

Orbitrap Exploris[™] Isotope Solutions: Isotope Fingerprints

Darren Tollstrup

Issaku Kohl, Nils Kuhlbusch, Andreas Hilkert, Dieter Juchelka

The world leader in serving science

Isotope Ratios as Fingerprints

 Materials have a unique chemical signature that allows them to be identified using untargeted and targeted analysis.

 Isotope Ratio Mass Spectrometry (IRMS) is used to measure the stable isotope ratios of specific elements and compounds: "supertargeted" analysis.

Isotope Ratios as Fingerprints

- Atoms consist of protons (+), neutrons (N), and electrons (-)
- Atoms of the same element always have the same number of protons, but may have different numbers of neutrons
- Atoms of an element with different numbers of neutrons are called **isotopes**
- Isotopes can be radioactive (they transform with time to other isotopes) or stable -> we focus on stable isotopes

Isotope Ratio Mass Spectrometry

The current Thermo Scientific[™] gas IRMS portfolio

- Thermo Scientific[™]
 DELTA Q[™] IRMS
- Sensitivity up to 800 M/I
- Mass range up to *m*/*z* 96
- Accommodates up to 10 collectors

- Thermo Scientific[™] 253 Plus[™]
 10 kV IRMS
- High-precision isotope analysis
- Long term stability and robustness
- Complete automation for easeof-use

Thermo Fisher

- Thermo Scientific[™] Ultra[™] HR-IRMS
- Double-focusing magnetic-sector mass analyzer
- Variable collector array
- Dual viscous flow inlet systems
- Optional (Multi) Ion Counting and RPQ

From sample to Isotope Fingerprints

Sample Pr	eparation	IRMS Analysis	Software reporting	Answers on origin and authenticity
Elemental Analyzer	AA			
Gas Chromatography Image: Chromatography Liquid Chromatography Image: Chromatography<	Linking Device Image:	Image: Non-Aligned stateImage: Non-Ali		A A A A A A A A A A A A A A A A A A A

Thermo Fisher S C I E N T I F I C

Mass spectrometers for isotope ratio analysis

Classic isotope-ratio MS N₂, O₂, N₂O

- Indirect: Conversion into simple gases
- Combining isotopologues on few signals

Thermo Scientific Orbitrap[™] MS

- **Direct**: Intact isotopologues
- Separation of **all species** by HRMS

Orbitrap Exploris Isotope Solutions

Thermo Scientific[™] Orbitrap Exploris[™] Isotope Solutions includes:

Thermo Fisher

Oxyanions: refine understanding of element cycling

Atmosphere

Soil

Thermo Fisher

Oxyanions are important chemical constituents of virtually every environment on Earth.

What's inside the Orbitrap Exploris MS

Essential components for isotope ratio analysis

Thermo Fisher

Electro Spray Ionization (ESI)

Ionization source:

- 1. Ionization of target molecules in liquid phase
- 2. Transfer of intact molecular ions to the gas phase
- 3. Transfer into the MS

Thermo Fisher

Important parameters for Orbital analyzer

Isotope ratio analysis

- Resolution:
 - Orbitrap analyzes a specific number of ions (ion package) per scan
 - Every scan results in a mass spectrum
 - Higher resolution requires longer scan
 time:

unio.	Resolution at <i>m</i> /z 200	Scans per second
NO	15,000	22
103	30,000	12
HSO -	45,000	10
11004	60,000	7
Organica	120,000	3
Organics	240,000	1.5

Dual Syringe Inlet

Sample introduction technique

- **Dual Syringe Inlet System** utilizing the diverter valve option of the Orbitrap Exploris MS
- Direct infusion of sample (50 μM in MeOH) with a flow rate of 4 μl/min via a syringe pump; sample reference comparison by switching of a diverter valve.

Isotope ratio methodology for Orbitrap MS

• Precision: maximizing ion counts

- Longer analysis times achieve greater precision.
- Lower resolution setting requires less time for scanning.
- Optimize mass range maximize the number of target ions.
- Accuracy: Sample/Standard comparison
 - NO₃⁻ Analysis of signals (reference/sample) for 6–9 mins

Automated In-Flow Injection

Sample introduction technique

- In-flow Injection Vanquish Neo UHPLC System
- Loop-injection of 20-30 μL sample (50 μM in MeOH) by the Autosampler into a flow of 4 μL/min of MeOH.

Orbitrap for isotopes: workflow for nitrate

Nitrate simplest model (4 atoms with isotope species: ¹⁴N, ¹⁵N, ¹⁶O, ¹⁷O, ¹⁸O)

Thermo Fisher

ESI-Orbitrap for isotopes – methodology

¹⁵N¹⁷O₂¹⁸O

< 0.1

66.0011

Thermo Fisher

SCIENT

• M0 peak as basepeak

ESI-Orbitrap for isotopes – methodology

• ¹⁵N or ¹⁸O peak as basepeak

	m/z	lsotopologue	Abundance	Percentage
MO	01.9884	¹⁴ N ¹⁶ O ₃	989242	98.9
M+1	62.9854	¹⁵ N ¹⁶ O ₃	3637	33.81
	62.9926	¹⁴ N ¹⁷ O ¹⁶ O ₂	1127	10.48
M+2	63.9896	¹⁵ N ¹⁷ O ¹⁶ O ₂	4.1	
	63.9926	¹⁴ N ¹⁸ O ¹⁶ O ₂	5951	55.32
	63.9968	¹⁴ N ¹⁷ O ₂ ¹⁶ O	0.4	
M+3	64.9897	¹⁵ N ¹⁸ O ¹⁶ O ₂	21.9	0.20
	64.9938	¹⁵ N ¹⁷ O ₂ ¹⁶ O	< 0.1	
	64.9968	¹⁴ N ¹⁷ O ¹⁸ O ¹⁶ O	4.5	0.04
	65.0010	¹⁴ N ¹⁷ O ₃	< 0.1	
M+4	65.9939	¹⁵ N ¹⁸ O ¹⁶ O ₂	< 0.1	
	65.9969	¹⁴ N ¹⁸ O ₂ ¹⁶ O	11.9	0.11
	65.9981	¹⁵ N ¹⁷ O ₃	< 0.1	
	66.0011	¹⁴ N ¹⁷ O ₂ ¹⁸ O	< 0.1	

