Thermo Fisher

Streamlining workflow from characterization to monitoring of therapeutic oligonucleotides impurities using Orbitrap based LC-HRAM-MS platforms

Hao Yang, PhD April 11, 2023

The world leader in serving science

Agenda

- Oligonucleotides applications and analytical challenges
- Application benefits of using
 - Vanquish UHPLC system and consumables
 - Orbitrap Exploris 240 and Orbitrap Exploris MX
 - Biopharma Finder (BPF) 5.0 and Chromeleon (CM) 7.3.1
- Oligonucleotide workflow solution
 - Oligonucleotide characterization using BPF 5.0
 - Impurities monitoring using CM 7.3.1
 - Oligo system performance evaluation test (SET)

Oligonucleotide Applications

- Synthetic DNA primers
- Unmodified, PCR analysis
- Typically, around18 30 bases
- High demand

- Therapeutic oligos (e.g., <u>siRNA</u> and ASO)
- Around 20mer in length, heavily modified
- 15 FDA approved drugs*
- miRNAs/sgRNA (up to 120mer)
 * https://doi.org/10.2217/frd-202-0008

- mRNA vaccines
- Up to 5,000 nucleotides
- Sequencing requires digestion
- Associated with <u>LNP</u> and viral vectors for delivery
- <u>mRNA direct sequence</u>
 <u>mapping</u> application

Therapeutic Oligonucleotides

T	he	m	10	F	ist	ner
S	CΙ	Е	Ν	Т	I F	I C

Target	 Single stranded antisense oligos, miRNA/sgRNAs, double stranded siRNAs Variable length 20 – 120 nucleotides Heavily modified (e.g., PS, 2'O-Met/F/MOE, LNA, etc.) Product related impurities (e.g., n-x, n+x, base modifications, etc)
Requirement	 Mass confirmation via intact mass deconvolution Sequence confirmation base-by-base with localization of modification Relative quantitation of product and its impurities
Challenges	 Lack of robust analytical methods to characterize oligonucleotides with increased complexity Salt adducts can impede accurate mass determination Lack of software tool for sequence identification, and automated peak annotation with confidence

State-of-the-art Technologies for Oligonucleotide Analysis

Application benefit highlights

Thermo Fisher

ChromeCare™ LC-MS Solvents

Importance of clean solvents

Low metal adduct formation improves quantitation and intact mass deconvolution

Robust and Reproducible IPRP-LC Separation

Vanquish Horizon UHPLC equipped with DNAPac RP column 2.1 x 250 mm, 4 µm

Power of High-Resolution Accurate Mass (HRAM)

Thermo Físher

BioPharma Finder Software Offers a Complete Oligonucleotide Analysis

Thermo Fisher

- Support DNA or RNA
- Enter sequence in a plain or triplet format
- Edit sequence to set constant modification
- Assign variable modifications
- Custom building blocks and variable modifications

Automatic MS² Annotation

- Fast and confident oligo
 identification and mapping
 using ddMS² data
- Predicted vs annotated experimental MS² spectra
- Fragment and sequence coverage maps
- Average structural resolutions (ASR) score

Relative Quantitation of Impurities

- Identification, mapping, and relative quantitation of oligo impurities in one experiment
- Custom list of components for % abundance calculation
- Modification summary table and plot

Comparative Data Analysis

- Comparative analysis of multiple ddMS² raw files facilitates method optimization
- An array of features, such as chromatograms, fragment coverage map, MS² spectra, MS area, ASR score, can be compared

Chromeleon eCDS

Thermo Fisher

SCIEN

Agenda

- Oligonucleotides applications and analytical challenges
- Application benefits of using
 - Vanquish UHPLC system and consumables
 - Orbitrap Exploris 240 and MX
 - Biopharma Finder (BPF) 5.0 and Chromeleon (CM) 7.3.1
- Oligonucleotide workflow solution
 - Oligonucleotide characterization using BPF 5.0
 - Impurities monitoring using CM 7.3.1
 - Oligo system performance evaluation test (SET)

