#### **Thermo Fisher** S C I E N T I F I C

## Power your elemental analysis – Get ready to transform your productivity

#### Weimin Yang

Sr. Application Scientist, Trace Elemental Analysis Thermo Fisher Scientific

The world leader in serving science



### **Typical challenges faced by laboratories analyzing trace elements**





Highly diverse matrix samples



Interruptions due to maintenance



**Operational complexity** 

Personnel that operate several different instrument types



Reducing environmental impact

### Introducing the latest advances in ICP-MS analysis



### **Building on our strengths**

### Ease of use

Automated Get Ready data driven, start-up process

Easy access interface door

Quick connect sample introduction components



### High productivity

Single mode He-KED

Comprehensive interference removal

Intuitive Workflows with Qtegra ISDS Software

### Reliable, robust trace elemental analysis

#### Removing the challenges of complex sample analysis



 Prevents decline in instrument performance due to complex samples using Argon Gas Dilution.



Proactive planning of key maintenance helps optimize the instrument uptime and prevents unwanted interruptions.



Check Internal Standard Solution The configured alert action limit has been exceeded. 2:24 PM

Instrument is disconnected. The connection to the instrument is lost. Please check the connection. 7:48 AM

Chermo Fi

- Qtegra ISDS Software workflows reduce complexity and save time.
- Features support laboratories to make decisions faster and be more agile.

# Challenges associated with diverse matrix and complex samples

**Thermo Fishe** 



Instrumental drift from matrix deposition on ICP-MS interface





Need to perform offline dilution that can be prone to contamination and dilution error

Integrated and optimized Argon Gas Dilution for any sample matrix

| Sample matrices                              | % TDS content [%] | Recommended dilution level |
|----------------------------------------------|-------------------|----------------------------|
| Drinking Water and Surface Water             | < 0.5             | Low                        |
| Food Digests                                 | 0.5 - 1.0         | LOW                        |
| Wastewaters                                  | < 1.0             |                            |
| Soil digests, geological, and mining samples | < 1.0             | Mid                        |
| Brackish waters, fracking flowback solutions | < 1.5             |                            |
| Brackish waters, sea water, brine solutions  | < 3.0             | Lliab                      |
| Highly concentrated brine solutions          | > 4.0             | піgn                       |

### Achieving robustness and improving productivity every day!

Integrated and optimized Argon Gas Dilution for any sample matrix



**Thermo Fisher** 

**Argon Gas Dilution level** 

Integrated and optimized Argon Gas Dilution for any sample matrix

| Sample introduction            |              | <b>Dilution level</b> |              |                                   |                |                                            |                            |
|--------------------------------|--------------|-----------------------|--------------|-----------------------------------|----------------|--------------------------------------------|----------------------------|
| system component               | Low          | Mid                   | High         | Identifier A                      | Dwell time (s) | Measurement mode                           | Resolution                 |
| Glass concentric nebulizer     | $\checkmark$ | $\checkmark$          | ×            | 7Li (KED AGD hig<br>23Na (KED AGD | 0.1            | KED AGD high<br>KED AGD high               | Normal<br>High             |
| Baffled cyclonic spray chamber | $\checkmark$ | $\checkmark$          | $\checkmark$ | 27AI (KED AGD h<br>45Sc (KED AGD  | 0.1<br>0.1     | KED AGD high<br>KED AGD high               | Normal<br>Normal           |
| 2.5 mm i.d. quartz injector    | <b>_</b>     | <b>_</b>              |              | 51V (KED AGD hi<br>52Cr (KED AGD  | 0.1            | KED AGD high<br>KED AGD low<br>KED AGD mid | Normal                     |
| Torch (quartz, Thermo          |              |                       |              | 56Fe (KED AGD<br>59Co (KED AGD    | 0.1 0.1 0.1    | KED<br>STD AGD high<br>STD AGD low         | Normal<br>Normal<br>Normal |
| Skimmer cone insert            | •            | High matrix           | V            | 63Cu (KED AGD<br>66Zn (KED AGD    | 0.1            | STD AGD mid<br>STD<br>KED AGD high         | Normal<br>Normal           |
| Humidifier                     |              | i ngi i nani i k      | $\checkmark$ |                                   |                |                                            |                            |
| PFA-ST microflow nebulizer     |              |                       | $\checkmark$ |                                   |                |                                            |                            |

