

ThermoFisher SCIENTIFIC

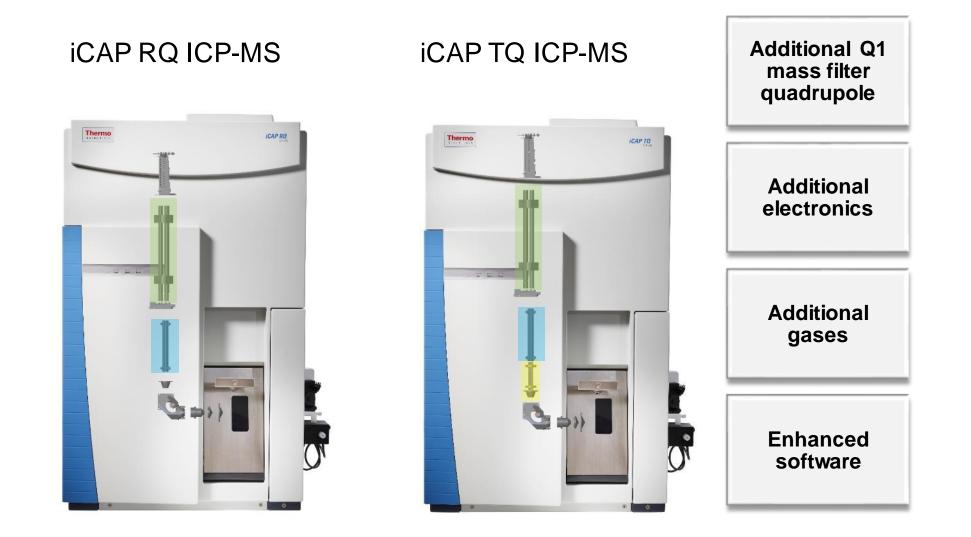
Outsmart Interferences with Triple Quadrupole ICP-MS

The world leader in serving science

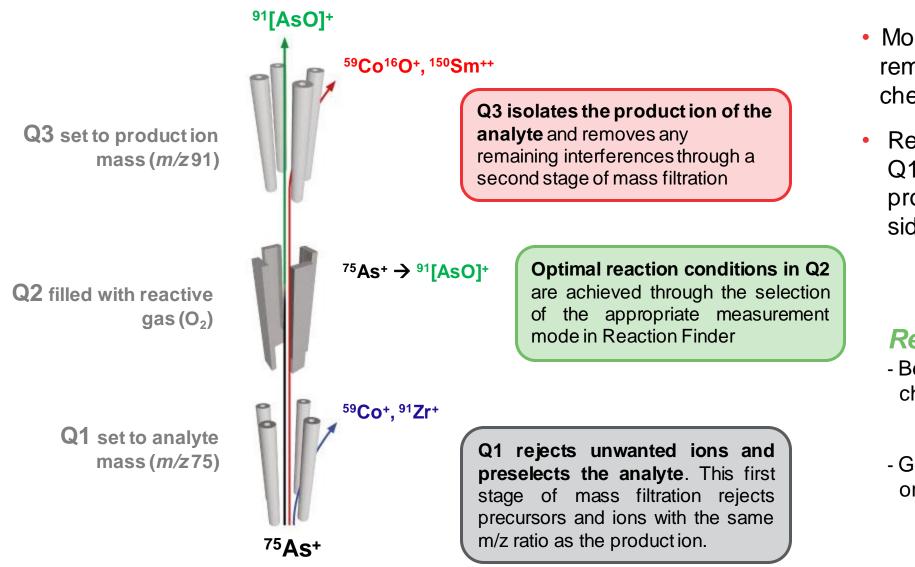
ICP-MS Performance for All Applications

Redefining Trace Element Analysis -Triple Quadrupole ICPMS

All the Power, None of the Complexity

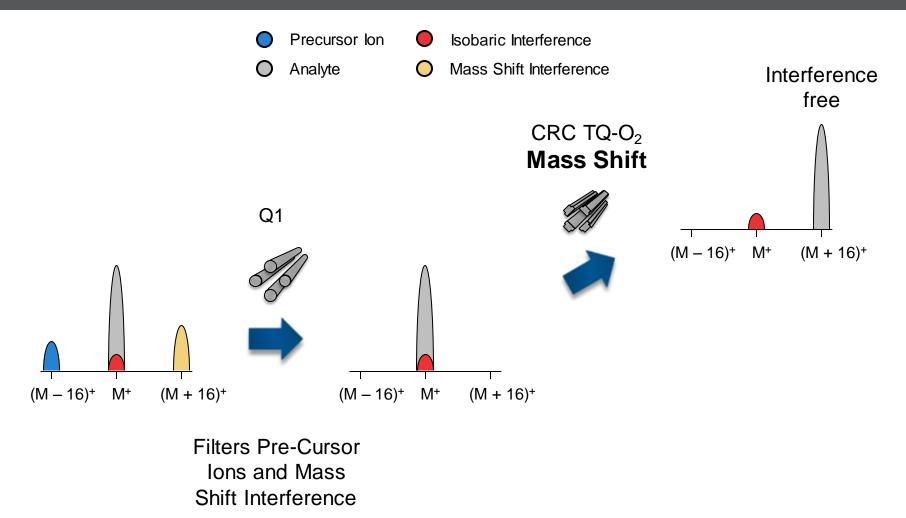

Robust design for routine analysis
 Integrated automation options
 Flexible for advanced applications
 Advanced interference removal
 Unique ease of use

Triple quadrupole accuracy with single quadrupole ease of use



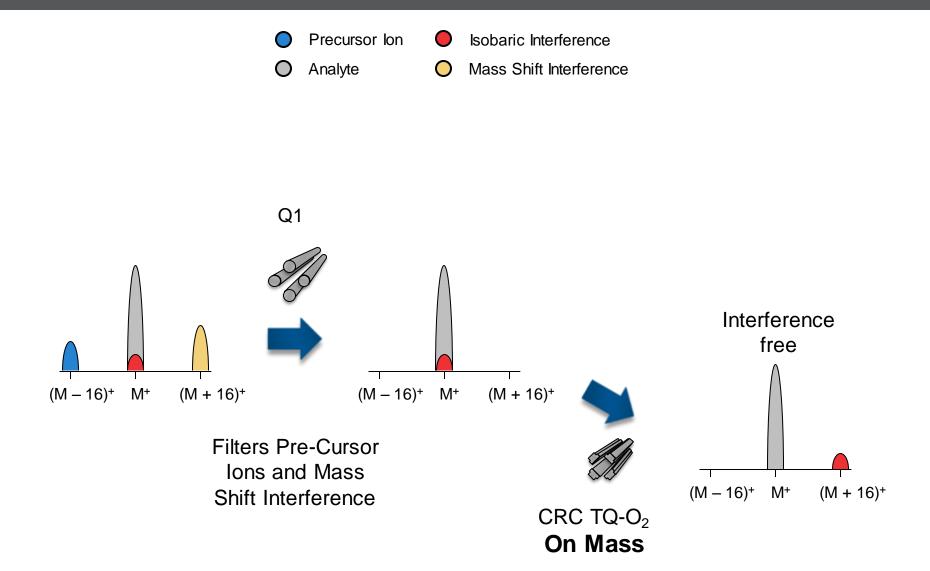
What's the difference between a SQ and TQ-ICP-MS?

Thermo Scientific iCAP TQ ICP-MS – How it Works

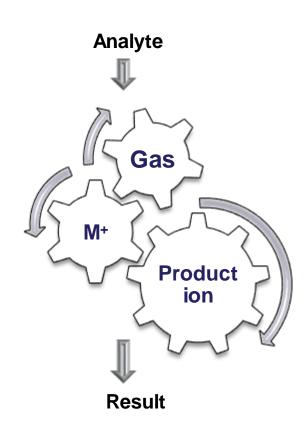

- More specific interference removal through reactive chemistry inside the CRC
- Removal of unwanted ions in Q1 eliminates interferences on product ion mass and unwanted side reactions

Result:

- Better detection limits, even in challenging sample matrices
- Get more accuracy in unknown or varying sample matrices


Triple Quadrupole ICP-MS – Two 'Styles' of Operation

This mode of operation is 'Mass Shift'


Triple Quadrupole ICP-MS – Two 'Styles' of Operation

This mode of operation is 'On Mass'

Reaction Finder Method Development Assistant

1. Select Element/Isotope of interest

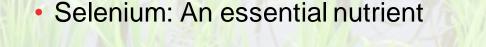
2. Reaction Finder proposes most appropriate gas/scan setting combination

Identifier	Q3 Analyte	SQ / TQ	CR Gas	Dwell time (s)	Channels	Spacing (u)	
78Se 78Se.160	78Se.16O (93.912 👻	TQ	0:	0.1	1	0.1	Normal
80Se 80Se.16O	80Se.16O	TQ	0.	0.1	1	0.1	Normal