Oligonucleotide Workflow Solution

From characterization to monitoring of oligonucleotide impurities using Orbitrap based LC-HRAM-MS platforms

Thermo Fisher

Confident identification based on Mass Accuracy and MS/MS spectra matching to predicted

Fragment Coverage Map

Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pUr-pGr (-5)

Average Structural Resolution = 1.0 residues

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Ur	-pUf-	-pGr-	-pAr-	-pCr-	-pAr-	-pCr-	-pCr-	-pAr-	-pGr-	-pAr-	-pCr-	-pCr-	-pAr-	-pAf-	-pCr-	-pUr-	-pGr-	-pGr-	-pUr-	-pAr-	-pAr-	-pUr-	-pG
24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Average structural resolution (ASR) value of 1.0 means every single nucleotide residue bond has been broken and resulting fragment ions matched the predicted MS/MS spectra

Color Co	ode for Io	on Intensi	ity	
>6.0e+04	>3.5e+04	>2.1e+04	>1.2e+04	>7.2e+

	Ur-pUf-pGr-pAr-pCr-	pAr-pCr-pCr-pAr-pC	л рАг-рСг-	-pCr-pAr-	pAf-pCr-pUr	-pGr-pGr-pUr-p	Ar-pAr-pUr	-pGı
			c21[4-](1685.2)				y3	
		c20	[4-](1602.7)				y4(1246.2)	
		c19[4-](1526.7)				w5[2-](815.6)	
		c18[3-](19	920.2)			yé	5[2-](948.1)	
		c17[3-](1805	.2)			y7[2-]	(1121.2)	
		c16[3-](1703.2)				y8[2-](12	.74.2)	
		c14[3-](1491.2)				w10[2-](1632.2)		
		c13[3-](1381.2)				w11[3-](1198.1)		
r	(c12[3-](1279.5)			1	w12[3-](1299.2)		
	c11	[2-](1767.2)			y13	8[3-](1374.2)		
	a10-B[2	-](1487.2)			y14[3-]](1484.2)		
	c9[2-](14	30.2)			y15[3-](15	599.2)		
	c8[2-](1265.2	2)			y16[3-](1709	.2)		
	c7[2-](1112.6)				y17[3-](1810.9)			
	c6[2-](960.1)			yl	18[3-](1912.3)			
	c5[2-](795.6)			y19[4	4-](1516.2)			
	c4(1287.1)			y20[4-](1592.2)			
	d3					z9[2-](1417.)	2)	
	c2		у	22[4-](1761.2)			
1			y23[[4-](1838.2)				
							3	72

