Thermo Fisher S C I E N T I F I C

Impurity profiling and structure elucidation of phosphoramidite raw materials used for oligonucleotide synthesis

Sven Hackbusch, PhD

Senior Application Scientist, Structure Elucidation 13-April-2023

The world leader in serving science

Solid phase oligonucleotide synthesis

Typical synthesis sequence (followed by purification)

Thermo Fisher

Phosphoramidite Building Blocks

1. Roy, S.; Caruthers, M. "Synthesis of DNA/RNA and Their Analogs via Phosphoramidite and H-Phosphonate Chemistries" *Molecules*, 2013, 18, 14268-14284. (doi: 10.3390/molecules181114268)

Phosphoramidite impurities can impact the final product

Thermo Fisher

Incorporated, and may form branched oligomer

2. Kiesman, W.F. et al. "Perspectives on the Designation of Oligonucleotide Starting Materials" Nucleic Acid Therapeutics, 2021, 31, 93-113. (doi: 10.1089/nat.2020.0909)

Case study: 5'-DMT-2'-F-A(bz)-CEP

5'-Dimethoxytrityl-2'-fluoro-benzoyl-adenosine cyanoethyl phosphoramidite

- Obtained material from four different vendors
- Analyze to detect and identify impurities above 0.01% relative abundance using LC/HRAM-MS

Thermo

Overview of impurity profiling workflow

LC/MS Setup

Thermo Scientific[™] Vanquish[™] Horizon UHPLC system + Orbitrap Exploris[™] 120 mass spectrometer

- Thermo Scientific[™] Hypersil GOLD[™] C18 column (2.1x100 mm, 1.9 µm)
- Mob. Phases: (A) 10 mM Ammonium acetate, (B) ACN
- **15 min gradient** + 5 min re-equilibration
- UV 200-400 nm
- Full Scan data acquired w/ Polarity Switching
- Resolution Setting 60,000 / 15,000 (MS¹ / MS²)
- *m/z* 200-1200 Da
- Top2 data-dependent MS² with HCD (stepped NCE 10,20,40)

2'-F-A(bz)-CEP samples dissolved in anhydrous ACN at 1 mg/mL to prevent oxidation prior to analysis

Impurity spike-in experiments

Confirming sensitivity of analytical method to detect impurities at 0.1% relative to main component

Impurity spike-in experiments

Analysis of several vendor's materials

5'-DMT-2'-F-A(bz)-CEP – Purity > 99% for all

Analysis of several vendor's materials – detail view

Analysis of several vendor's materials – detail view

11 sven.hackbusch@thermofisher.com | 13-April-2023

Identity of raw material from MS data

5'-DMT-2'-F-A(bz)-CEP

Structure confirmation of raw material identity by MS²

5'-DMT-2'-F-A(bz)-CEP – automatic fragment structure assignment from *in-silico* prediction

Identification of impurities in Compound Discoverer

1. Compound Selection Thermo Scientific Compound Discoverer software 2-F-A(bz)-CEP (C47 H51 F N7 O7 P) Compounds **Expected + Unexpected Compounds workflows** 2. Dealkylation True Apply Dealkylation Apply Dearylation True Max. # Steps 150 Min. Mass [Da] 3. Transformations **Generate Expected** Dehydration (H2 O ->); Desaturation Phase I Compounds Methylation (H -> C H3) Phase II Chlorination (H -> Cl); Demethylatic Others Max. # Phase II 1 **Create Analog Trace** Detect Compounds 3 Max. # All Steps Find Expected Unbiased Compounds component

Considers dealkylation reactions and other (user-modifiable) transformations

detection

Impurity identification from predicted transformation

Compound **3** - Δ MW = 200 Da (- C₉H₁₇N₂OP)

Only one peak → loss of stereocenter

Confirmation of impurity 3 structure with MS²

$\Delta MW = 200 \text{ Da} (-C_9H_{17}N_2OP) \triangleq CEP$

Compounds 5 + 6 – pair of diastereomers

17 sven.hackbusch@thermofisher.com | 13-April-2023

Compounds **5** + **6** – pair of diastereomers

Compounds 💎		Compounds per	File Expe	cted Compounds 💡 Expected (Compounds per File		Featu
F	Formula		Calc. MW	Annot. ∆Mass [ppm]	Reference Ion	m/z	RT [min]	MS2
1 🕀	C33 H37	7 F N7 O6 P	677.25252	-0.26	[M+H]+1	678.25981	6.815	

$$\Delta Formula = - C_{14}H_{14}O$$

Thermo Fisher

18 sven.hackbusch@thermofisher.com | 13-April-2023

Compounds 5 + 6 - pair of diastereomers - Comparison to 5'-DMT-2'-F-A(bz)-CEP

Compounds 🍸		Compounds per	er File Expe		ted Compounds 💡 🛛 Expected (Compounds per File		Featu
F	Formula		Calc.	MW	Annot. ∆Mass [ppm]	Reference Ion	m/z	RT [min]	MS2
1 👳	C33 H37	7 F N7 O6 P	677.2	25252	-0.26	[M+H]+1	678.25981	6.815	

 $-DMT = -C_{21}H_{19}O_2$

Thermo Fisher

Structure proposal fits observed fragments

MS² spectrum

MS² distinguishes isomeric impurities 21-24

[5'-DMT-2'-F-A(bz)-CEP]-H+CI *m/z* 910.3254

Thermo Fisher SCIENTIFIC

MS² distinguishes isomeric impurities 21-24

MS² distinguishes isomeric impurities 21-24

5'-DMT-2'-F-A(bz-CI)-CEP and 5'-DMT-CI-2'-F-A(bz)-CEP

Thermo Fisher

Determination of transformation site allows to trace back to origin of Chlorine substitution