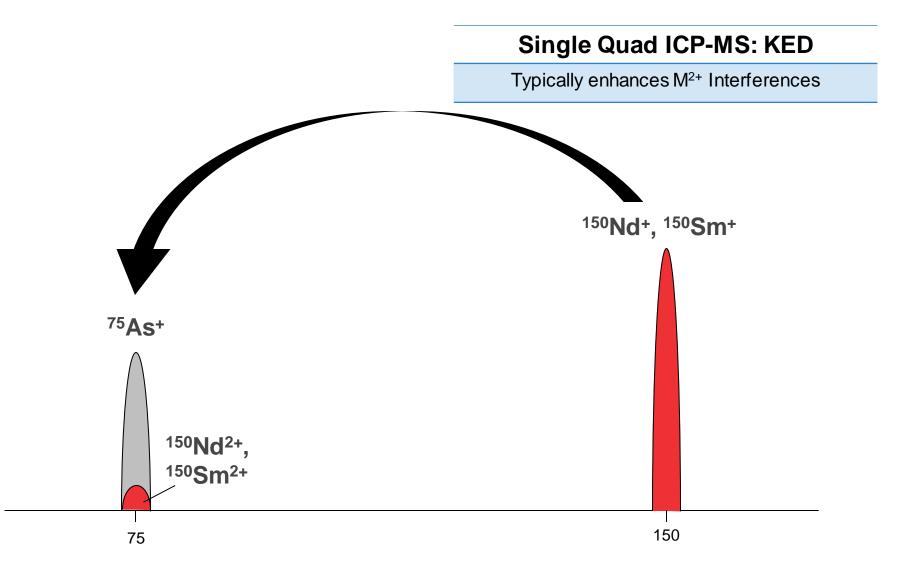
3. Choose from list of Internal Standards

7Li (S-SQ-KED)		SQ	KED	0.1	1	0.1
55Mn (S-SQ-KED		SQ	KED	0.1	1	0.1
65Cu 65Cu.14N	65Cu.14N2.1H6	TQ	NH,	0.1	1	0.1
51V 51V.16D (S	51V.16O	TQ	0,	0.1	1	0.1
ARTI LARTI 14N4		TQ	NH6	0.1	1	0.1
# Fit cells to gri		SQ	KED	0.1	1	0.1
Fit cells to con	ntent	SQ	KED	0.1	1	0.1
Export to Exce	4	SQ	KED	0.1	1	0.1
+ Duplicate ana	hte	SQ	KED	0.1	1	0.1
+ Add internal :	tandard analyte	59Co				
		1151				
		2098	N.			

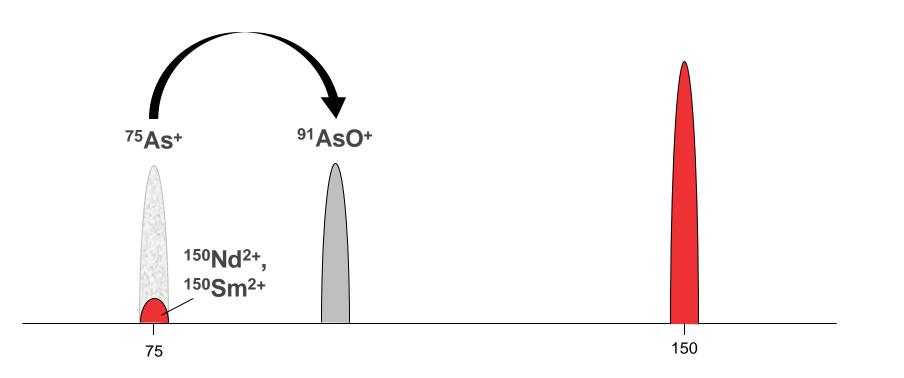
Redefining triple quadrupole ICP-MS with unique ease of use

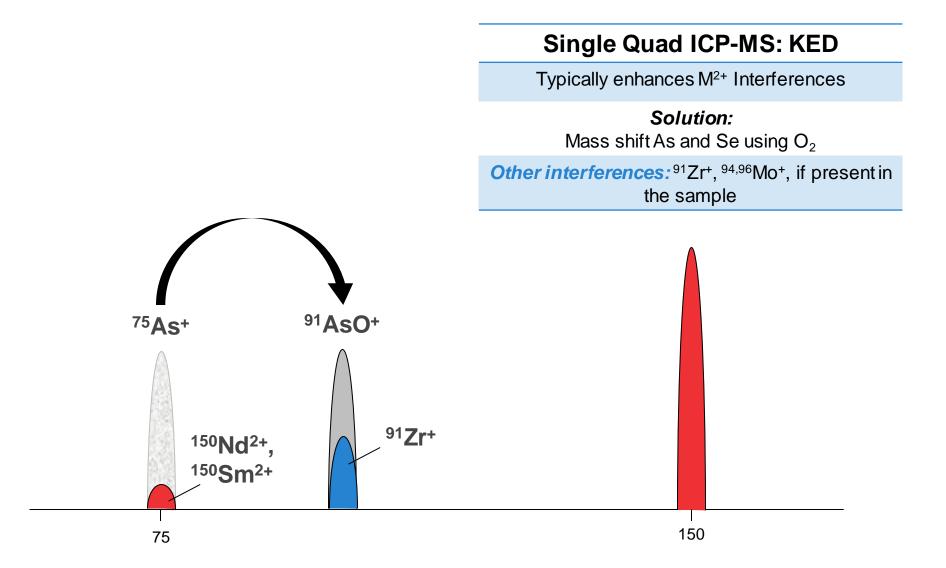


The Power of Triple Quadrupole Technology

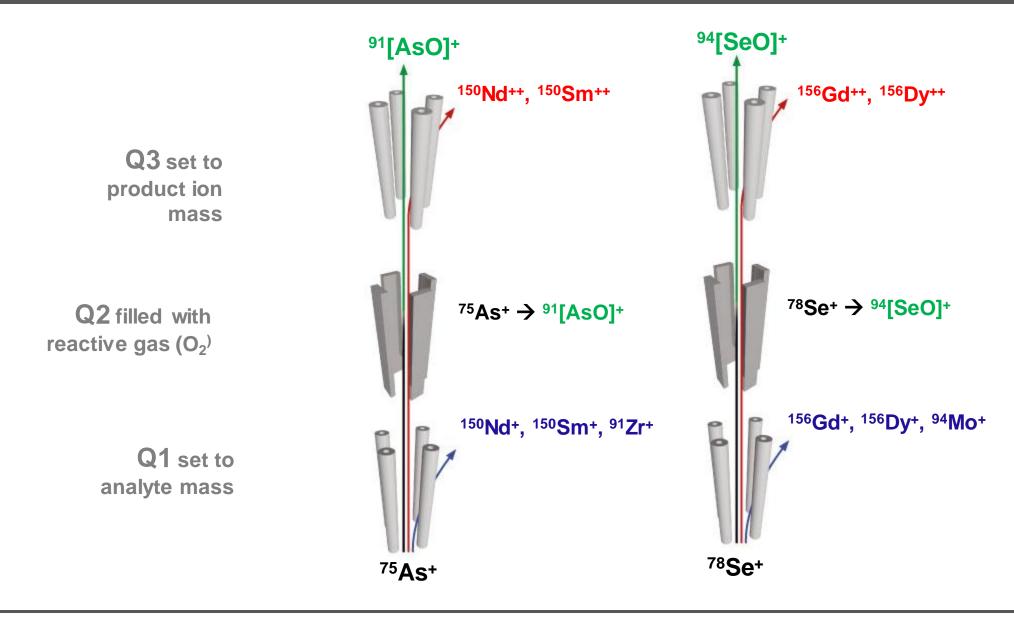

- Arsenic: A potential hazard in the food chain
- Many different chemical forms (species)
- Plants such as rice are well known for high accumulation of As from soils