Results																	
₽		Leve	No.	Identification	Oligo Sequence	Mod	Site	Δ ppm	Conf. Score	Best ASR	ID Type	RT	M/Z	Charge St.	Mono Mass Exp.	Avg Mass Exp.	Theor. Mass
V _x		V _× <u>A</u> a ∖	¢ = 1	Aa 👻 🗸	<u>A</u> a ▼ 1 ₂	= (No •	V _× <u>A</u> a ◄	$v_{x} = -v_{x}$. = • v.	≤ ▼ 7 _×	= • T _x	$\tau_{\rm s} = \tau_{\rm s}$	= • T _x	$= \cdot v_{\!\scriptscriptstyle \rm x}$	= • V _x	= • T _x	= • T _x
0 🕨 13		C	14	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-1.97	100.0	1.0	MS2	14.00	918.622	-8	7354.0273	7357.46	7354.0418
0 14		C	15	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.37	100.0	1.1	MS2	14.01	1049.996	-7	7354.0244	7357.45	7354.0418
9 15		C	16	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.03	100.0	1.1	MS2	14.01	816.440	-9	7354.0269	7357.72	7354.0418
16		C	26	1:U1-G24 = 7676.0619m(~C13+Oxidation)	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pUr-pAr-pAr-pAr-pUr-pGr	Oxidation	~C13	-0.70	53.4	1.1	MS2	14.28	852.109	-9	7676.0566	7679.20	7676.0620
17		C	55	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pUr-pAr-pAr-pAr-pUr-pGr	None		-3.79	100.0	1.0	MS2	14.36	637.496	-12	7660.0381	7663.72	7660.0671
) 18		C	58	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pUr-pAr-pAr-pAr-pUr-pGr	None		-3.22	100.0	1.0	MS2	14.36	695.633	-11	7660.0425	7663.39	7660.0671
9 19		C	60	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.77	100.0	1.0	MS2	14.36	765.298	-10	7660.0459	7663.40	7660.0671
0 🕨 20		C	68	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pUr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.96	i 100.0	1.0	MS2	14.37	1531.603	-5	7660.0444	7663.41	7660.0671
9 21		C	69	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.96	100.0	1.0	MS2	14.37	1276.167	-6	7660.0444	7663.39	7660.0671
9 22		C	74	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.26	100.0	1.0	MS2	14.38	850.443	-9	7660.0498	7663.38	7660.0671
	_																

High confidence score with low ∆ppm and low ASR value provides accurate and confident sequence identification and confirmation

Results															
Ē	ŧ.		Identification	Mod	Site	M/Z	Charge St.	Mono Mass Exp.	Avg Mass Exp.	Theor. Mass	Δppm	Conf. Score	Best ASR	RT	MS Area
V _x			Aa 🗸 🗸	<u>A</u> a 👻 🖡	<u>A</u> a T _x	= • X ₂	= • V _x	= • V_x	= • V _x	= • X,	≤ ▼ V _×	≥ ▼ V _x	$= . \ \textbf{v}_{x}$	$= \cdot \tau_{\rm s}$	= • V.
€ ► 5	51		1:U1-G24 = 7351.0347m(~C13+RNA_Cytosine triple loss)	RNA_Cytosine triple loss	~C13	1469.797	-5	7351.0225	7354.13	7351.0345	-1.64	99.9	1.0	11.27	414,045.41
• 5	52		1:U1-G24 = 7351.0347m(~C13+RNA_Cytosine triple loss)	RNA_Cytosine triple loss	~C13	1049.424	-7	0.0000	7354.12	7351.0347	0.00	99.9	1.0	11.27	753,516.56
÷ 5	53		1:U1-G24 = 7351.0347m(~C13+RNA_Cytosine triple loss)	RNA_Cytosine triple loss	~C13	1224.663	-6	7351.0215	7354.13	7351.0345	-1.77	99.9	1.0	11.27	553,913.81
Ð 5	54		1:U1-G24 = 7351.0347m(~C13+RNA_Cytosine triple loss)	RNA_Cytosine triple loss	~C13	918.121	-8	7351.0283	7354.17	7351.0345	-0.84	99.9	1.0	11.27	815,708.62
• 5	55		1:U1-G24 = 7351.0347m(~C13+RNA_Cytosine triple loss)	RNA_Cytosine triple loss	~C13	734.395	-10	7351.0225	7354.17	7351.0345	-1.64	99.9	1.0	11.27	457,254.94
⊕ 5	56		1:U1-G24 = 7351.0347m(~C13+RNA_Cytosine triple loss)	RNA_Cytosine triple loss	~C13	816.107	-9	7351.0273	7354.12	7351.0345	-0.97	<mark>99.9</mark>	1.0	11.27	868,029.06
		10000													

