence at any position

	sk
Subun	it 5' Terminal ~
Nam	e m7Gppp
Symbo	a ~
Formul	a C11H18N5O14P3
Monoisotopic Mas	s 537.006
Average Mas	
B	

Thermo Fisher

SCIENTIELC

Sequence should contain same oligo building block for a given symbol. Highlighted in orange customized base, 2' ribose or backbone linker means these building blocks have same symbol but are using different oligo building block.

	Triplet	Backbone linker	Base	2' ribose	^
1	Am	~	A - Adenine(C5H5N5, 13 🔻	m - Methoxy(OCH3-OH, 🔻	
2	pCr	p - Phosphate(H3PO4, 9 🔻	C - Cytosine(C4H5N3O, 🔻	r - Hydroxy (RNA)(OH-O 🔻	
3	pUr	p - Phosphate(H3PO4, 9 🔻	U - Uracil(C4H4N2O2, 1 🔻	r - Hydroxy (RNA)(OH-O 🔻	
4	pGr	p - Phosphate(H3PO4, 9 🔻	G - Guanine(C5H5N5O, 🔻	r - Hydroxy (RNA)(OH-O 🔻	

Oligo Sequence Map

1

21

>1: mRNA Sequence

aAm-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-

- pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-
- 41 pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-
- 61 pGr-pUr-pCr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-
- 81 pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-
- 101 pGr-pUr-pCr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-
- 121 pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-pGr-pUr-pCr-pAr-pAr-pCr-pUr-pGr-

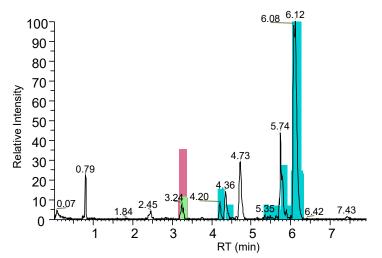
Data processing using BioPharma Finder[™]

BioPharma Finder™ is an easy-to-use tool for mapping your oligonucleotide data

t	científic BioPharma Finder	
ſ	Home	
€	Select an experiment type.	
ſ	Experiment Types	
	Sequence Manager	Σ
	Peptide Mapping Analysis	>
	Oligonucleotide Analysis	\geq
	Intact Mass Analysis	>
	Top Down Analysis	>

Oligonucleotide Analysis

- Name the experiment/choose data file
- Choose the processing method
- Edit the method
 - Detection Parameters
 - Enzyme used



Editing the Method

Choice of detection parameters; nuclease

bermo BioPharma Fi	nder	Image: Section Component Detection Image: Section Component Detection Section Component Detection Section Component Detection Section Component Detection Section Component Detection							
🔽 Home 🔽 Oligonucleotide Analys	is Parameters Load Results Queue								
Component Detection Identificatio	n 🧧 Save Method	Oligonucleotide Identification		Select Ribonuclease					
9.5.10	ł	Search by Full MS Only Use MS/MS	○ Yes	RNase	Nonspecific	✓ Custom Specificity A-,G-,U-,C-T-,I-,H-			
Set the parameters for component detect	ion.	Maximum Oligonucleotide Mass	Use All MS/MS 11,000	Phosphate Location	None	v			
elect Task To Be Performed		Mass Accuracy (ppm)	6	Specificity Level	High	w .			
Find All Ions in the Run	v	Minimum Confidence				6. <u>08</u> 6.12			
Peak Detection		Maximum Number of Modifications for an	0.80	95-		0.00			
eak Detection Absolute MS Signal Threshold	8.83E+5	Oligonucleotide		90		4			
(MS Noise Level * S/N Threshold)	8.83E+3	Advanced Search Enable Mass Search for Unspecified	-	85					
MS Noise Level	12,100.00	Modifications		80					
S/N Threshold	73.00	Mass Changes for Unspecified Modifications	0 to (75					
		Enable Residue Deletion		70					
Beginning Peak Width (min)	0.04			65					
Typical Chromatographic Peak Width (min)	0.08			60 55 1					
Ending Peak Width (min)	0.08		NH ₂	50 T					
Maximum Chromatographic Peak Width	0.76	R		202 45		5.74			
(min)	0.76		N	40					
Use Restricted Time		Ĭ	«	35		4.73			
Time Limits	0.00 - 15.00	0=P-		25		5.78			
	0.00 - 15.00		N N	20					
on Alignment		o o		15		4.36			
Maximum Retention Time Shift (min)	0.44		\smile	10	3.24	4.20 6.24			
Show Advanced Parameters				5 2.45 2.36 人	A A				
			он он	2.0 2.5	3.0 3.5	4.0 4.5 5.0 5.5 6.0 6.5 RT (min)			