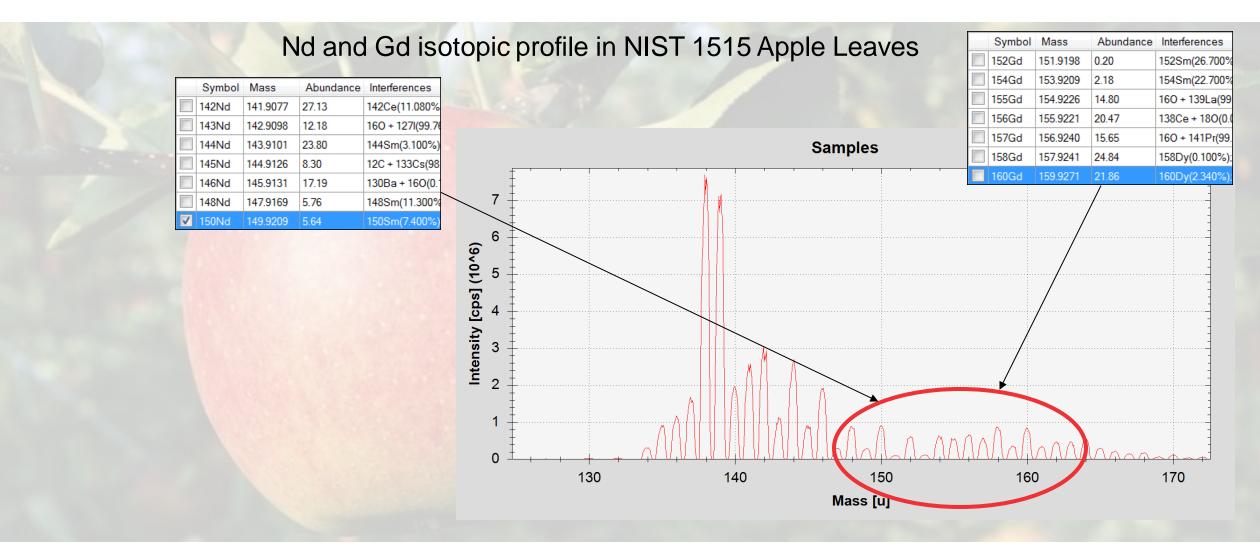
 Knowledge of Se content in soil may prevent Se deficiency in both human and animal populations



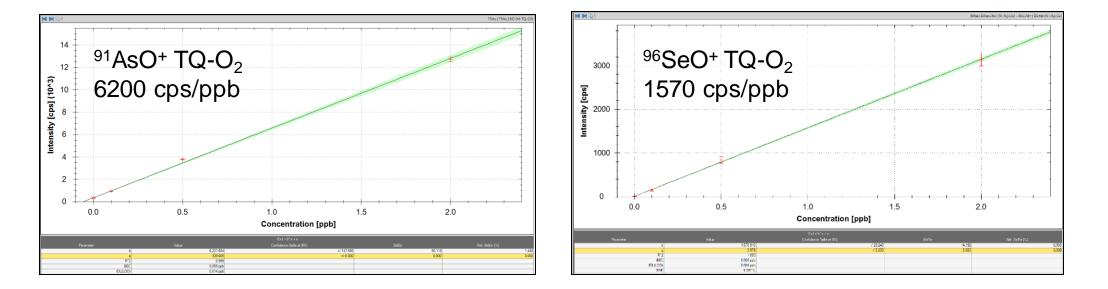

Single Quad ICP-MS: KED

Typically enhances M²⁺ Interferences


Solution: Mass shift As and Se using O_2



Rare Earth Elements in Apple Leaves (NIST 1515)



REE will lead to false positive results for As and Se – only triple quadrupole based ICP-MS can overcome these

Comparison of SQ KED vs TQ-O₂ in NIST 1515

Analyte	Reference value mg/kg	SQ KED mode mg/kg	TQ-O₂ mode mg/kg
⁷⁵ As	0.038	1.730	0.036
⁸⁰ Se	0.050	4.800	0.052

- Multielement Analysis one run fits all!
 - For most elements KED is still the best choice
 - For others, TQ modes can offer better detection limits through advanced interference removal
 - Reaction Finder automatically determines the appropriate settings and fully automizes scanning during a sample run

	Identifier 4	4	Q3 Analyte	SQ/TQ	CR Gas	Dwell time (s)	Channels
	11B (M-SQ-KED)			SQ	KED	0.1	1
	23Na (M-SQ-KED			SQ	KED	0.1	1
	24Mg (M-SQ-KE			SQ	KED	0.1	1
	27AI (M-SQ-KED)			SQ	KED	0.1	1
-	31P 31P. 160 (M	31P.	160	TQ	01	0.1	1
	32S 32S. 160 (M	325.	160	TQ	Oz	0.1	1
	39K (M-SQ-KED)			SQ	KED	0.1	1
	44Ca (M-SQ-KED			SQ	KED	0.1	1
100000	anced Parameters						
Nur	nber of sweeps:			5			
Me	asurement order.		M-TQ-02				
		Measurement order: Mail M-S					

Analyte	Measurement mode	Internal standard
^{ti} B	SQ-KED	⁴⁵ Sc
²³ Na	SQ-KED	⁴⁵ Sc
²⁴ Mg	SQ-KED	⁴⁵ Sc
27AI	SQ-KED	⁴⁵ Sc
³¹ P as ³¹ P ¹⁶ O at 47 m/z	TQ-O ₂	¹¹⁵ In
$^{\rm 32}{\rm S}$ as $^{\rm 32}{\rm S}^{\rm 16}{\rm O}$ at 48 m/z	TQ-O ₂	¹¹⁵ In
³⁰ K	SQ-KED	⁴⁵ Sc
⁴⁴ Ca	SQ-KED	⁴⁵ Sc
V ¹³	SQ-KED	⁷¹ Ga
⁵² Cr	SQ-KED	⁷¹ Ga
⁶⁶ Mn	SQ-KED	⁷¹ Ga
57Fe	SQ-KED	⁷¹ Ga
⁶⁹ Co	SQ-KED	⁷¹ Ga
⁶⁰ Ni	SQ-KED	⁷¹ Ga
63Cu	SQ-KED	⁷¹ Ga
66Zn	SQ-KED	⁷¹ Ga
⁷⁵ As as ⁷⁵ As ¹⁶ O at 91 <i>m/z</i>	TQ-O ₂	¹¹⁵ In
⁷⁵ As	SQ-KED	¹¹⁵ In
⁷⁸ Se as ⁷⁸ Se ¹⁶ O at 94 m/z	TQ-O ₂	¹¹⁵ In
⁷⁸ Se	SQ-KED	¹¹⁵ In
⁸⁵ Rb	SQ-KED	¹¹⁵ In
BBSr	SQ-KED	¹¹⁵ In
oM ⁸⁰	SQ-KED	¹¹⁵ In
¹¹¹ Cd	SQ-KED	¹¹⁵ In
¹²¹ Sb	SQ-KED	¹¹⁵ In
¹³⁸ Ba	SQ-KED	¹⁵⁹ Tb
208Pb	SQ-KED	¹⁵⁹ Tb
²³² Th	SQ-KED	¹⁵⁹ Tb
²³⁸ U	SQ-KED	¹⁵⁹ Tb

Multielemental Analysis in Apple and Tomato leaves with TQ-ICP-MS

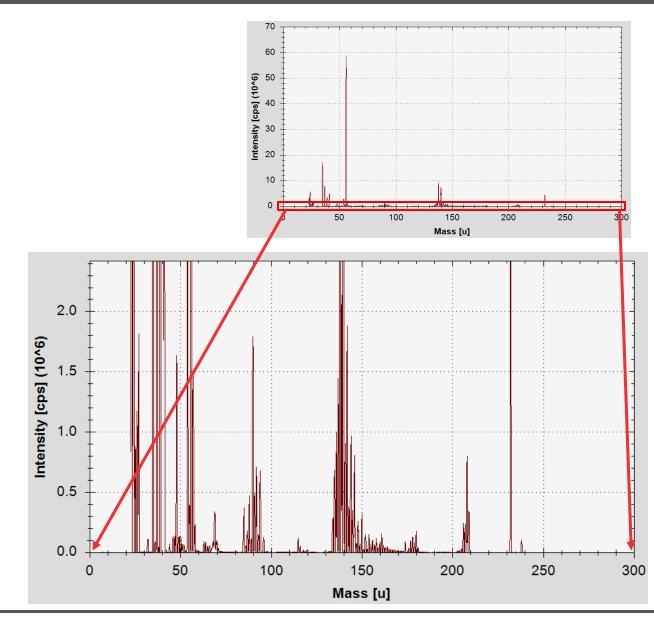
- Excellent agreement to certified and reported values achieved for all elements
- Accurate analysis for As and Se despite the REE in matrix
- Full multi-elemental analysis, with a mix of comprehensive and dedicated interference removal in one sample run
- Option to quantify S and P at low levels with TQ-O₂ mode