Provide base-by-base sequence information and localization of modifications

Thermo Fisher

Provide base-by-base sequence information and localization of modifications

NCE Energy Optimization

Higher the NCE energy, more internal fragmentation, not ideal for long oligos

NCE Energy Optimization

Higher the NCE energy, more internal fragmentation, not ideal for long oligos

NCE Energy Optimization

Higher the NCE energy, more internal fragmentation, not ideal for long oligos

Thermo Fisher SCIENTIFIC

Fragment Coverage Map

NCE 13

Create Oligonucleotide Component List for Monitoring

Result	ts														
	₽	✓	Level	No.	Identification	Oligo Sequence +	Mod	Site	Δ ppm	Conf. Score	Best ASR	RT	M/Z	Charge St.	Mono Mass Exp.
V _x	ĸ	$\blacksquare = \mathbb{T}_{\mathbf{x}}$	<u>A</u> a T _×	$= T_{x}$, <u>A</u> a → T _s	= (NonBlanks) • V _x	<u>A</u> a (C ▼ ¥,	<u>A</u> a 🔻 🔨	$=$ \forall_{s}	$\geq \ \dots \ \forall_x$	$=$ \cdot T_{x}	$= \ \cdot \ v_{\star}$	= • V _x	= • V _*	= • T _x
•	1		Comp	2	1:A15-G24 = 3185.4570m[nonspecific]	pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-1.89	100.0	1.1	4.12	795.606	-4	3185.4509
•	2	\checkmark	Comp	3	1:A15-G24 = 3185.4570m[nonspecific]	pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.43	100.0	1.0	4.12	636.283	-5	3185.4492
•	3	\checkmark	Comp	4	1:A15-G24 = 3185.4570m[nonspecific]	pAf-pCr-pUr-pGr-pUr-pAr-pAr-pUr-pGr 🏲 N = 14	nonspecific		-1.81	100.0	1.1	4.12	1061.143	-3	3185.4512
•	4	\checkmark	Comp	5	1:A15-G24 = 3185.4570m[nonspecific]	pAf-pCr-pUr-pGr-pGr-pUr-pAr-pUr-pGr	nonspecific		-2.04	100.0	1.1	4.12	1592.219	-2	3185.4504
•	5	\checkmark	Comp	6	1:A14-G24 = 3514.5095m[nonspecific]	pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pUr-pGr	nonspecific		-1.93	100.0	1.0	5.16	877.869	-4	3514.5027
•	6	\checkmark	Comp	7	1:A14-G24 = 3514.5095m[nonspecific]	pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pUr-pGr	nonspecific		-2.83	100.0	1.0	5.16	1170.827	-3	3514.4995
•	7	1	Comp	8	1:A14-G24 = 3514.5095m[nonspecific]	pAr-pAf-pCr-pUr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.69	100.0	1.0	5.16	584.910	-6	3514.5000
•	8	1	Comp	10	1:A14-G24 = 3514.5095m[nonspecific]	pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pUr-pGr	nonspecific		-2.28	100.0	1.0	5.16	702.094	-5	3514.5015
•	9	1	Comp	12	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.50	100.0	1.1	13.99	1225.164	-6	7354.0234
•	10	4	Comp	13	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-1.97	100.0	1.3	13.99	1470.398	-5	7354.0273
•	11	1	Comp	14	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific	1 - 1	-1.97	100.0	1.0	14.00	918.622	-8	7354.0273
•	12	1	Comp	15	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.37	100.0	1.1	14.01	1049.996	-7	7354.0244
•	13	4	Comp	16	1:U2-G24 = 7354.042m[nonspecific]	pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	nonspecific		-2.03	100.0	1.1	14.01	816.440	-9	7354.0269
•	14	\checkmark	Comp	11	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.01	88.4	1.4	13.98	956.875	-8	7660.0518
•	15	\checkmark	Comp	55	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-3.79	100.0	1.0	14.36	637.496	-12	7660.0381
•	16	\checkmark	Comp	58	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-3.22	100.0	1.0	14.36	695.633	-11	7660.0425
•	17	\checkmark	Comp	60	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.77	100.0	1.0	14.36	765.298	-10	7660.0459
•	18	\checkmark	Comp	68	3 1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.96	100.0	1.0	14.37	1531.603	-5	7660.0444
•	19	\checkmark	Comp	69	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.96	100.0	1.0	14.37	1276.167	-6	7660.0444
•	20	\checkmark	Comp	74	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.26	100.0	1.0	14.38	850.443	-9	7660.0498
•	21	√	Comp	75	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.39	100.0	1.0	14.38	1093.714	-7	7660.0488
÷ 🕨	22	-	Comp	77	1:U1-G24 = 7660.067m	Ur-pUf-pGr-pAr-pCr-pAr-pCr-pAr-pGr-pAr-pCr-pCr-pAr-pAf-pCr-pUr-pGr-pGr-pUr-pAr-pAr-pUr-pGr	None		-2.39	100.0	1.0	14.38	956.874	-8	7660.0488