**ThermoFi** 

| Sample matrices                                       | Typcial TDS level | Internal standard recovery [%] |                  |                 |                   |                   |                   |                   |              |  |  |
|-------------------------------------------------------|-------------------|--------------------------------|------------------|-----------------|-------------------|-------------------|-------------------|-------------------|--------------|--|--|
| Sample matrices                                       |                   | <sup>45</sup> Sc               | <sup>73</sup> Ge | <sup>89</sup> Y | <sup>103</sup> Rh | <sup>115</sup> In | <sup>175</sup> Lu | <sup>193</sup> lr | 205 <b>T</b> |  |  |
| Food digests <sup>1</sup>                             | 0.5 to 1%         | 98 ± 6                         | N/A              | 99 ± 5          | 94 ± 4            | N/A               | 100 ± 2           | N/A               | 97 ± 6       |  |  |
| Drinking water <sup>2</sup>                           | 0.4 %             | 105 ± 5                        | 102 ± 5          | N/A             | N/A               | 102 ± 4           | N/A               | 101 ± 4           | N/A          |  |  |
| Surface water <sup>3</sup><br>Wastewater <sup>3</sup> | 0.4 to 1%         | 101 ± 5                        | N/A              | 97 ± 3          | 103 ± 5           | N/A               | 103 ± 5           | N/A               | 103 ± 5      |  |  |
| Brackish water <sup>3</sup>                           | 0.75%             | 107 ± 7                        | N/A              | 105 ± 6         | 104 ± 7           | N/A               | 97. ± 5           | N/A               | 91 ± 5       |  |  |
| Saline water <sup>3</sup>                             | 1.6%              | 94 ± 7                         | N/A              | 89 ± 8          | 91 ± 7            | N/A               | 92 ± 7            | N/A               | 85 ± 4       |  |  |
| Brine <sup>4</sup>                                    | [ 2.5% m/m]       | 101 ± 6                        | N/A              | 105 ± 6         | 101 ± 4           | N/A               | 98 ± 5            | N/A               | N/A          |  |  |

## **Reducing complexity in instrument set-up**

New EasyClick Compact (ECC) peristaltic pump design to support ease of use in daily operation

- Peristaltic pump is an integral part of the sample introduction system
  - Tension of arms dictates the flow
- Different users adjust tension differently
- A challenge for many laboratories is adjusting the tension for the right, consistent flow

### **Reducing complexity in instrument set-up**

#### New EasyClick Compact (ECC) peristaltic pump design to support ease of use in daily operation



- A unique design with automatic tensioning which mitigates these challenges and extends pump tubing lifetime.
- A clever pop out design provides easy access to the arm for exchanging or repositioning the tubing, regardless of the size of your hands.

### **Operational inefficiencies cause delays**

**Thermo Fishe** 

- Unplanned downtime can cause significant disruptions in a lab
- Deviations in expected performance can be equally disruptive
- It's not always obvious when or what maintenance should be performed to keep the system running smoothly

Concentration [ppt] (1

13

### **Reducing operational inefficiencies**

| Home Page                                  |                                                                                                                                                                                                                                                                | •                    |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| =                                          | Hawk Consumables and Maintenance Assistant                                                                                                                                                                                                                     |                      |
| Dashboard     2                            |                                                                                                                                                                                                                                                                | _                    |
| LabBooks                                   | 😙 Alerts 9 🖇 Maintenance Log                                                                                                                                                                                                                                   | <b>(\$</b> )         |
| Templates                                  | Action Limit                                                                                                                                                                                                                                                   | Group by: Severity * |
| File Manager                               | Check Skimmer Cone Check Sample Cone                                                                                                                                                                                                                           |                      |
| 🖍 System Log                               |                                                                                                                                                                                                                                                                |                      |
| CabBook Query                              | 251 Check Sample Cone every<br>251 Samples. Check Sample Cone every                                                                                                                                                                                            |                      |
| Ø <sub>o</sub> Maintenance 3               | Samples Measured 25/250 Samples Measured 25/250                                                                                                                                                                                                                |                      |
| (?) Help                                   | Warning Limit                                                                                                                                                                                                                                                  |                      |
|                                            | Chance Internal Standard PP Tubing Chance Samuele PP Tubing                                                                                                                                                                                                    |                      |
| -                                          |                                                                                                                                                                                                                                                                |                      |
| 2                                          | Sh h Charge Sandard = Sh h Charge Sandle P Tubing every 80 hours.                                                                                                                                                                                              |                      |
|                                            | Plasma On SB / Róbh Plasma On SB / Róbh                                                                                                                                                                                                                        |                      |
|                                            | None                                                                                                                                                                                                                                                           |                      |
|                                            | Channe Brain (P Tutkin Channe Arron Gis Preventive Maintenaure Check Internal Standard Solution                                                                                                                                                                |                      |
|                                            |                                                                                                                                                                                                                                                                |                      |
|                                            | 12 h Change Drain PP Tubing a revery 160 hours.                                                                                                                                                                                                                |                      |
|                                            | Plasma On         1117/h160h         Argon Consumption         Litt         Litt         Litt           Plasma On         1117/h160h         Argon Consumption         4033 L/9501L         System Time         62 2/455 d         Plasma On         12 h/24 h |                      |
|                                            | Suspended                                                                                                                                                                                                                                                      |                      |
|                                            | Cherk 50 nl Vial Joanna                                                                                                                                                                                                                                        |                      |
|                                            |                                                                                                                                                                                                                                                                |                      |
|                                            | Check Vial Inventory every                                                                                                                                                                                                                                     |                      |
|                                            | is a minimum of 5 bags. If.                                                                                                                                                                                                                                    |                      |
|                                            |                                                                                                                                                                                                                                                                |                      |
|                                            |                                                                                                                                                                                                                                                                |                      |
|                                            |                                                                                                                                                                                                                                                                | $(\mathbf{+})$       |
| Scheduler III Completed LabBooks III Loo V | Maw -                                                                                                                                                                                                                                                          |                      |
| RQplus Idle Empty qu                       | Denve LabBook Drinking Water Meld - 11' completed successfully.                                                                                                                                                                                                |                      |