A b da	IDL MDL		NIST 1515 app	ole leaves N=3	NIST 1573A tomato leaves N=3		
Analyte	(µg∙L⁻¹)	(µg·kg⁻¹)	Measured (mg·kg ⁻¹)	Certified (mg·kg ⁻¹)	Measured (mg·kg ⁻¹)	Certified (mg·kg ⁻¹)	
**B	0.4	52.4	25.2±0.6	27±2	30.0±0.2	33.3±0.7	
²³ Na	4	524	29.3±0.8	24.4±1.2	123±1.5	136±4	
²⁴ Mg	1	131	2686±84	2710±80	10556±210	12000*	
²⁷ AI	0.1	13.1	258±8.4	286±9	532±13	598±12	
³¹ P as ³¹ P ¹⁶ O at <i>m/z</i> 47	0.05	6.0	1530±10	1590*	2040±33	2160±40	
³² S as ³² S ¹⁶ O at <i>m/z</i> 48	0.02	2.6	1819±15	1800*	9779±0.2	9600*	
³⁰ K	3	393	16106±75	16100±200	27299±198	27000±500	
⁴⁴ Ca	1	131	15218±2300	15260±1500	49339±235	50500±900	
51V	0.001	0.13	0.24±0.01	0.26±0.03	0.80±0.01	0.835±0.010	
⁶² Cr	0.005	0.66	0.29±0.01	0.3*	1.97±0.02	1.99±0.06	
55Mn	0.003	0.39	52.6±0.6	54±3	242±1.9	246±8	
⁶⁷ Fe	1	131	81.5±1.6	80*	366±4.8	368±7	
50Co	0.011	1.44	0.08±0.003	0.09*	0.57±0.01	0.57±0.02	
⁶⁰ Ni	0.023	3.01	0.85±0.13	0.91±0.12	1.57±0.02	1.59±0.07	
63Cu	0.088	11	5.59±0.05	5.64±0.24	4.7±0.1	4.7±0.14	
66Zn	0.026	3.41	11.3±0.16	12.5±0.3	28.2±0.37	30.9±0.7	
As as ⁷⁵ As ¹⁶ O at <i>m/z</i> 91	0.006	0.79	0.036±0.003	0.038±0.007	0.117±0.03	0.112±0.004	
⁷⁵ As	0.004	0.52	0.469±0.012	0.038±0.007	0.143±0.01	0.112±0.004	
Se as ⁷⁸ Se ¹⁶ O at <i>m/z</i> 94	0.003	0.39	0.052±0.006	0.050±0.009	0.053±0.01	0.054±0.003	
⁷⁸ Se	0.046	6.03	1272±187	0.050±0.009	0.11±0.01	0.054±0.003	
⁸⁵ Rb	0.004	0.52	9.1±0.17	9*	13.97±0.03	14.89±0.27	
88Sr	0.002	0.26	25.5±0.34	25±2	84.8±0.49	85*	
⁹⁸ Mo	0.003	0.39	0.094±0.01	0.094±0.013	0.47±0.06	0.46*	
111Cd	0.001	0.13	0.013±0.001	0.014*	1.45±0.03	1.52±0.04	
¹²¹ Sb	0.001	0.13	0.012±0.005	0.013*	0.057±0.003	0.063±0.006	
¹³⁸ Ba	0.002	0.262	48.8±0.1	49±2	60.2±0.7	63*	
²⁰⁸ Pb	0.001	0.131	0.422±0.002	0.470±0.024	-	N.D.	
²³² Th	0.001	0.131	0.03±0.002	0.03	0.107±0.002	0.12*	
238U	0.001	0.131	0.008±0.002	0.006*	0.033±0.001	0.035*	

Determination of Platinum Group Metals

Zr Rh Nb Mo Tc Ru Pd Ag Cd Sn Sr In Hf Та W Re Pt Hg TI Ba La Os Ir Au Pb FTTT,

- Main interest due to:
 - Mining/Exploration of Ores/Recycling
 - Geological Research
 - Environmental & Food Safety
 Analysis


"Normally" interference free

Recommended / Information Values for GSP 2

United States Geological Survey Certificate of Analysis Granodiorite, Silver Plume, Colorado, GSP-2

		Recomm	ended values		
Element	Wt %	±	Oxide	Wt %	±
Al	7.88	0.11	Al_2O_3	14.9	0.2
Ca	1.50	0.04	CaO	2.10	0.06
Fe _{tot}	3.43	0.11	Fe ₂ O _{3 tot}	4.90	0.16
K	4.48	0.12	K ₂ O	5.38	0.14
Mg	0.58	0.02	MgO	0.96	0.03
Na	2.06	0.07	Na ₂ O	2.78	0.09
Р	0.13	0.01	$P_2 \tilde{O}_5$	0.29	0.02
Si	31.1	0.4	SiO2	66.6	0.8
Ti	0.40	0.01	TiO ₂	0.66	0.02
Element	μg/g	±	Element	μg/g	±
Ba	1340	44	Pb	42	3
Ce	410	30	Rb	245	7
Co	7.3	0.8	Sc	6.3	0.7
Cr	20	6	Sm	27	1
Cu	43	4	Sr	240	10
Eu	2.3	0.1	Th	105	8
Ga	22	2	U	2.40	0.19
La	180	12	V	52	4
Mn	320	20	Y	28	2
Nb	27	2	Yb	1.6	0.2
Nd	200	12	Zn	120	10
Ni	17	2	Zr	550	30
		Informa	tion values		
Element	µg/g	±	Element	μg/g	±
Be	1.5	0.2	Но	1.0	0.1
Cs	1.2	0.1	Li	36	1
Dy	6.1		Lu	0.23	0.03
Er	2.2		Mo	2.1	0.6
F	3000		Pr	51	5
Gd	12	2	T1	1.1	
Hf	14	1	Tm	0.29	0.02

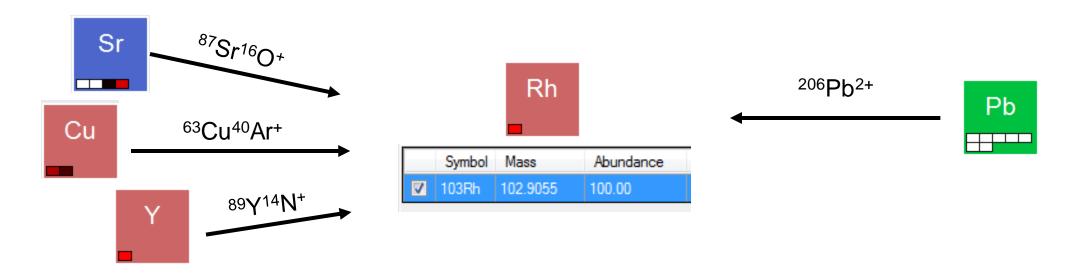
Interferences on Platium Group Metals

Hf

	Symbol	Mass	Abundance
	174Hf	173.9401	0.16
	176Hf	175.9414	5.21
	177Hf	176.9432	18.61
1	178Hf	177.9437	27.30
1	179Hf	178.9458	13.63
	180Hf	179.9466	35.10

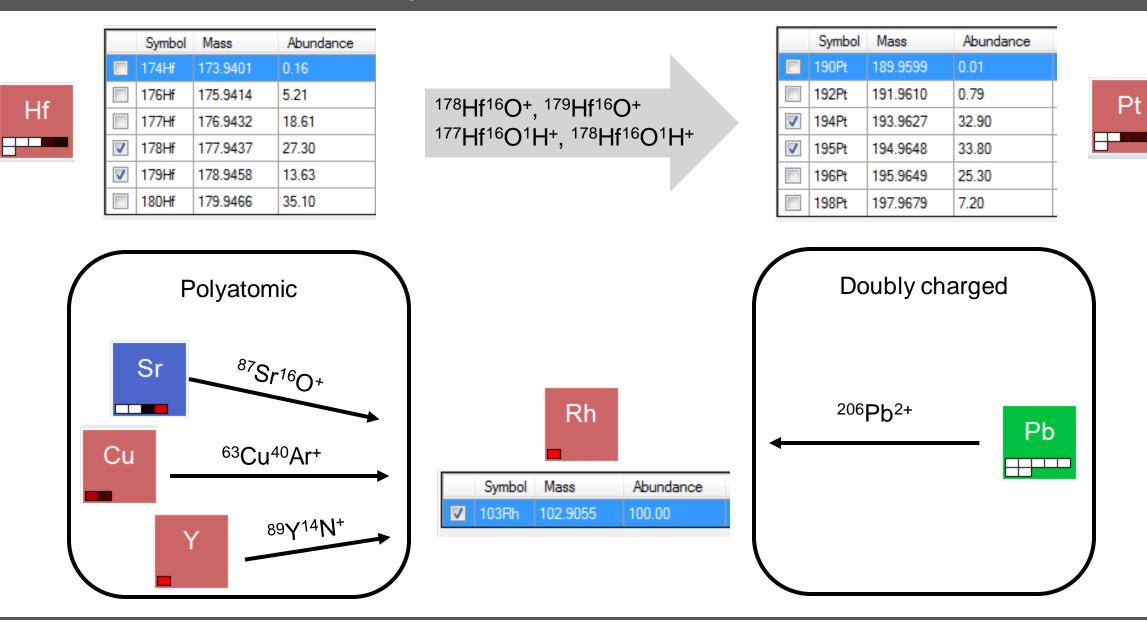
¹⁷⁸Hf¹⁶O⁺, ¹⁷⁹Hf¹⁶O⁺ ¹⁷⁷Hf¹⁶O¹H⁺, ¹⁷⁸Hf¹⁶O¹H⁺