5' capping analysis results

Chromatogram of RNase H digestion products. Blue highlighted peaks are mapped failure sequences of the probe, as well as the probe itself (6.12 min).

5' Capped oligonucleotide

[A4_A6-B]

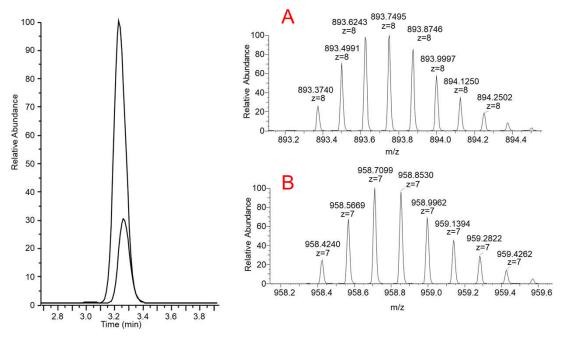
[A6_A8-B]

[A4_A5]

 $\underbrace{ Am}_{20}^{1} + \underbrace{ pGr}_{19}^{2} + \underbrace{ pAr}_{18}^{5} + \underbrace{ pAr}_{17}^{4} + \underbrace{ pAr}_{16}^{5} + \underbrace{ pAr}_{15}^{6} + \underbrace{ pNr}_{14}^{7} + \underbrace{ pAr}_{13}^{8} + \underbrace{ pAr}_{12}^{9} + \underbrace{ pGr}_{11}^{10} + \underbrace{ pGr}_{10}^{12} + \underbrace{ pAr}_{10}^{12} + \underbrace{ pAr}_{10}^{14} + \underbrace{ pAr}_{10}^{15} + \underbrace{ pAr}_{10}^{14} + \underbrace{ pAr}_{10}^{15} + \underbrace{ pAr}_{10}^{14} + \underbrace{ pAr}_{10}^{12} + \underbrace{ pAr}_{10}^{14} + \underbrace{ pAr}_{10}^{12} + \underbrace{ pAr}_{10}^{14} + \underbrace{ pAr}_{10}^$

	c9[4-](882.9)				y11[-	4-](904.6	6)	
b6[3-	·](825.1)			y14	4[5-](922.3	5)		
a5-B[3-]			w15[6	5-](837.1)			
a4-B[2-]				y16[6-](8	878.1)			
[2-]			y1	8[6-](990.6))			
			[G2_G19]	[7-](860.1)				
		[0	G2_A18][6-]](946.1)				y2
		[G2	A17][6-](8	91.1)				y3
		[G2_A15-B][5-](911.1))			y5[2-](7	98.6)
	[G2_A9][3-](88	39.5)			w	10[4-](83	8.6)	
[G:	2_A6-B][2-]	[N7_	A11-B][2-]			y9[3-](981.8)	
	[G3_A8-B][2	9			w12[5-]	(805.3)		
	[G3_N7-B][2-]			y13[5-](855.3)				
	[G3_A6-B]			[A8_A18-B][4-](882.1)				
				y17[6-](933.1)				
	LA4 NI7112	1	LA 9	G14 B1[3.]			w6[3_1/668	8)

Fragment map of 5'capped oligonucleotide generated through RNase H digestion. The use of MS/MS provides for confidence when assigning oligonucleotide data.


y8[3-](866.5

y7[3-](757.1)