The Thermo Scientific Hawk™ Consumables and Maintenance Assistant supports the laboratory by keeping track and sending notifications (through Alerts) when important maintenance activities should be performed.

#### **Check Skimmer Cone**



Visually check skimmer cone tip for sample deposits or damage every 500 samples. Pay special attention if your daily performance is trending downwards.



Number of samples measured

250

### **Reducing operational inefficiencies**

### Hawk Consumables and Maintenance Assistant

Dashboard notifications of trigger Alerts



Warning and action notifications can be set to appear in the Notification (bottom right) section of the Dashboard.

### Instrument performance monitoring

Performance reports and autotune files are collected and archived in one handy tool that makes it easier to find and plot specific performance data.

**Thermo Fisher** 

SCIEN



### Instrument performance monitoring

Flexibility to use the alerts and performance monitoring according to the needs of the laboratory

Simply activate the default alerts provided to start leveraging the features with minimal effort.

Edit the alerts as you go according to the pace of your work and the needs of the laboratory In a wellestablished testing laboratory, tailor the alerts to your specific SOPs to avoid missing or falling behind with maintenance

Leverage access control that enables lab managers to edit and create new alerts while letting operators focus on performing maintenance tasks

Use the alerts to manage general lab activities such as checking consumable inventory Concentration [ppt] (10^6)



## Reducing complexity with iCAP RQplus ICP-MS technology

#### Simplified set-up and operation with accurate results

- Stability required to enable long-term analysis of varying matrices without drift, QC failures, or the need to re-run samples.
- Proactive monitoring of consumables and instrument performance prevents unplanned downtime or deviations in expected performance, making the laboratory more productive.
- Simplified workflows enable consistent and efficient analysis for all operators to ensure your laboratory meets internal or external regulatory requirements.

### Power your productivity with the Thermo Scientific iSC-65 autosampler

Automation that accelerates elemental sample throughput with total confidence



### The iSC-65 autosampler: Your workflow's perfect partner



• Full support of the range of tube racks required current workflows.

**Thermo Fi** 

- Variable sample depth on a per vial basis.
- A capped single feed rinse station to ensure minimal contamination.
- Dedicated dual channel rinse pump with cartridge mounted chemical resistant tubing.

### Thermo Scientific iSC-65 autosampler – key features

#### Hardware and software advance in sample introduction





Thermo Fi

- Obstruction detection in all three axes
- Ethernet connectivity
- Easier operation through full integration and unique features within Qtegra ISDS Software
- LED status feedback on the complete workflow
  - Green (solid) no action required, system is online and ready to run
- Blue (intermittent) analysis in progress
  - Red (solid) action required; operation unsuccessful