	Symbol	Mass	Abundance
	190Pt	189.9599	0.01
	192Pt	191.9610	0.79
V	194Pt	193.9627	32.90
1	195Pt	194.9648	33.80
	196Pt	195.9649	25.30
	198Pt	197.9679	7.20

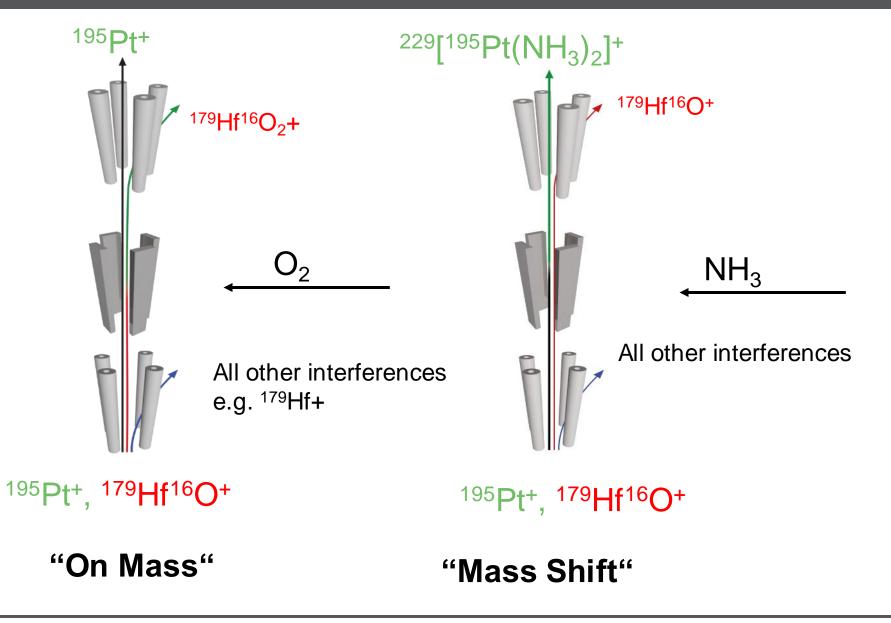

Interferences on Platinum Group Metals

	Symbol	Mass	Abundance
	174Hf	173.9401	0.16
	176Hf	175.9414	5.21
	177Hf	176.9432	18.61
1	178Hf	177.9437	27.30
1	179Hf	178.9458	13.63
	180Hf	179.9466	35.10

¹⁷⁸Hf¹⁶O⁺, ¹⁷⁹Hf¹⁶O⁺ ¹⁷⁷Hf¹⁶O¹H⁺, ¹⁷⁸Hf¹⁶O¹H⁺

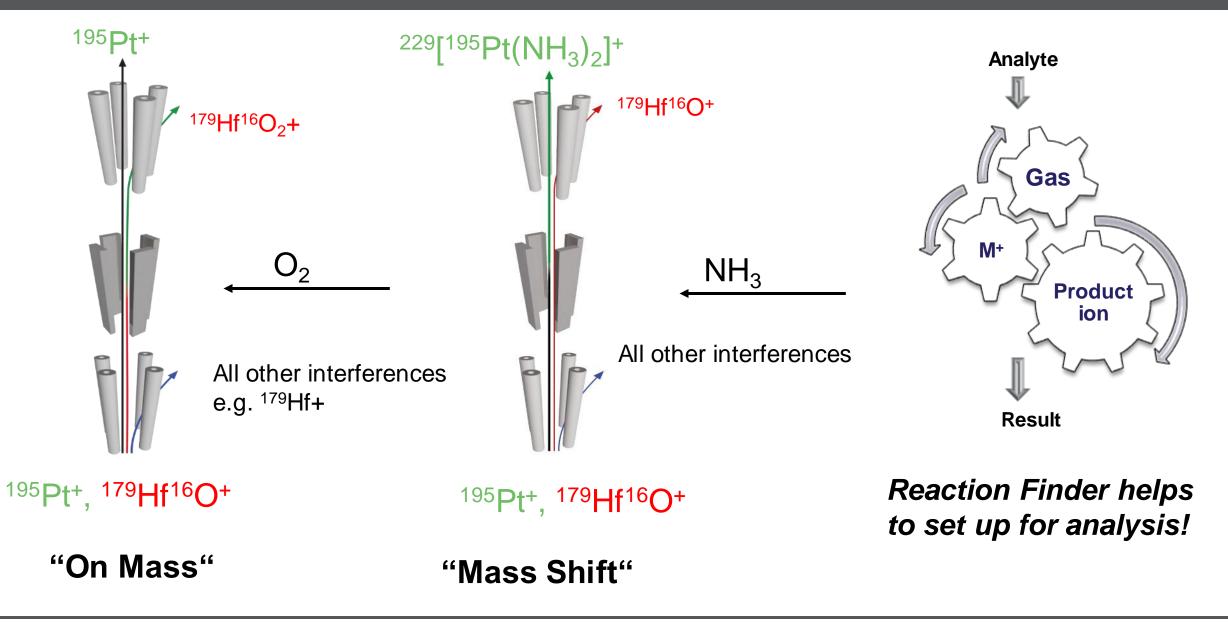

	Symbol	Mass	Abundance
	190Pt	189.9599	0.01
	192Pt	191.9610	0.79
V	194Pt	193.9627	32.90
1	195Pt	194.9648	33.80
	196Pt	195.9649	25.30
	198Pt	197.9679	7.20

Interferences on Platium Group Metals

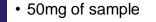


Interferences on Platinum Group Metals

Analyte	Interfering Elements	Туре
Zr	Y, Ge	Polyatomic
Nb	Br	Polyatomic
Rh	Sr, Y, Cu	Polyatomic
Ru	Mo, Pd	Isobaric
Pd	Y, Ru, Cd	Isobaric
Hf	Yb, Ho	Both
Та	Hf, Ho	Both
lr	Lu, Ta	Polyatomic
Pt	Hf, Hg	Both
Au	Та	Polyatomic



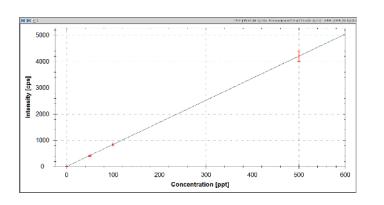
Interference Removal using TQ-ICP-MS



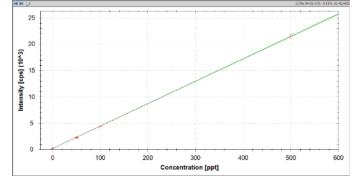
Interference Removal using TQ-ICP-MS

Sample Preparation

- Addition of 2mL of HF and 0.5mL of HNO_3 , cover and remain at room temperature for 6-8h
- Evaporate to dryness
- Addition of 2mL of HF, 0.5mL of HCLO₄ and 0.2mL of HNO₃, autoclave digstion at up to 220°C for 3.5 h
- · Evaporate to dryness
- Addition of 1mL HCI and 1 mL HNO₃
- Evaporate to dryness
- Addition of 0.8mL HCI and 0.8mL of HNO3
- Make up to 10mL final volume


- Additional 20-fold dilution before analysis
- All dilutions were made in 3% HCI, 1% HNO₃ to increase assure stability of PGM in solutions
- Rinse solution used contained same acid matrix

Digestion procedure described in Karandashev et al., Zavodskaya Laborarorija, 2016, p. 6-15


Results

• ¹⁹⁵Pt: Analysed on mass (O₂) and using mass shift (NH₃, ¹⁹⁵Pt⁺ \rightarrow [¹⁹⁵Pt(NH₃)₂]⁺)

Sample	Result [ppt]		Recov	ery[%]
	TQ-O ₂	$TQ-NH_3$	TQ-O ₂	$TQ-NH_3$
ICV (50ppt)	45.2	53.0	106	90
CCV (average, N=7)	-	-	95.2 ± 3.6	95.0 ± 6.4
GSP unspiked (N = 6)	4.64 ± 0.5	5.60 ± 1.3	-	-
GSP spiked 10ppt (N = 6)	16.01 ± 2.4	16.59 ± 2.4	114	110
GSP spiked 25ppt (N = 6)	29.88 ± 2.8	29.24 ± 4.7	101	95
Sensitivity [cts·(µg·L ⁻¹) ⁻¹]	8,406	2,144		
Detection Limit [ng·L-1]	0.1 ppt	0.7 ppt		

• ¹⁰³Rh: Analyzed in SQ-KED and TQ-O₂

Sample	Resu	t [ppt]	Recov	ery[%]
	SQ-KED	TQ-O ₂	SQ-KED	TQ-O ₂
ICV (50ppt)	50.8	51.5	102	103
CCV (average, N=7)	-	-	97.6 ± 3.1	92.0 ± 8.3
GSP unspiked $(N = 6)$	Not detected	Not detected	-	-
GSP spiked 10ppt (N = 3)*	10.86 ± 0.6	10.56 ± 0.2	108	106
GSP spiked 25ppt (N = 3)*	26.06 ± 1.8	23.27 ± 0.7	104	93
Sensitivity [cts · (µg · L -1) -1]	42,568	23,208		
Detection Limit [ng·L-1]	0.4 ppt	2.0 ppt		