Identification		Oligo Sequence	Mod	Site	∆ ppm	Conf. Score	ID Type	RT	M/Z	Charge St.	Mono Mass Exp.	Theor. Mass	Oligo
Aa (Custom)	- 7,	<u>∆</u> a •	<u>A</u> a •	∆a	= + 1.	= + 7.	<u>∆</u> a • 7,	$= \tau$	= - 5	= - 7.	= • X.	= • V.	<u>A</u> a →
3:A1-U25 = 8452.478m		Am-pCm-pUm-pCm-pT.	. (3' Biotin-TEG)	(U25)	0.46	100.0	MS2	6.10	767.672	-11	8452.4814	8452.4776	Probe
1:A1-A20 = 7155.0585m		Am-pGr-pGr-pAr-pAr-p	(m7Gppp)	(A1)	-0.88	100.0	MS2	3.24	893.749	-8	7155.0522	7155.0585	Capped
3:A1-U25 = 8452.478m(Na+)		Am-pCm-pUm-pCm-pT.	. Na+, (3' Biotin-TEG)	(U25)	-1.10	100.0	MS2	6.11	769.669	-11	8474.4502	8474.4595	Probe
3:A1-U25 = 8452.478m(Na+)		Am-pCm-pUm-pCm-pT.	. Na+, (3' Biotin-TEG)	(U25)	-4.21	100.0	MS2	6.09	846.736	-10	8474.4238	8474.4595	Probe
3:U10-U25 = 5646.0240m		pUm-pUm-pCm-pUm-p	(3' Biotin-TEG)	(U25)	-1.58	100.0	MS2	5.79	704.995	-8	5646.0151	5646.0240	Probe
1:A1-A20 = 7155.0585m(Na+)		Am-pGr-pGr-pAr-pAr-p	Na+, (m7Gppp)	(A1)	-1.49	99.9	MS2	3.26	896.496	-8	7177.0298	7177.0405	Capped
3:A1-U25 = 8452.478m		Am-pCm-pUm-pCm-pT.	. (3' Biotin-TEG)	(U25)	-0.70	100.0	MS2	6.07	1690.288	-5	8452.4717	8452.4776	Probe
2:A1-A20 = 6716.0294m		Am-pGr-pGr-pAr-pAr-p	(Phosphate)	(A1)	-1.77	100.0	MS2	3.26	958.710	-7	6716.0176	6716.0294	Uncapped

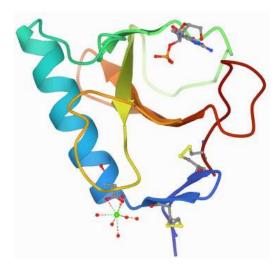
5' capping analysis results

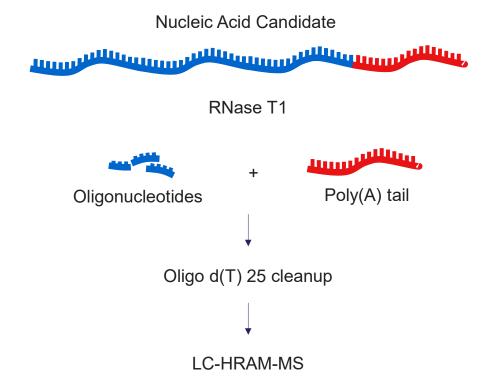
Relative quantification of capped vs uncapped

LC-MS data from RNase H $\,$ digestion. Top five most abundant peaks were used to generate the extracted mass for both capped (A) and uncapped (B) digestion products.

