

Enhancing limited sample- and singlecell proteomics through tailored Data Independent Acquisition

Valdemaras Petrosius, PhD

Postodoctoral researcher Cell Diversity Lab Department of Bioengineering Technical University of Denmark

7. marts 2023 DTU Bioengineering

DTU Why do we need single-cell proteomics?

- Cell-state heterogeneity remains opaque with population-based techniques.
- Single-cell resolution can provide deeper insight into developmental programs and disease pathology.
- Single-cell proteomics (scp-MS) is/has reached a stage where it can be leverage for biological application

DTU The pivotal challenge in scp-MS

Obtaining deep proteome coverage from the amount of protein encapsulated in a single cell (50-250pg)

This challenge is slowly being overcome by sample preparation and tailored data acquisition approaches

In a 5000 cell dataset only 5 stem cell will be capture!

Cell population specific markers can be used to isolate your population of interest!

DTU What encompasses a good scp-MS acquisition method

5 000 cell dataset cost:

- 20 sample per day (SPD) methods ~ 8 months
- 40 SPD > 4 months
- 80 SPD ~ 2 months
- 160 SPD ~ 1 month

- The total number of protein groups expressed in a single-cell is unknown
- In a cell population, 14 000 18 000 proteins can be detected (Bekker-Jensen et al, 2017, Sinitcyn et al, 2023)
- In a single cell there are probably ~5000-8000 expressed proteins (SPECULATION!)

Principles behind multiplexed scp-MS

Multiplexed single-cell proteomics enabled through SCoPE-MS

SCoPE-MS – Budnik, ..., Slavov 2018 SCoPE2 – Specht, ..., Slavov 2021 SCoPE2 – Petelski, ..., Slavov 2021

1.Isobaric multiplexing using tandem mass tag (TMTpro)

Example TMTpro labelled peptide:

(N-Term TMTpro)-VSHVSTGGGASLELLEGK(TMTpro)

2.Addition of carrier channel to facilitate peptide identification (e.g. 200 cell equivalent)

DTU LFQ vs SCoPE-MS

Pros

• Higher throughput then label-free methods (320 cells per day vs 40 cells per day)

Cons

- The carrier channel introduces a bias in the identification and quantification
- High degree of missing values (~40%)
- Lower proteome coverage compared to LFQ (~1000 vs 2000 protein groups)
- Collecting enough cells for the carrier channel can be challenging when primary patient material is used

Furtwängler et al, 2022

DTU DIA for single-cell proteomics

The scan cycle time dictates the method optimization space

Standard DIA

To compensate for increased resolution e.g. 30K -> 60K, the DIA isolation window with has to be accordingly increased to maintain cycle time

DTU What DIA isolation window should I use?

- Increasing the isolation window size during DIA based acquisition should in theory hamper peptide identification due to more extensive precursor co-isolation.
- In high load samples (>10ng) narrow isolation windows with relatively low resolution generally give best performance.

DIA isolation window size for limited input

DIA method design for limited input samples (< 10ng) has not been comprehensively explored. •

DTU Aim of the project

Aim : Establish limited input tailored LFQ DIA methods for optimal proteome coverage while maintaining quantitative accuracy

Results

Pierce Hela digest and HEK293 Evosep One or Dionex UltiMate 3000 single-cells

Orbitrap Eclipse Tribrid + FAIMSPro

Inspired by: Karl Mechtler, IMP

DTU Evaluation of wide-windowed DIA for limited sample -and scpMS

Resolution		Window		
MS1	MS2	Size	Number	Cycle-time
120K	15K	10mz	40	1.536s
120K	30K	20mz	20	1.536s
120K	60K	40mz	10	1.536s
120K	120K	80mz	5	1.536s
120K	120K	100mz	4	1.280s

- Wider isolation windows allow for the accommodation of higher resolution/IT.
- Detrimental chimeric spectra effects are overcome by higher resolution/IT

DTU Evaluation of high resolution MS1 (HRMS1) DIA for limited sample -and scpMS

1 ng injections at 58min gradient (20 sample per day)