### Your workflow's perfect partner



**Thermo Fisher** 

SCIENTIFIC

CAP PRO XPS with iSC-65

=

0

# Improved sample throughput with Step Ahead analysis on the iSC-65 autosampler

Gain up to 25% more productivity relative to traditional sampling



### Sustainability: an increasing demand for laboratories



| The Environmental<br>Impact Factor Label                           | EU          |
|--------------------------------------------------------------------|-------------|
| Thermo Scientific iCAP ROplus<br>Bremen, Germany<br>SKU BRE731344A | ICP-MS      |
| Environmental Impact Scale Decreasing Environmental Impact         | : 10        |
| Manufacturing                                                      |             |
| Manufacturing Impact Reduction                                     | 1.0         |
| Renewable Energy Use                                               | Yes         |
| Responsible Chemical Management                                    | 5.0         |
| Shipping Impact                                                    | 1.0         |
| Product Content                                                    | 10.0        |
| Packaging Content                                                  | 5.0         |
| User Impact                                                        |             |
| Energy Consumption (kWh/day)                                       | 8.6         |
| Water Consumption (liters/day)                                     | N/A         |
| Product Lifetime                                                   | 5.0         |
| End of Life                                                        |             |
| Packaging                                                          | 4.2         |
| Product                                                            | 1.0         |
| Innovation                                                         |             |
| Innovative Practices                                               | -1.0        |
| Environmental Impact Factor:                                       | 39.8        |
| Label Valid Through: Fe                                            | bruary 2025 |
| act.mygr                                                           | eenlab.org  |

|                            | Impact Factor Label                                           |            |
|----------------------------|---------------------------------------------------------------|------------|
| Therr<br>Shangha<br>SKU BR | <b>no Scientific iSC-65 Autos</b> a<br>ai, China<br>E0030065  | ampler     |
| 1                          | Environmental Impact Scale<br>Decreasing Environmental Impact | 1(         |
| Manu                       | facturing                                                     |            |
| Manufa                     | acturing Impact Reduction                                     | 1.0        |
| Renew                      | able Energy Use                                               | No         |
| Respor                     | nsible Chemical Management                                    | 1.0        |
| Shippir                    | ng Impact                                                     | 10.0       |
| Produc                     | t Content                                                     | 10.0       |
| Packag                     | ing Content                                                   | 5.0        |
| User                       | mpact                                                         |            |
| Energy                     | Consumption (kWh/day)                                         | 0.9        |
| Water                      | Consumption (liters/day)                                      | N/A        |
| Produc                     | t Lifetime                                                    | 1.0        |
| End o                      | f Life                                                        |            |
| Packag                     | ling                                                          | 5.0        |
| Produc                     | t                                                             | 1.0        |
| Enviro                     | onmental Impact Factor:                                       | 35.0       |
| Labol V                    | alid Through: Eeb                                             | ruary 2025 |

**Thermo Fisher** 

SCIEN



# iCAP RQplus ICP-MS iSC-65 Autosampler Applications



The world leader in serving science

25 March-2023

### New solutions to power through complex samples



### How to test and demonstrate robustness?





More than 10,000 samples were analyzed for testing and application development of the iCAP RQplus ICP-MS

### **Experimental set-up**



| Parameter                                             | Value                                           |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------|--|--|--|--|
| Nebulizer                                             | Micromist nebulizer (400 µl.min <sup>-1</sup> ) |  |  |  |  |
| Interface cones                                       | Ni – tipped sample and Skimmer                  |  |  |  |  |
| Skimmer cone Insert                                   | High matrix                                     |  |  |  |  |
| Spray chamber                                         | Cyclonic quartz                                 |  |  |  |  |
| Injector                                              | Quartz, 2.5 mm ID                               |  |  |  |  |
| Torch                                                 | Quartz torch                                    |  |  |  |  |
| RF power (W)                                          | 1550                                            |  |  |  |  |
| Number of replicates                                  | 3                                               |  |  |  |  |
| Spray chamber temp ( <sup>0</sup> C)                  | 2.7                                             |  |  |  |  |
| KED settings (gas flow rate in mL·min <sup>-1</sup> ) | 4.8 (with a 3V kinetic energy barrier)          |  |  |  |  |

- AGD dilution levels were selected depending on the application
- Step-ahead function was applied in all measurements

### **Application overview**



• Analysis of water samples

#### Complexity:

- ✓ Variable and potentially high matrix load
- Comprehensive QC protocols in regulated methods
  - Ultra-trace detection requirements.



• Analysis of food & beverages

#### Complexity:

- Variety and complexity of sample matrices (e.g., fats, oils, sugars, organics)
  - Industry standards
- From ultra-trace to percent level QC analysis