- Highlight accuracy and robustness
- 1:4 ratio of uncapped to capped
- Top 5 most abundant isotopic peaks in the capped and uncapped spectra
- Peak areas of the resulting extracted ion chromatograms
- Theoretical 25%
- Observed 27.9%
- Ratio <3% of theoretical

Characterization of mRNA 3' poly(A) tail

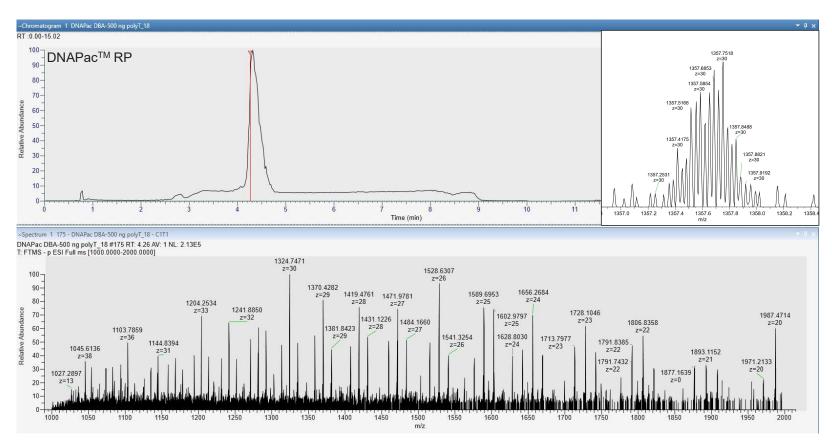

Digestion with RNase T1


3' poly(A) tail characterization strategy

Full RNase T1 digest

Ribonuclease T1

- Small protein 104 residues
- Contains two disulfide bonds
- Cleaves primarily at G in ssRNA


18 Proprietary & Confidential | robert.ross2@thermofisher.com |

Thermo Fisher

ThermoFisher SCIENTIFIC

3' poly(A) tail characterization

Orbitrap Exploris[™] 240 data from T1 digestion of 1kb mRNA

3' characterization using BioPharma Finder[™]

ThermoFisher

Deconvolution of the poly(A) pool using isotopically resolved data

Sequence Manager

• Enter your poly(A) sequence

Intact Mass Analysis

- Name the experiment/choose data file
- Edit the method truncation

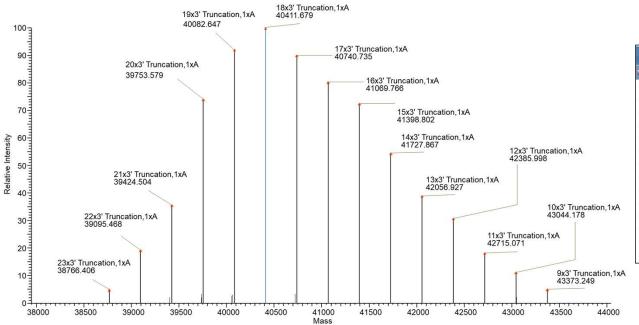
3' characterization using BioPharma Finder[™]

Thermo Fisher

A longer sequence provides a guide to measure deconvolution results against

 Sequence Informat 	ion			ſ
Target Oligonucleoti	de	Chain		
Name	PolyA Tail	Chain	1 *	******
Description		Monoisotopic Mass	46005.397	
Sample Type	Oligonucleotide	Average Mass	46027	
Category	Intact Deconvolution			
Monoisotopic Mass	46,005.3970			
Average Mass	46,027.00			
Formula	C1400H1681O838N700P139 Apply			
 Oligo Sequence Ma 	P.			
21 pA - pA - pA - 41 pA - pA - pA - 61 pA - pA - pA - 81 pA - pA - pA - 101 pA - pA - pA -	40mer DA -pA -pA -pA -pA -pA -pA -pA -pA -pA -p	-pA -pA -pA -pA - -pA -pA -pA -pA - -pA -pA -pA -pA - -pA -pA -pA -pA - -pA -pA -pA -pA -	^	