Mineral Sample Results

African Mineral Standards Certified Reference Material AMIS0416

Element	Value [g·t ⁻¹]	Result [g·t ⁻¹]	Mode	Recovery [%]
Rh	0.29 ± 0.04	0.27 ± 0.04	¹⁰³ Rh, TQ-O ₂	93.1 ± 13
Pd	0.80 ± 0.06 (Cert., NiS Collection)			91.3 ± 6.3
	0.75 ± 0.04 (Prov., Pb Collection)	0.73 ± 0.05	¹⁰⁸ Pd, TQ-O ₂	97.3 ± 6.7
lr	0.13 ± 0.02	0.14 ± 0.02	¹⁹¹ Ir, TQ-O ₂	107.6 ± 15.3
Pt	1.46 ± 0.18	1.27 ± 0.14	¹⁹⁴ Pt, TQ-NH ₃	86.9 ± 10.3
	(Pb Collection)	1.33 ± 0.14	¹⁹⁴ Pt, TQ-O ₂	91.1 ± 9.6
	-	1.30 ± 0.15	¹⁹⁵ Pt, TQ-NH ₃	89.0 ± 10.3
		1.31 ± 0.19	¹⁹⁵ Pt, TQ-O ₂	89.7 ± 13.0
Au	0.14 ± 0.04 (Pb Collection)	0.073 ± 0.02	¹⁹⁷ Au, TQ-NH ₃	52.1 ± 14.3*
	0.13 ± 0.02 (NiS Collection)	0.086 ± 0.03	¹⁹⁷ Au, TQ-O ₂	61.4 ± 21.4*
			* Potentially stability issues ir	n sample preparation and storage

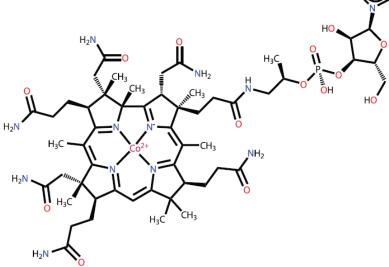
Thermo Fisher SCIENTIFIC

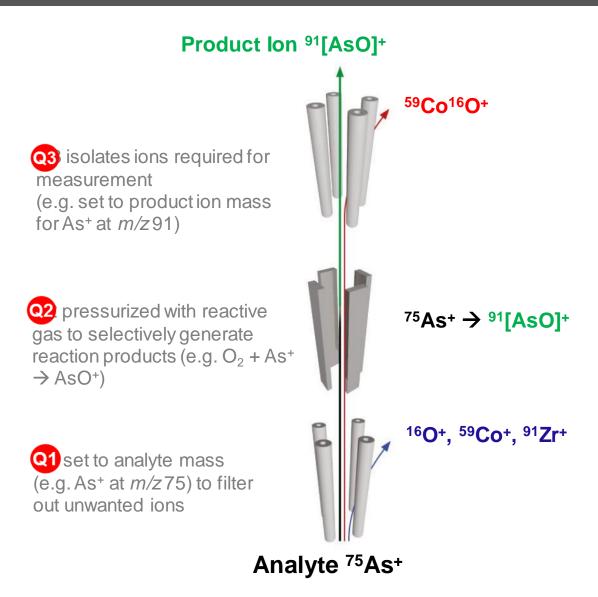
Trace Metals in Pharmaceutical Products and Cell Culture Media

- Inorganic impurities in pharmaceutical products are of great concern due to their inherent toxicity and adverse effects on drug efficacy, stability and shelf-life.
- The United States Pharmacopeia (USP) General Chapters <232> and <233> are ICP specific replacements for an outdated and non-specific colorimetric test prescribed by USP <231>.

Chapter <232>	Chapter <233>
Sets out permissible daily exposure limits from well characterized toxicity studies of 15 elements	Sets out sample preparation and analysis methods by ICP-OES and ICP-MS

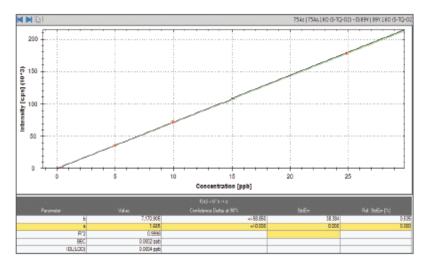
Other methods can be used as long as they have been validated and shown to provide appropriate limits of detection, precision and specificity for the metal impurities.




Determination of elemental impurities in Vitamin B12

Vitamin B12 contains approx. 4% (w/w) Cobalt

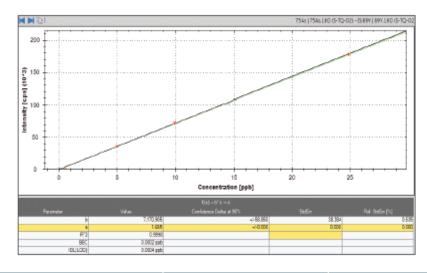
⁵⁹Co¹⁶O at *m/z*75 int. ⁷⁵As


Determination of Arsenic in Vitamin B12 in SQ and TQ Modes

Concentration Vitamin B12	Signal at <i>m/z</i> =59 (SQ-KED) [CPS]	Signal at <i>m/z=</i> 75 (SQ-KED) [CPS]	BEC in SQ- KED mode [ng∙g⁻¹]	Signal at <i>m/z</i> =75 (TQ-O₂)	BEC in TQ-O₂ mode [ng·g⁻¹]
BLK	73	2	0.0008	4	0.0007
0.0001 mg·mL ¹	202,455	13	0.003	9	0.001
0.001 mg·mL ⁻¹	2,174,144	88	0.02	10	0.001
0.01 mg·mL ¹	24,003,087	852	0.21	8	0.001
0.1 mg·mL¹	243,093,619	8744	2.47	18	0.002

• SQ-KED mode elevated BEC due to CoO contribution that cannot be suppressed with He KED

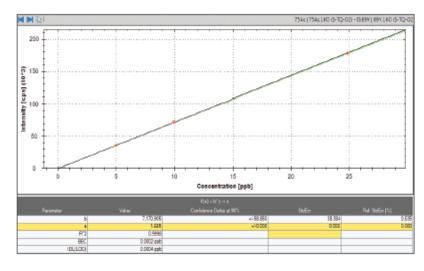
 TQ-O₂ mode - measuring AsO at *m/z* 91 is free from CoO interference and shows single digit ng-g⁻¹ BEC regardless of Vitamin B12 concentration


Calibration and Results for a Vitamin B12 Supplement

- Sample prepared according to manufacturers instructions, then diluted 1:100 for analysis
- As Sensitivity 7000 cps·ppb⁻¹
- BEC 0.0002 ng⋅g⁻¹
- Spike recovery of As, Cd, Hg, Pb determined

Element	Mode	Result [ng⋅g⁻¹]	Spiked concentration [ng⋅g⁻¹]	Recovery [%]	Recovery with butanol [%]
As	TQ-O ₂	0.019	9.87	179	99
As	SQ-KED	0.150	9.87	171	100
Cd	SQ-KED	Below IDL	3.29	97	98
Hg	SQ-KED	0.05	1.32	98	98
Pb	SQ-KED	0.1	6.58	105	107

Calibration and Results for a Vitamin B12 Supplement



- Sample prepared according to manufacturers instructions, then diluted 1:100 for analysis
- As Sensitivity 7000 cps·ppb⁻¹
- BEC 0.0002 ng⋅g⁻¹
- Spike recovery of As, Cd, Hg, Pb determined

Element	Mode	Result [ng⋅g⁻¹]	Spiked concentration [ng⋅g⁻¹]	Recovery [%]	Recovery with butanol [%]
As	TQ-O ₂	0.019	9.87	179	99
As	SQ-KED	0.150	9.87	171	100
Cd	SQ-KED	Below IDL	3.29	97	98
Hg	SQ-KED	0.05	1.32	98	98
Pb	SQ-KED	0.1	6.58	105	107

Increased recovery for As due to ionization effects in the sample solution! Addition of butanol to homogenize carbon content

Calibration and Results for a Vitamin B12 Supplement

- Sample prepared according to manufacturers instructions, then diluted 1:100 for analysis
- As Sensitivity 7000 cps·ppb⁻¹
- BEC 0.0002 ng⋅g⁻¹
- Spike recovery of As, Cd, Hg, Pb determined