• Analysis of brines, refinery products, high purity chemicals

#### Complexity:

✓ Highly demanding matrix type

 Moderate sample load, but quick and reliable turnover required

### Water analysis using ICP-MS



### **Argon Gas Dilution**

- Tuning of the dilution level is achieved by variation of nebulizer gas flow and the additional gas flow
- As a consequence of the dilution, a lower oxide level is achieved, indicating a more robust plasma
- Tuning all dilution levels is fully automated within the Qtegra ISDS software

| Sample matrices                              | % TDS Content [%] | <b>Dilution level</b> |
|----------------------------------------------|-------------------|-----------------------|
| Drinking water and surface water             | < 0.5             | Low                   |
| Food digests                                 | 0.5 – 1.0         | LOW                   |
| Wastewaters                                  | < 1.0             |                       |
| Soil digests, geological & mining samples    | < 1.0             | Mid                   |
| Brackish waters, fracking flowback solutions | < 1.5             |                       |
| Brackish waters, sea water, brine solutions  | < 3.0             | High                  |
| Highly concentrated brine solutions          | > 4.0             | 0                     |



### Water samples analyzed



Total amount of major elements in  $\mathsf{mg}{\cdot}\mathsf{L}^{\cdot1}$ 



| ltem            | Place           | Category   | Note                                                        |
|-----------------|-----------------|------------|-------------------------------------------------------------|
| Tap water 1     | Bremen<br>West  | Tap water  | -                                                           |
| Tap water 2     | Bremen<br>South | Tap water  | -                                                           |
| Tap water 3     | Bremen<br>North | Tap water  | -                                                           |
| Surface water 1 | Bremen<br>South | Lake       | Sampling location is close to a major highway               |
| Surface water 2 | Bremen<br>North | Lake       | Sampling location is close to<br>an area with heavy traffic |
| Well water      | Bremen<br>North | Well water | Ground water sample, no additional treatment                |
| SLRS-5          | Ottawa          | River      | CRM                                                         |

### Additional advantage of iCAP RQplus for ISO 17294

 Single analysis mode using He KED achieved the excellent interference removal and detection at low concentrations (below 1 µg·L<sup>-1</sup>) with high ratio of signal/background.

#### Polyatomic interference of selenium

Thermo

| Symbol | Mass    | Abundance | Interferences         |
|--------|---------|-----------|-----------------------|
| 74Se   | 73.9225 | 0.90      | 74Ge(36.500%); 16O    |
| 76Se   | 75.9192 | 9.00      | 76Ge(7.800%); 36Ar    |
| 77Se   | 76.9199 | 7.60      | 40Ar + 37Cl(24.133%). |
| 78Se   | 77.9173 | 23.60     | 78Kr(0.350%); 14N + . |
| 80Se   | 79.9165 | 49.70     | 80Kr(2.250%); 40Ar +  |
| 82Se   | 81.9167 | 9.20      | 82Kr(11.600%); 1H + . |





### Accuracy analysis results river water CRM SLRS-5

All CRM values, measured, and result concentrations are in µg-L-1

|    | CRM<br>values | Measured | Recovery<br>(%) | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | CRM<br>values | Measured | Recovery<br>(%) | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|---------------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AI | 49.5          | 50.6     | 102%            | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Мо | 0.27          | 0.27     | 100%            | <ul> <li>Image: A second s</li></ul> |
| Sb | 0.3           | 0.35     | 117%            | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ni | 0.476         | 0.525    | 110%            | × -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| As | 0.413         | 0.478    | 116%            | <ul> <li>Image: A second s</li></ul> | Sr | 53.6          | 55.9     | 104%            | <ul> <li>Image: A set of the set of the</li></ul>  |
| Ва | 14.0          | 15.2     | 109%            | <b>~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U  | 0.093         | 0.092    | 99%             | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cr | 0.208         | 0.216    | 104%            | <ul> <li>Image: A second s</li></ul> | V  | 0.317         | 0.304    | 96%             | <ul> <li>Image: A second s</li></ul> |
| Со | 0.05          | 0.052    | 104%            | <ul> <li>Image: A second s</li></ul> | Zn | 0.845         | 0.960    | 114%            | <ul> <li>Image: A second s</li></ul> |
| Cu | 17.4          | 18.7     | 107%            | <ul> <li>Image: A second s</li></ul> | Na | 5,380         | 4,890    | 91%             | <ul> <li>Image: A second s</li></ul> |
| Fe | 91.2          | 91.3     | 100%            | <ul> <li>Image: A second s</li></ul> | Mg | 2,540         | 2,450    | 96%             | <ul> <li>Image: A second s</li></ul> |
| Pb | 0.081         | 0.077    | 95%             | <ul> <li>Image: A second s</li></ul> | K  | 839           | 823      | 98%             | $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mn | 4.33          | 4.64     | 107%            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ca | 10,500        | 9,900    | 94%             | <ul> <li>Image: A second s</li></ul> |

### **Robustness: internal standard recovery**

- Daily sample load was approximately 300 samples per day
- Total analysis time approximately 12 hours