Distinguishing co-eluting impurities with HRAM MS

Peaks 11 and 13 – overlapping MS components

Distinguishing co-eluting impurities with HRAM MS

Peaks 11 and 13 – overlapping MS components – identification based on accurate mass and MS²

Distinguishing co-eluting impurities with HRAM MS

Peaks 11 and 13 - 5'-CEP-2'-F-A(bz)-CEP and 5'-DMT-2'-F-A-CEP

Summary of impurity analysis of 5'-DMT-2'-F-A(bz)-CEP

					-				
Impurity	MS peak (Da)	Formula	Putative	Example impurity	% of total UV peak area by vendor				
impunty			identification	classification	Α	В	С	D	
I	808.2422	$C_{41}H_{38}FN_6O_9P$	-DIPA +O ₂ to P(V) species	Noncritical	0.01%	0.00%	0.00%	0.00%	
Ш	675.2491	$C_{38}H_{34}FN_5O_6$	-CEP	Noncritical	0.00%	0.00%	0.09%	0.00%	
IV	792.2472	C ₄₁ H ₃₈ FN ₆ O ₈ P	-DIPA + OH	Noncritical	0.07%	0.05%	0.07%	0.05%	
V	677.2525	C ₃₃ H ₃₇ FN ₇ O ₆ P	-DMT +bz	Noncritical	0.05%	0.00%	0.00%	0.00%	
VI	891.3518	$\mathrm{C_{47}H_{51}FN_7O_8P}$	Oxidation to P(V) species	Noncritical	0.06%	0.10%	0.13%	0.13%	
VII	822.3306	$C_{44}H_{48}FN_6O_7P$	HP=O phosphite + loss of cyanoethyl group	IP=O phosphite + loss of cyanoethyl group Noncritical 0.01% 0.04%		0.04%	0.04%	0.00%	
VIII	834.2944	C ₄₄ H ₄₄ FN ₆ O ₈ P	Substitution of DIPA with iPrOH	Noncritical	0.06%	0.00%	0.00%	0.00%	
IX	773.3341	$C_{35}H_{50}FN_9O_6P_2$	-DMT +CEP	Critical	0.01%	0.05%	0.07%	0.04%	
Х	771.3307	$C_{40}H_{47}FN_7O_6P$	-bz	Critical				0.04 /0	
XI	779.2753	$C_{45}H_{38}FN_5O_7$	-CEP + bz	Noncritical	0.01%	0.01%	0.01%	0.00%	
XII	861.3414	$C_{46}H_{49}FN_7O_7P$	Demethylation on CEP	Instrument Noncritical 0.00% 0.03%		0.03%	0.00%	0.01%	
XIII	903.3518	$C_{47}H_{55}FN_{3}O_{12}P$	Acetyl-methyl substitution on DMT	Noncritical	0.00%	0.01%	0.00%	0.01%	
XV	992.3551	$C_{50}H_{55}FN_8O_9P_2$	-DIPA +CEP	Critical	0.00%	0.00%	0.03%	0.00%	
XVI	874.3732	$C_{47}H_{52}FN_8O_6P$	-O +NH on bz	on bz Noncritical		0.00%	0.04%	0.00%	
XVII	889.3721	C ₄₈ H ₅₃ FN ₇ O ₇ P	Methylation on DMT	Noncritical	0.09%	0.00%	0.00%	0.00%	
XVIII	909.3177	C47H50CIFN7O7P	Chlorination on bz	Noncritical	0.12%	0.07%	0.05%	0.09%	
XIX	977.3799	$C_{59}H_{52}FN_5O_8$	-CEP +DMT	Noncritical	0.02%	0.01%	0.03%	0.02%	
XX	909.3177	C47H50CIFN7O7P	Chlorination on DMT	Noncritical 0.00%		0.01%	0.01%	0.04%	
XXI	864.3779	$C_{47}H_{54}FN_6O_7P$	-CN +CH ₃ "M-11"	Critical	0.02%	0.00%	0.00%	0.00%	
Р	875.3571	C ₄₇ H ₅₁ FN ₇ O ₇ P	5'-DMT-2'-F- A(bz)CEP	-	99.35%	99.61%	99.44%	99.61%	
				Critical impurity level	0.03%	0.05%	0.10%	0.04%	

For more detail: <u>Application Note AN001949</u>

sven.hackbusch@thermofisher.com | 13-April-2023

Impurity XX

Chemical Formula: C₅₉H₅₂FN₃O₇ Exact Mass: 977.3800 Impurity XIX

27

Thermo Fisher

SCIENTI

- Phosphoramidites are raw materials for oligonucleotide-derived drug substances, and their impurities need to be controlled in the manufacturing of therapeutic oligonucleotides
- Vanquish UHPLC system coupled with Orbitrap Exploris 120 MS facilitates confident profiling and identification of phosphoramidite impurities
- **Compound Discoverer** software **automates mass spectral annotation** process, allowing users to determine transformation sites
- Fragmentation data allows the distinction of isomeric impurities and to determine the origin of transformations

Thank you

Questions?

29 sven.hackbusch@thermofisher.com | 13-April-2023