Element	Mode	Result [ng⋅g⁻¹]	Spiked concentration [ng·g ⁻¹]	Recovery [%]	Recovery with butanol [%]
As	TQ-O ₂	0.019	9.87	179	99
As	SQ-KED	0.150	9.87	171	100
Cd	SQ-KED	Below IDL	3.29	97	98
Hg	SQ-KED	0.05	1.32	98	98
Pb	SQ-KED	0.1	6.58	105	107

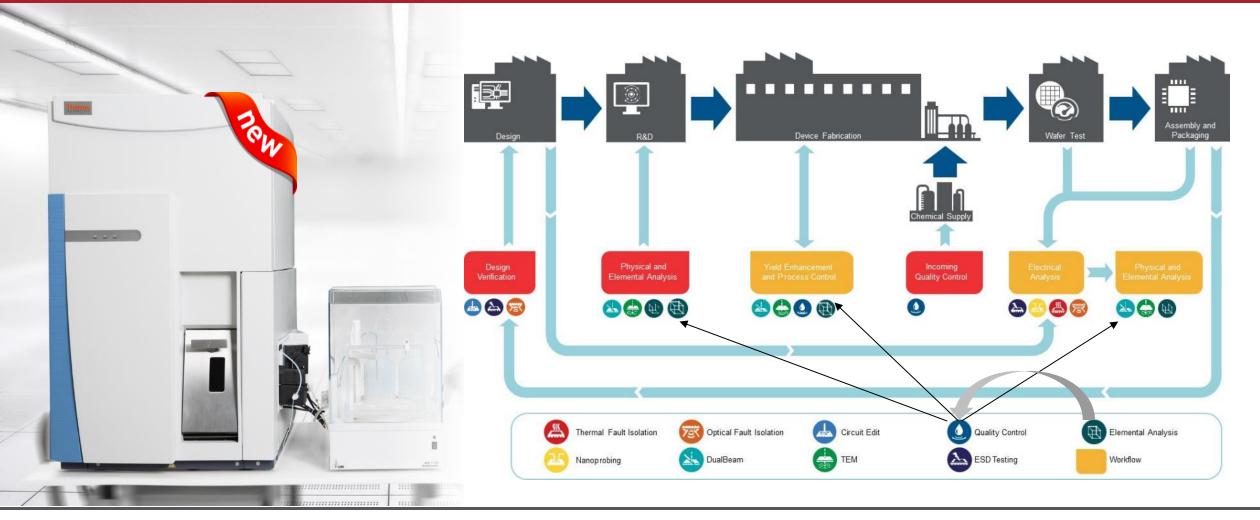
10 times higher reported concentration in SQ KED mode for As than TQ mode due to the CoO interference

Performance and Simplicity for Ultraclean Applications

- Improving wafer yields by ensuring ultra clean chemicals and materials
- Automated method development for reliable QA/QC
- On-line chemical analysis solution as well as laboratory QA/QC
- Performance to sub-ppt levels

Semiconductor Analysis Applications

- ✓ Wafer VPD and high Si matrix
- Photoresist/Organic solvents
- ✓ Ultra clean chemicals
- ✓ Aggressive Acids HF, HNO3 etc
- On-line chemical analysis close to wafer production


Ultra-high Chemical and Material QA/QC

- ✓ Chemicals acids, organics
- ✓ Metals Zn, Cu, W, Ag, Pt
- ✓ Materials Silicon
- ✓ Ultra high purity water
- ✓ Gas purity

Introducing the Thermo Scientific iCAP TQs ICP-MS

Performance and Simplicity for Ultraclean Applications

Thermo Scientific iCAP Qnova Series ICP-MS

The iCAP RQ ICP-MS and the iCAP TQs ICP-MS, built on the same robust platform, have shared capabilities for ease of use and powerful ultralow detection. Ideal for the laboratory or for real time process quality control in the semiconductor manufacturing line.

- Ergonomic, compact design, ideal for integration with online monitoring installations and vapor phase decomposition (VPD) solutions
- Chemically inert and quick fit sample introduction system ensure minimal contamination and reproducible, consistent data
- Robust performance with a combination of hot and cold plasma operation in one run ensures data quality and productivity
- Streamlined and automated daily tasks with intuitive software workflows
- Easy installation and minimal bench space requirements in clean room and production facilities

Thermo Scientific iCAP TQs ICP-MS

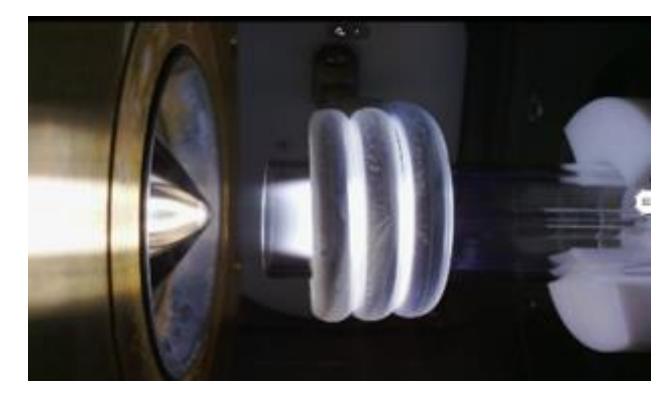
Push the boundaries of detection with triple quadrupole ICP-MS performance and ease of use for QA/QC analysis in the wafer fabrication process with the iCAP TQs ICP-MS

- Powerful triple quadrupole technology for improved interference removal and right first time analysis
- Ultralow detection, even in challenging matrices
- Easy and fast set-up using the unique Reaction Finder method development assistant
- Reliable instrument operation through integrated reaction gas handling features
- Dry fore-vacuum pump for clean room environments

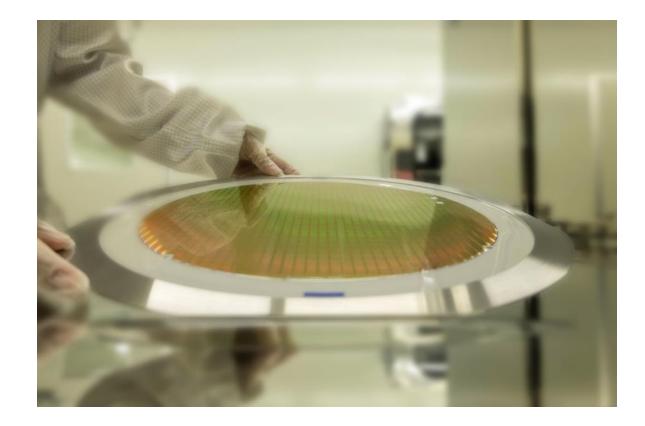
Integration into Lab and Fab Workflows

The intelligent design of the iCAP Qnova Series ICP-MS is ideal for integration with automated sample handling systems and specialized equipment

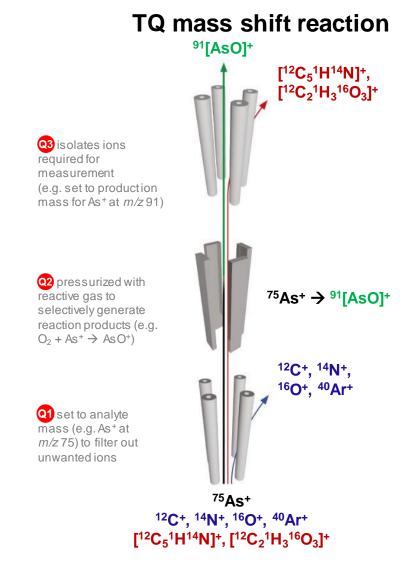
Automation Compatibility with a range of autosampler and autodilution accessories for direct analysis of high purity chemicals.


On-line monitoring Real-time statistical control of semiconductor process chemicals is enabled through integration with in-line automated process monitoring tools.

Vapor Phase Decomposition Integration with VPD solutions delivers an efficient and reproducible solution for wafer contamination control at ultralow levels.


- Cold Plasma (CP) Operation
 - Lower forward power (< 600 W)
 - Reduced argon and carbon ionization fewer polyatomic interferences
- CP, Kinetic Energy Discrimination (KED) and Triple Quadrupole (TQ) modes combined in one method
 - Remove all polyatomic interferences at once
 - Some analytes are more sensitive under hot plasma conditions

Determination of Ultratrace Elements in Photoresist Solvents


- Propylene glycol methyl ether acetate (PGMEA) and N-methyl-2-pyrrolidone (NMP):
 - Base organic solvents of semiconductor photoresists
 - Direct contact with wafer surfaces, impurities must be tightly controlled
- Simple ICP-MS analytical method should:
 - Detect ultratrace (ng·L⁻¹) levels of analytes
 - Avoid contamination caused by sample preparation
- PGMEA and NMP considered difficult matrices due to:
 - High volatility
 - High carbon content: significant polyatomic interferences!