### Hawk: instrument health monitoring software

Example: Check sample cone and peristaltic pump tubing

#### Start of analysis: Day 1





### Hawk: Instrument health monitoring software

Example: Check Sample cone and peristaltic pump tubing

Start of analysis: Day 1

#### Day 2

**Thermo Fisher** 

SCIENT



### Hawk: Instrument health monitoring software

Example: Check Sample cone and peristaltic pump tubing

#### Start of analysis: Day 1

Check Skimmer Cone

Samples Measured



Day 2



1000 samples.

| Change Sam | nple PP Tubing          |
|------------|-------------------------|
|            | Change Sample PP Tubing |
| 14.1 h     | every 50 hours.         |
| Plasma On  | 14.1 h/50 h             |

#### Day 4

**Thermo Fisher** 

SCIENT



| Change Sample PP Tubing |                         |            |  |  |  |
|-------------------------|-------------------------|------------|--|--|--|
| 2.1 d                   | Change Sample PP Tubing | ) 🗊 🌣      |  |  |  |
|                         | every 50 hours.         | ✓ Reset    |  |  |  |
| Plasma On               |                         | 2.1 d/50 h |  |  |  |

### **Reliable hardware: performance without tuning for 10 days**



- Total 2800 sample analysis for 10 days.
- Stable and reliable hardware: autotune was running only day 1 and day 8.

**Thermo Fisher** 

 <sup>115</sup>In (Tune solution) intensity achieved 115% to 140% of specification.

#### Thermo Fisher

### Linear dynamic range vs. analytical range



- The detector of the iCAP RQplus ICP-MS offers 10 orders of magnitude linear dynamic range
- The analytical range can be much larger, depending on the calibrated range for each analyte
  - Argon Gas Dilution is a way to extend calibration ranges to % levels
  - Adjustable resolution allows for analyte specific signal attenuation

### **Food samples**







|                                                  | Group no. | Description                      | Sample 1          | Sample 2     | Sample 3  | Sample 4        | Sample 5              |
|--------------------------------------------------|-----------|----------------------------------|-------------------|--------------|-----------|-----------------|-----------------------|
| Day 1                                            | 1         | Carbohydrate<br>and protein rich | Rice              | Cereal       | Couscous  | Flour           | Fish<br>(sardines)    |
| Day 2                                            | 2         | Vegetables and fruits            | Puree-1           | Puree-2      | Tomato    | Spinach         | Carrot                |
| Day 3                                            | 3         | Spices                           | Mustard           | Pepper       | Coriander | Basil           | Cinnamon              |
| Day 4                                            | 4         | Milk and high fat                | Infant<br>formula | Milk powder  | Biscuits  | Cocoa<br>powder | Drinking<br>chocolate |
| Day 5                                            | 5         | Beverages                        | Apple juice       | Orange drink | Cola      | Flavoured water | Energy drink          |
| Days 6 to 9 all samples randomly mixed together. |           |                                  |                   |              |           |                 |                       |

### **Samples and preparation**

- Six reference materials
- SRM 1568b Rice flour
- DORM-3 Fish
- NIST 2383a baby food
- TYG082 Infant formula
- BCR-063 Milk
- LGC-7103 Biscuit

20 food and beverage samples

- Dry (rice, cinnamon, etc.) and wet (tomato, sauce, etc.) samples
- Beverages (juice, water, etc.)