Conf. Score ≥ 80

ASR ≤ 1.5

∆ppm ≤ 10

Thermo Fisher

Thermo Fisher SCIENTIFIC

Chromeleon CDS for Oligonucleotide Monitoring

Relative quantitation of oligonucleotide impurities using Chromeleon 7.3.1

oPharma Data F	ath: D:	\Hao Yang\Oligo Analysis\Demo OE240\24mer RNA 2F	longcolumn ne	w MP new sa	mple_2.bpf							m
PrecursorMas	s	Name	RT 🔺	Charge	Peptide Group	Isotope 1	Isotope 2	Isotope 3	Isotope 4	Isotope 5	Isot 🗾	
653.08	20 💌	ACUGGUAAUG	4.260	5	1	653.08520	653.28571	653.48621	653.68669	653.88718	654.08766	654.28
816.35	37 🔽	ACUGGUAAUG - Isomer 2	4.266	4	1	816.35637	816.60701	816.85763	817.10824	817.35885	817.60944	817.86
1632.71	19 💌	ACUGGUAAUG - Isomer 3	4.297	2	1	1632.71219	1633.21350	1633.71475	1634.21597	1634.71715	1635.21834	1635.719
1088.47	97 🔽	ACUGGUAAUG - Isomer 4	4.389	3	1	1088.47497	1088.80917	1089.14333	1089.47749	1089.81162	1090.14573	1090.479
599.07	85 🔽	AACUGGUAAUG	5.216	6	1	599.07985	599.24693	599.41401	599.58108	599.74815	599.91522	600.08
718.89	71 🔽	AACUGGUAAUG - Isomer 2	5.234	5	1	718.89571	719.09621	719.29671	719.49720	719.69768	719.89816	720.09
898.61	50 💌	AACUGGUAAUG - Isomer 3	5.244	4	1	898.61950	898.87014	899.12076	899.37137	899.62198	899.87257	900.12:
1198.15	15 🔽	AACUGGUAAUG - Isomer 4	5.255	3	1	1198.15915	1198.49334	1198.82750	1199.16166	1199.49580	1199.82991	1200.164
957.50	94 🔽	UUGACACCAGACCAACUGGUAAUG	13.853	8	1	957.50894	957.63425	957.75957	957.88488	958.01019	958.13550	958.26
1486.80	18 🔽	UGACACCAGACCAACUGGUAAUG	13.906	5	1	1486.80218	1487.00268	1487.20319	1487.40370	1487.60420	1487.80470	1488.005
1239.00	91 🔽	UGACACCAGACCAACUGGUAAUG - Isomer 2	13.917	6	1	1239.00191	1239.16899	1239.33608	1239.50317	1239.67025	1239.83733	1240.004
929.25	57 🔽	UGACACCAGACCAACUGGUAAUG - Isomer 3	13.919	8	1	929.25157	929.37688	929.50219	929.62751	929.75282	929.87812	930.00