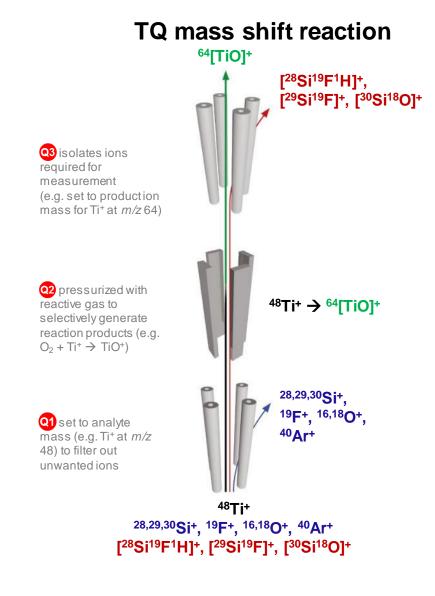
Hardware Setup for Ultratrace Elements in Photoresist Solvents

- Dedicated sample introduction system
 - 100 µL·min⁻¹ self-aspirating PFA micro flow concentric nebulizer
 - Peltier cooled quartz spraychamber (at -10 °C).
 - High purity oxygen added to the aerosol to prevent carbon matrix build up on the interface
 - 1.0 mm diameter quartz injector to minimize carbon loading of the plasma
- Identical instrument parameters for both NMP and PGMEA
 - Improved sample throughput without any sacrifice in performance

Results of Ultratrace Elements in Photoresist Solvents

Analyte	Analysis Mode	LoD (ng∙L ⁻¹)		Spike Recovery (% of 100 ng⋅L ⁻¹)	
		PGMEA	NMP	PGMEA	NMP
⁷ Li	SQ-CP-NH ₃	0.2	0.9	97%	98%
²³ Na	$SQ-CP-NH_3$	1.3	10.2	98%	97%
²⁴ Mg	$SQ-CP-NH_3$	0.4	5.0	97%	91%
²⁷ AI	SQ-CP-NH ₃	1.1	3.8	97%	100%
³⁹ K	SQ-CP-NH ₃	1.3	6.4	102%	106%
⁴⁰ Ca	SQ-CP-NH ₃	1.2	8.1	96%	94%
⁵² Cr	$SQ-CP-NH_3$	2.0	3.3	97%	92%
⁵⁵ Mn	SQ-CP-NH ₃	0.3	8.4	93%	99%
⁵⁶ Fe	SQ-CP-NH ₃	3.1	2.0	104%	103%
⁵⁹ Co	SQ-CP-NH ₃	0.4	0.7	95%	100%
⁶³ Cu	SQ-CP-NH ₃	1.2	3.4	98%	96%
⁵¹ V	SQ-KED	2.6	2.8	105%	96%
⁶⁶ Zn	SQ-KED	14.3	18.8	94%	100%
⁹⁸ Mo	SQ-KED	1.6	2.1	97%	111%
¹⁰⁷ Ag	SQ-KED	1.5	1.8	97%	111%
¹¹¹ Cd	SQ-KED	3.7	2.6	85%	107%
¹³⁸ Ba	SQ-KED	0.1	0.0	94%	101%
⁴⁸ Ti ⁶⁴ Ti.O	TQ-O ₂	0.8	1.4	97%	108%
⁷⁵ As ⁹¹ As.O	TQ-O ₂	1.9	3.7	88%	106%
⁸⁰ Se ⁹⁶ Se.O	TQ-O ₂	2.0	2.4	99%	106%

- Detection limits calculated from 3σ of 10 replicate measurements of the calibration blank.
- Spike recoveries of between 88% and 111% were obtained for all twenty-one elements in NMP and PGMEA.
- Low detection limits achieved
 - Powerful interference removal capabilities from the combination of cold plasma and triple quadrupole technologies on the iCAP TQs ICP-MS.


- Maximum allowable trace metallic impurity levels in process materials are moving to lower levels.
- Most widely used semiconductor material is silicon wafer
 - > 99.9999999% Si (9N purity).
- Monitoring trace element contamination is a routine requirement in the semiconductor industry
 - Surface contamination sampled by vapor phase decomposition (VPD)
 - VPD samples contain high acid and silicon concentrations, low target analyte concentration
 - Sample matrix generates significant polyatomic interferences on target elements

Hardware Setup for Ultratrace Elements on Silicon Wafer Surfaces

- Dedicated, HF resistant sample introduction system
 - 100 µL·min⁻¹ self-aspirating PFA micro flow concentric nebulizer
 - PFA double pass spray chamber
 - 2.0 mm diameter quartz injector
- Routine, direct analysis of VPD samples is possible with these components

Results of Ultratrace Elements on Silicon Wafer Surfaces

Analyte	Analysis Mode	LoD (ng·L ⁻¹)	Measurement Results (ng·L ⁻¹)	Spike Recovery (% of 50 ng⋅L⁻¹)	Reproducibility (n=5) (%)
⁷ Li	SQ-CP-NH ₃	0.1	0.02	98	95.2 ± 3.7
²³ Na	SQ-CP-NH ₃	0.6	2.3	100	100.2 ± 1.5
²⁴ Mg	SQ-CP-NH ₃	0.3	0.4	99	98.3 ± 2.2
²⁷ AI	$SQ-CP-NH_3$	1.3	6	104	105.2 ± 3.1
³⁹ K	SQ-CP-NH ₃	0.6	1	98	101.0 ± 1.5
⁴⁰ Ca	$SQ-CP-NH_3$	1	4.1	103	101.4 ± 4.1
⁴⁸ Ti ⁶⁴ TiO	TQ-O ₂	1.2	2.8	99	105.7 ± 1.5
⁵¹ V ⁶⁷ VO	TQ-O ₂	0.2	0.8	98	103.1 ± 1.6
⁵⁵ Mn	SQ-CP-NH ₃	2.3	3.5	97	103.8 ± 1.9
⁵⁶ Fe	SQ-CP-NH ₃	1.6	3.4	98	102.2 ± 3.3
⁵⁹ Co	SQ-CP-NH ₃	0.9	2.2	97	99.0 ± 2.3
⁶³ Cu	SQ-CP-NH ₃	0.9	1.7	98	99.5 ± 1.2
⁶⁶ Zn	SQ-KED	1.9	7.7	90	111.1 ± 3.4
⁷¹ Ga	SQ-KED	1.2	2.3	91	106.9 ± 4.4
⁷⁴ Ge ⁷⁴ Ge	TQ-O ₂	1	2.7	100	104.1 ± 1.2
⁷⁵ As ⁹¹ AsO	TQ-O ₂	0.4	0.7	101	106.0 ± 2.5
⁸⁸ Sr	SQ-KED	0.2	0.1	98	105.2 ± 2.8
⁹⁰ Zr	SQ-KED	0.1	0.1	96	105.7 ± 2.6
⁹⁸ Mo	SQ-KED	0.5	1.1	93	107.0 ± 3.8
¹⁰⁷ Ag	SQ-KED	0.3	1	95	107.0 ± 4.0
¹¹¹ Cd	SQ-KED	0.4	0.6	95	111.1 ± 4.5
¹¹⁸ Sn	SQ-KED	0.3	0.6	93	107.9 ± 4.0
¹²¹ Sb	SQ-KED	0.1	0.1	93	105.3 ± 2.0
¹³⁸ Ba	SQ-KED	0.1	0.1	93	105.7 ± 4.5
¹⁸⁴ W	SQ-KED	0.1	0.2	93	103.6 ± 3.8
²⁰⁸ Pb	SQ-KED	0.3	1.2	91	107.2 ± 4.1

- Detection limits calculated from 3σ of 10 replicate measurements of the calibration blank.
- Accurate spike recoveries from 90% to 104% were obtained for all 26 elements at 50 ng·L⁻¹
- Excellent reproducibility and reliability was achieved, despite 200 mg·L⁻¹ silicon matrix,
 - Powerful interference removal and robustness of the iCAP TQs ICP-MS in mixed hot and cold plasma analyses.

Thermo Scientific iCAP TQs ICP-MS

Accurate Results

Rely on improved interference removal capabilities to get right results first time!

Productivity

Use multiple analysis modes in one method for simplicity and productivity, without wasting sample or time!

Let Reaction Finder in the Qtegra ISDS Software select the isotope, gas and scan settings for you!

Run all elements using optimized settings in a single run!

Thermo Scientific iCAP TQs ICP-MS

Redefining Trace Element Analysis with Triple Quadrupole ICP-MS

All the Power, All the Performance None of the Complexity

Robust design for routine and research
 Advanced interference removal in challenging matrices
 Ultralow detection capabilities
 Unique ease of use
 Flexible automation options
 Ideal for advanced applications

Join the Fun! Cache a Chromeleon Game

• Use your mobile device to complete challenges and earn a Charlie Chromeleon plush toy!

• If you are playing, you have earned points for attending this seminar. Be sure to scan the barcode on the desk outside the door.

• Ask booth staff for more details on how to play.

Thank You

Please join me in the **Trace Elemental Analysis** section of our booth where I'll address additional comments and questions.