### **Excellent detection: trace of the toxic elements**

| Analyte           | R <sup>2</sup> | LOD    | MLOQ in<br>beverage<br>samples,<br>DF = 10 | MLOQ in<br>wet food<br>samples,<br>DF = 25 | MLOQ in beverage<br>dry food samples,<br>DF = 100 |
|-------------------|----------------|--------|--------------------------------------------|--------------------------------------------|---------------------------------------------------|
| <sup>7</sup> Li   | 0.9994         | 0.193  | 5.8                                        | 14.5                                       | 57.9                                              |
| <sup>9</sup> Be   | 0.9997         | 0.002  | 0.05                                       | 0.1                                        | 0.5                                               |
| <sup>23</sup> Na  | 0.9995         | 0.002  | 0.1                                        | 0.1                                        | 0.5                                               |
| <sup>24</sup> Mg  | 0.9999         | 0.001  | 0.02                                       | 0.05                                       | 0.2                                               |
| <sup>27</sup> AI  | 0.9994         | 0.001  | 0.02                                       | 0.05                                       | 0.2                                               |
| <sup>31</sup> P   | 0.9999         | 0.012  | 0.4                                        | 0.9                                        | 3.6                                               |
| <sup>39</sup> K   | 0.9995         | 0.006  | 0.2                                        | 0.4                                        | 1.7                                               |
| <sup>44</sup> Ca  | 0.9998         | 0.006  | 0.2                                        | 0.4                                        | 1.7                                               |
| <sup>52</sup> Cr  | 0.9994         | 0.015  | 0.5                                        | 1.1                                        | 4.5                                               |
| <sup>55</sup> Mn  | 0.9999         | 0.0004 | 0.01                                       | 0.03                                       | 0.1                                               |
| <sup>57</sup> Fe  | 0.9994         | 0.0005 | 0.01                                       | 0.04                                       | 0.1                                               |
| <sup>59</sup> Co  | 0.9999         | 0.004  | 0.1                                        | 0.3                                        | 1.2                                               |
| <sup>60</sup> Ni  | 0.9998         | 0.013  | 0.4                                        | 1.0                                        | 4.0                                               |
| <sup>65</sup> Cu  | 0.9994         | 0.032  | 1.0                                        | 2.4                                        | 9.6                                               |
| <sup>66</sup> Zn  | 0.9998         | 0.133  | 4.0                                        | 9.9                                        | 39.8                                              |
| <sup>75</sup> As* | 0.9996         | 0.004  | 0.1                                        | 1.0                                        | 3.9                                               |
| <sup>77</sup> Se* | 0.9997         | 0.015  | 0.5                                        | 1.2                                        | 4.6                                               |

- Coefficient of determination (R<sup>2</sup>) achieved >0.9994
- All LODs are well below the maximum contamination level.
  - All result numbers are in µg·L<sup>-1</sup> (blue numbers are in mg·L<sup>-1</sup>)
  - LOD is from 3x STDEV of ten repeats of the blank
  - MLOQ is calculated as dilution factor (DF) x 3x
     IDL

### Accuracy analysis results using CRMs

| Element          | Biscuit C                                | RM LGC-7103              | TYG RM082 li                | nfant Formula            | NIST CRM 23<br>com          | 883a Baby food<br>posite | Item                    | Analysis result |
|------------------|------------------------------------------|--------------------------|-----------------------------|--------------------------|-----------------------------|--------------------------|-------------------------|-----------------|
|                  | n = 40                                   | Dilution factor =<br>100 | n = 50                      | Dilution factor =<br>100 | n = 16                      | Dilution factor =<br>25  | SRM 1568b<br>Rice flour |                 |
|                  | Certified value<br>(mg·L- <sup>1</sup> ) | Average recovery<br>(%)  | Certified value<br>(mg·L-1) | Average<br>recovery (%)  | Certified value<br>(mg·L-1) | Average recovery<br>(%)  | LGC-7103                |                 |
| <sup>23</sup> Na | $5010\pm400$                             | $96\pm7$                 | $1698 \pm 29$               | 93 ± 6                   | $195\pm29$                  | 94 ± 9                   | Biscuit                 | <b>V</b>        |
| <sup>24</sup> Mg |                                          | $92\pm 6$                | $505\pm7$                   | 92 ± 6                   | $212.2\pm4.0$               | 106 ± 7                  |                         |                 |
| <sup>31</sup> P  | $900\pm140$                              | 91±5                     | $2898 \pm 60$               | 90 ± 11                  | 453 ± 11                    | 90 ± 9                   | BCR-063 Milk            |                 |
| <sup>39</sup> K  | 1580 ± 170                               | 97± 6                    | 5408 ± 90                   | 91 ± 6                   | $2910 \pm 220$              | 102 ± 6                  |                         | ×               |
| <sup>44</sup> Ca |                                          | -                        | 5355 ± 77                   | 95 ± 4                   | $342.6\pm5.0$               | 102 ± 11                 |                         |                 |
| <sup>55</sup> Mn | $5.49 \pm 0.6$                           | $100\pm8$                | 0.623 ± 0.022               | 87 ± 11                  | $0.963 \pm 0.064$           | $93\pm5$                 | formula                 | A 100 million   |
| <sup>57</sup> Fe | -                                        | -                        | $74.8 \pm 1.4$              | 94 ± 5                   | $4.420\pm0.51$              | 104 ± 9                  |                         |                 |
| <sup>59</sup> Co | -                                        | -                        | -                           | -                        | $0.048\pm 0.005$            | 100 ± 7                  | DORM-3 Fish             |                 |
| <sup>65</sup> Cu | -                                        | -                        | $3.69\pm0.08$               | 101 ± 5                  | $0.758 \pm 0.082$           | 94 ± 6                   |                         | <b>V</b>        |
| <sup>66</sup> Zn | $6.41\pm0.99$                            | $113\pm5$                | 52.1 ± 0.9                  | 115 ± 5                  | $2.22\pm0.18$               | 88 ± 2                   |                         |                 |
| <sup>78</sup> Se | -                                        | -                        | 0.123 ±<br>0.007            | 104 ± 10                 | -                           | -                        | baby food               |                 |