21 Proprietary & Confidential | hao.yang@thermofisher.com | 7/17/2022

Chromeleon eWorkflow Procedure

Harmonized instrument HW and SW enable seamless method transfer between Orbitrap Exploris platforms

Direct method transfer without physically moving any method files

Characterization setup:

- Vanquish Horizon UHPLC
- Orbitrap Exploris 240 Mass Spectrometer

22

eWorkflow procedure

- LC & MS acquisition methods
- Injection sequence
- Result view template
- Processing method
- Report template

Monitoring setup #1:

Thermo Fishei

- Vanquish Flex UHPLC
- **Orbitrap Exploris MX** mass detector

Monitoring setup #2:

- Vanquish Flex UHPLC
- **Orbitrap Exploris MX** mass detector

Proprietary & Confidential | hao.yang@thermofisher.com | 7/17/2022

Oligonucleotide Impurities Profiling

LC-HRAM-MS

* % relative abundances and %RSDs are calculated based on triplicate injections of 24mer RNA with 2'F modifications

Oligonucleotide SET

System performance tested against pre-defined acceptance criteria

Performance check	Oligonucleotides Sequence	System performance metrics	Acceptance criteria
LC-MS test	 GAG CGG CTG T (10mer) GAG CGG CTG TGA GCG GCT GT (20mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT (30mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG T (40mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG TGA GCG GCT GT 	 Retention time reproducibility Peak area reproducibility Peak height reproducibility Peak height range Peak width at 10% height reproducibility Peak width at 10% height Peak width at 10% height 	 RT %RSD ≤ 2% Peak area %RSD ≤ 10% Peak height %RSD ≤ 10% Peak height range between 2E7 to 2E8 counts Peak width at 10% height %RSD ≤ 10% Peak width at 10% height % 0.5 min
Intact mass deconvolution	(50mer) 6. GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG TGA GCG GCT GTG AGC G (55mer)	 Mass accuracy of deconvoluted FLP mass % Fractional abundance of Na and K adducts 	 Mass accuracy of deconvoluted FLP mass ≤ 5 ppm % Fractional abundance of Na, and K adducts ≤ 10%

Oligonucleotide SET

- Oligonucleotide standards (6 unmodified, ssDNA sequences)
- A sequence containing 10 injections using full MS method only, can be seamlessly deployed using Chromeleon eWorkflow procedure
- Evaluates LC and MS instrument performance related metrics that are important for oligonucleotide applications based on pre-defined acceptance criteria with pass or fail status

Oligonucleotide SET

System performance tested against pre-defined acceptance criteria

Performance check	Oligonucleotides Sequence	System performance metrics	Acceptance criteria
LC-MS test	 GAG CGG CTG T (10mer) GAG CGG CTG TGA GCG GCT GT (20mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT (30mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG T (40mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG TGA GCG GCT GT 	 Retention time reproducibility Peak area reproducibility Peak height reproducibility Peak height range Peak width at 10% height reproducibility Peak width at 10% height 	 RT %RSD ≤ 2% Peak area %RSD ≤ 10% Peak height %RSD ≤ 10% Peak height range between 2E7 to 2E8 counts Peak width at 10% height %RSD ≤ 10% Peak width at 10% height ≤ 0.5 min
Intact mass deconvolution	(50mer) 6. GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG TGA GCG GCT GTG AGC G (55mer)	 Mass accuracy of deconvoluted FLP mass % Fractional abundance of Na and K adducts 	 Mass accuracy of deconvoluted FLP mass ≤ 5 ppm % Fractional abundance of Na, and K adducts ≤ 10%