Assign Variable Modifications

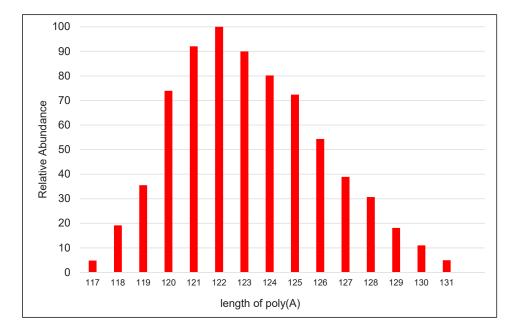

Thermo Fisher S C I E N T I F I C

Terminal truncation search with 3' variable modification of adenosine

Max # Modifications Termi	nal Truncation Search			
	abled Specifici les 🔿 No	Remove from 3' ×	Lower Mass Limit	30
Modifications	Modifications Sele	cted for Search		
Dephosphorylation Dephosphorothiolation Phosphorylation Phosphorothiolation	S' Termin. Mono. Mas: Avg. Mass	s 0		
Phosphorylation Phosphorothiolation Deoxy Dephosphorylation Dephosphorothiolation Cyclic phosphorylation De-cyclic phosphorylation A A2	3' Termin. Mono. Mas Avg. Mass		A	

Xtract deconvolution of mRNA 3' tail

Intact Mass Analysis


₿		Modification	-	Monoisotopic Mass	Theoretical Mass (Da)	Matched Mass Error (ppm)	Relative Abundance
V _K		Aa	▼ 10 _K	= • v.	= • V _k	= • M _*	> 3 • V _K
1		9x3'Truncation, 1xA		43373.163	43372.977	4.3	5.73
2		22x3'Truncation,1xA		39095.467	39095.295	4.4	18.76
3		21x3'Truncation,1xA		39424.523	39424.347	4.5	31.11
4		20x3'Truncation,1xA		39753.581	39753.400	4.6	66.56
5		19x3'Truncation,1xA		40082.670	40082.452	5.4	93.14
6		18x3'Truncation,1xA		40411.680	40411.505	4.3	100.00
7		17x3'Truncation,1xA		40740.733	40740.557	4.3	89.05
8		16x3'Truncation,1xA		41069.795	41069.610	4.5	82.28
9		15x3'Truncation,1xA		41398.820	41398.662	3.8	72.34
10		14x3'Truncation,1xA		41727.900	41727.715	4.4	54.18
11	5	13x3'Truncation,1xA		42056.945	42056.767	4.2	37.16
12	(***	12x3'Truncation,1xA		42385.984	42385.820	3.9	31.54
13		11x3'Truncation,1xA		42715.076	42714.872	4.8	20.49
14		10x3'Truncation,1xA		43044.201	43043.925	6.4	9.38

Deconvolution result of poly(A) sample with Biopharma Finder™ 5.0 software. Identification is a measure of the loss of the mass of AMP from a theoretical 140-mer and listed as a truncation

Poly(A) tail length distribution

Thermo Fisher SCIENTIFIC

Deconvoluted monoisotopic mass divided by AMP

Mono. Mass	MI/330	Theo. Mass (Da)	Mass Error (ppm)	Rel. Abundance
38766.406	117	38766.242	4.2	4.81
39095.468	118	39095.295	4.4	19.15
39424.504	119	39424.347	4.0	35.51
39753.579	120	39753.400	4.5	73.96
40082.647	121	40082.452	4.9	92.00
40411.679	122	40411.505	4.3	100.00
40740.735	123	40740.557	4.4	89.93
41069.766	124	41069.610	3.8	80.20
41398.802	125	41398.662	3.4	72.38
41727.867	126	41727.715	3.6	54.34
42056.927	127	42056.767	3.8	38.92
42385.998	128	42385.820	4.2	30.66
42715.071	129	42714.872	4.6	18.09
43044.178	130	43043.925	5.9	11.04
43373.249	131	43372.977	6.3	4.97

Deconvoluted monoisotopic masses are divided by the mass of AMP and plotted against the relative abundance

Summary

- IPRP-LC-HRAM-MS with a BioPharma Finder[™] data processing solution provides a robust analytical platform for mRNA characterization
 - RNase H enzymatic digestion workflow for analysis of 5' end products
 - Duplex design allows control of cleavage site
 - Biotinylated probe for purification
 - RNase T1 digestion for poly(A) tail characterization
 - Robust and well studied enzyme (inexpensive)
 - Cleaves primarily at guanosines
 - Oligo d(T)₂₅ purification

https://www.thermofisher.com/vaccines

Thank you for your attention!

Thermo Fisher

END