#### Robust: containing the high amounts of alkali metal







- High amount of the nutrient elements with TDS >1 %
- Around 220 samples analyzed per day, 9 days in a row
- Consistent internal standard recovery achieved
- Quality control: CCV was measured every 20 unknown samples

#### Thermo Fisher SCIENTIFIC

### Unknown food and beverage sample results



- Highest concentrations of cadmium, mercury, and lead were found in spices
- Fish samples contained slightly elevated levels of mercury and expectedly high levels of arsenic

### Unknown food and beverage sample results



- Highest concentrations of cadmium, mercury and lead were found in spices
- Fish samples contained slightly elevated levels of mercury and expectedly high levels of arsenic
- IC-ICP-MS can be used for further investigation of the toxic levels of mercury and arsenic

### Analysis of high concentrated brine using ICP-MS



• Brine is a complex matrix comprising mostly NaCl at % level concentration.

Thermo Fis

 Seawater and brackish waters have high NaCl content and are often analyzed for trace elements.

### Analysis of high concentrated brine using ICP-MS



 Brine is an incredibly difficult matrix to analyze using ICP-MS

Thermo Físhei

- It is a starting point (or important intermediate) in many industrial processes
  - Brines can be rich sources of lithium but need to be explored carefully to avoid environmental contamination.
  - Extraction of rare earth elements typically present at sub µg·L<sup>-1</sup> can become viable

### **Argon Gas Dilution**

- Tuning of the dilution level is achieved by varying the nebulizer gas flow and additional gas flow.
- As a consequence of the dilution, a lower oxide level is achieved, resulting to a more robust plasma.
- Tuning all dilution levels is fully automated in the Qtegra ISDS Software.

|      | Sample matrices                              | % TDS Content [%] | <b>Dilution level</b> |                       |
|------|----------------------------------------------|-------------------|-----------------------|-----------------------|
|      | Drinking water and surface water             | < 0.5             |                       |                       |
|      | Food digests                                 | 0.5 - 1.0         | LOW                   | and the second second |
|      | Wastewaters                                  | < 1.0             |                       | Gerta and             |
| Soil | digests, geological & mining samples         | < 1.0             | Mid                   |                       |
| I    | Brackish waters, fracking flowback solutions | < 1.5             |                       |                       |
| E    | Brackish waters, sea water, brine solutions  | < 3.0             | High                  |                       |
| Hig  | ghly concentrated brine solutions            | > 4.0             | U                     |                       |

### **Argon Gas Dilution**

Thermo Fisher SCIENTIFIC

- Compatible with the standard sample introduction system components
- PFA-ST Microflow nebulizer is more resistant against blockage when analyzing high salt loads
- Argon humidification beneficial for salt-rich matrices

|                                | 6            |                       |      |
|--------------------------------|--------------|-----------------------|------|
| Sample introduction            |              | <b>Dilution level</b> | K W  |
| system components              | Low          | Mid                   | High |
| Glass concentric nebulizer     | $\checkmark$ | $\checkmark$          | X    |
| Baffled cyclonic spray chamber |              |                       |      |
| 2.5 mm i.d. quartz injector    |              |                       |      |
| Torch (quartz, PLUS torch)     | V            | V                     | V    |
| Skimmer cone insert            |              | High Matrix           |      |
| ESI Pergo humidifier           |              |                       |      |
| PFA-ST Microflow nebulizer     |              |                       |      |
|                                |              |                       |      |

### **AGD: Consistent spike recovery**



Chermo Fi

- Consistent spike recovery independent of the matrix load
- Also high IP elements read back within accepted limits

### **Robust consumable for sustainability**



- Analysis of 25% for with minimum rinse time 30s
- Data acquisition for <sup>23</sup>Na is also possible thanks to the high sample dilution and high resolution applied to the analyzing quadrupole



- Robust spare parts: skimmer cone after the analysis and after cleaning
- High dilution using AGD reduces deposition and cross contamination

### **Summary**

- Power through your challenging samples with next generation argon gas dilution
- Robust sample handling that meets regulatory demands with exceptional long term stability
- Efficiently managed uptime and maintain productivity with HAWK Consumable and Maintenance Assistant
- Simplify your workflow with Qtegra ISDS with structured method creation
- Automated reliable performance with the one-click Get Ready for automatic performance checks