		Decor	nvoluted M	ass Identific	ation			
Sequence Details	5							
Name:		Oligo_SST_OE240	_July7_2022			06/Jul/22 1	:38:06	
Directory:		Oligos				Administrator		
Data Vault		ChromeleonLocal				19/Jul/22 1	.09:39	
No. of Injections:		12				Administrator		
Deconvoluted m	ass overview				Component 1			
Inj. No.	Oligonucleotide	Position	TargetAccurac	y ExpectedMass	Component Identification	Measured Mass	Delta Mass	Pass or Fail
			ppm	Da		Da	ppm	
6	ST_MX3_05_MSC	Y:D1	10.0	3082.5493	Full length product	3082.5444	1.6	Pass
7	ST_MX3_06_MSC	Y:D1	10.0	6227.0543	Full length product	6227.0451	1.5	Pass
8	ST_MX3_07_MSC	Y:D1	10.0	9371.5593	Full length product	9371.5442	1.6	Pass
9	ST_MX3_08_MS0	Y:D1	10.0	12516.0643	Full length product	12516.0475	1.3	Pass
10	ST_MX3_08_MSC	Y:D1	10.0	15660.5693	Full length product	15660.5436	1.6	Pass
11	ST MX3 08 MSC	Y:D1	10.0	17249.8309	Full length product	17249.7875	2.5	Pass

Oligonucleotide SET

- Oligonucleotide standards (6 unmodified, ssDNA sequences)
- A sequence containing 10 injections using full MS method only, can be seamlessly deployed using Chromeleon eWorkflow procedure
- Evaluates LC and MS instrument performance related metrics that are important for oligonucleotide applications based on pre-defined acceptance criteria with pass or fail status

Oligonucleotide SET

System performance tested against pre-defined acceptance criteria

Performance check	Oligonucleotides Sequence	System performance metrics	Acceptance criteria
LC-MS test	 GAG CGG CTG T (10mer) GAG CGG CTG TGA GCG GCT GT (20mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT (30mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG T (40mer) GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG TGA GCG GCT GT 	 Retention time reproducibility Peak area reproducibility Peak height reproducibility Peak height range Peak width at 10% height reproducibility Peak width at 10% height 	 RT %RSD ≤ 2% Peak area %RSD ≤ 10% Peak height %RSD ≤ 10% Peak height range between 2E7 to 2E8 counts Peak width at 10% height %RSD ≤ 10% Peak width at 10% height ≤ 0.5 min
Intact mass deconvolution	(50mer) 6. GAG CGG CTG TGA GCG GCT GTG AGC GGC TGT GAG CGG CTG TGA GCG GCT GTG AGC G (55mer)	 Mass accuracy of deconvoluted FLP mass % Fractional abundance of Na and K adducts 	 Mass accuracy of deconvoluted FLP mass ≤ 5 ppm % Fractional abundance of Na, and K adducts ≤ 10%

Oligonucleotide SET

- Oligonucleotide standards (6 unmodified, ssDNA sequences)
- A sequence containing 10 injections using full MS method only, can be seamlessly deployed using Chromeleon eWorkflow procedure
- Evaluates LC and MS instrument performance related metrics that are important for oligonucleotide applications based on pre-defined acceptance criteria with pass or fail status

Summary of Benefits

- BioPharma Finder 5.0 software provides confident impurity identification base-by-base with localization of modifications
- Orbitrap Exploris 240 mass spectrometer and Orbitrap Exploris MX detector can achieve comparable quantitative performance for oligo impurities profiling
- Chromeleon eWorkflow procedure facilitates direct method transfer between Orbitrap Exploris 240 mass spectrometer and Orbitrap Exploris MX mass detectors for consistent quantitation of oligonucleotide impurities
- Oligo SET evaluates system performance against a comprehensive set of acceptance criteria that are designed for oligonucleotide applications

- Orbitrap Exploris 240 mass spectrometer provides up to 240,000 mass resolution for isotopic resolution of 100mer
- Vanquish Horizon UHPLC system coupled with a DNAPac RP column provides robust and reproducible separation of oligonucleotides and impurities
- ChromeCare solvents minimize metal adduction formation, and results in accurate mass determination

Thank you

28 Proprietary & Confidential | hao.yang@thermofisher.com | 7/17/2022