Xuan, Y et al. 2020

DTU Evaluation of high resolution MS1 (HRMS1) DIA for limited sample -and scpMS

1 ng injections at 58min gradient (20 sample per day)

Xuan, Y et al. 2020

DTU Wise-isolation window HRMS1 (WISH) DIA enhanced quantified proteome depth

Resolution		Window		DIA
MS1	MS2	Size	Number	Cycle-time
120K	15K	15mz	40	1.536s
120K	30K	30mz	20	1.536s
120K	60K	60mz	10	1.536s
240K	120K	120mz	5	1.536s

Resolution		Window		HRMS1
MS1	MS2	Size	Number	Cycle-time
120K	30K	10mz	60	1.536s
120K	60K	20mz	30	1.536s
120K	120K	40mz	15	1.536s
240K	240K	100mz	6	1.280s

1 ng injections at 31min gradient (40 sample per day)

DTU Wise-isolation window HRMS1 (WISH) DIA enhanced quantified proteome depth

1 ng injections at 31min gradient (40 sample per day)

DTU Utilizing the synergy between **µPAC** Neo Low Load and wide isolation window HRMS1-DIA for low-input proteomics

µPAC Neo Low Load

DTU Increasing proteome coverage with the use of spectral libraries

What is the quantification quality of the additionally identified proteins?

DTU Evaluating the use of libraries to increase proteome coverage of limited input samples

Light + Heavy = 10ng High-Load (HL) Dilute 10x = 1ng Samples (direct + GPF)

For HL libraries the 10ng sample of each mix was run once

For GPF each mix was run 6 times (100mz each)

For direct each mix was run in technical triplicate (full mz)

DTU Evaluating the use of libraries to increase proteome coverage of limited input samples What is the accuracy of just the additional IDs?

- **Direct** 1ng searched as directDIA
- HL 1ng searched with 10ng library
- GPF 1ng + GPF runs searches as directDIA

Log2(L:H)

DTU Evaluating the use of libraries to increase proteome coverage of **Examples**

DTU Single-cell DIA method optimization

DTU Single-cell DIA method optimization

DTU Showcasing the established workflow for single cell analysis

DTU Showcasing the established workflow for single cell analysis

DTU How do we compare to the state-of-the-art? Ħ

Low-throughput microfluidics

Our lab contributions

Label-free scp-MS (DIA)

DTU Conclusions

- DIA method design should be adjusted accordingly to sample load for optimal performance.
 - Wider windows and higher resolutions is favorable for low input samples
- Precursor level quantification can be used to enhance analytical sensitivity
 - WISH-DIA is quantification accuracy similar to standard DIA
- GPF libraries are a promising alternative to high pH approaches for samples where fractionation is prohibitive
- Workflow uses standardized lab equipment and does not require single-cell proteomics designated liquid handling systems
 - The same proteomic depth should be achievable on on hybrid instruments (e.g. Exploris 480)

Enhancing single-cell proteomics through tailored Data-Independent Acquisition and micropillar array-based chromatography

Valdemaras Petrosius, Pedro Aragon-Fernandez, Nil Üresin, Teeradon Phlairaharn,
Benjamin Furtwängler, Jeff op de Beeck, Simon Francis Thomsen, Ulrich auf dem Keller,
Bo T. Porse, Erwin M. Schoof

doi: https://doi.org/10.1101/2022.11.29.518366

Cell Diversity Lab

Erwin M. Schoof Pedro Aragon Susan Ibi Preus Rune Daucke Jakob Woessmann

Porse Lab

Bo Porse Nil Üresin Benjamin Furtwängler Rajesh Somasundaram

DTU Proteomics Core

Marie Vestergaard Lukassen Maike Wennekers Nielsen Rikke Nord Johansen Lene Holberg Blicher

ThermoFisher

Jeff Op de Beeck Robert van Ling

Technical University of Denmark

Biognosys

Tejas Gandhi

UNIVERSITY OF COPENHAGEN