Dual Inlet measurements of nitrate

'M0' experiment:

• Three nitrate reference materials available from USGS:^[1]

	$\delta^{15}N_{AIR}$	$\delta^{18}O_{VSMOW}$	¹⁷ O _{VSMOW}
USGS32	+ 180 ‰	+ 25.7 ‰	-
USGS34	- 1.8 ‰	- 27.9 ‰	- 14.8 ‰
USGS35	+2.7 ‰	+ 57.5 ‰	+ 51.5 ‰

Quality control: ¹⁵N/¹⁴N isotope ratio analysis

Block	Description	Ratio (¹⁵ N/ ¹⁴ N)	δ ¹⁵ NUSGS32/Air [‰]	δ ¹⁵ NUSGS32/Air [‰]	Std. Dev.
1	Reference (USGS35)	0.00430			
2	Sample (USGS32)	0.00506	→ 179.5		
3	Reference (USGS35)	0.00430			
4	Sample (USGS32)	0.00506	→ 179.3	179.6	0.4
5	Reference (USGS35)	0.00430			
6	Sample (USGS32)	0.00506	→ 180.1		
7	Reference (USGS35)	0.00430			

Referencing scheme for nitrate

Analysis of international standards for nitrate

Isotope ratio data of 'M0' and 'noM0' experiments using N11 as a working standard:^[1]

	$\delta^{15} N_{AIR}$	$\delta^{18}O_{VSMOW}$	¹⁷ O _{VSMOW}
USGS32	+ 180 ‰	+ 25.7 ‰	-
USGS34	- 1.8 ‰	- 27.9 ‰	- 14.8 ‰
USGS35	+2.7 ‰	+ 57.5 ‰	+ 51.5 ‰

Isotope ratio data of six of nitrate`s most abundant isotopologues using the In-Flow Injection setup.

[1] Böhlke, J.K .; et al. Rapid Commun. Mass Spectrom., 2003, 17, p. 1835–1846.

Nitrate analysis of environmental samples

'M0' experiment

Dual Syringe Inlet methodology

- Sample prep: "Dilute and Shoot"
 - Dilution to 1µM (62 pg NO₃⁻/µL) for high salinity samples
- Results $\delta^{15}N$ and $\delta^{18}O$
- Precision: < 1‰
- Difference Orbitrap Expected: < 1‰
- Takeaway
 - ESI tolerates up to **100-fold CI**-load
 - Ground waters diluted up to 1/500

[2] Hilkert, A.; et al. Anal. Chem. 2021, 93, 9139–9148.

22 nils.kuhlbusch@thermofisher.com | 13-October-2022 | JESIUM 2022

Other oxyanions – sulfate and phosphate

Stable Isotope Analysis of Intact Oxyanions Using Electrospray Quadrupole-Orbitrap Mass Spectrometry

Cajetan Neubauer,* Antoine Crémière, Xingchen T. Wang, Nivedita Thiagarajan, Alex L. Sessions, Jess F. Adkins, Nathan F. Dalleska, Alexandra V. Turchyn, Josephine A. Clegg, Annie Moradian, Michael J. Sweredoski, Spiros D. Garbis, and John M. Eiler

Cite This: Anal. Chem. 2020, 92, 3077-3085

Read Online

Isotope mapping of sulfates

	m/z	Isotopologue	Abundance
M0	96.9596	¹ H ³² S ¹⁶ O ₄	9408592
M+1	97.9590	¹ H ³³ S ¹⁶ O ₄	7427
	97.9638	¹ H ³² S ¹⁷ O ¹⁶ O ₃	1433
M+2	98.9554	¹ H ³⁴ S ¹⁶ O ₄ 42084	
	98.9638	¹ H ³² S ¹⁸ O ¹⁶ O ₃	7632
M+3	99.9596	¹ H ³⁴ S ¹⁷ O ¹⁶ O ₃	63
	99.9632	¹ H ³³ S ¹⁸ O ¹⁶ O ₃	59
	99.9680	¹ H ³² S ¹⁷ O ¹⁸ O ¹⁶ O ₂	9
M+4	100.9546	¹ H ³⁶ S ¹⁶ O ₄	145
	100.9596	¹ H ³⁴ S ¹⁸ O ¹⁶ O ₃	333
	100.9680	¹ H ³² S ¹⁸ O ₂ ¹⁶ O ₂	44

Thermo Fisher S C I E N T I F I C

Comprehensive IRMS of sulfates

• Dual Inlet experiment:

Reference:S-3477 (Working Standard)Sample:S-MIF-1, S-MIF-2

• Measured Isotope Data:

S-3477	δ ^{xx} [‰]	S-MIF1	δ ^{xx} [‰]	S-MIF2	δ ^{xx} [‰]	
33S	(3.33)	33S	14.81	33S	22.42	
34S	6.48	34S	10.26	34S	21.53	
36S	(12.35)	36S	19.47	36S	40.73	
170	(6.77)	170	na	170	na	
180	13.02	18O	na	18O	na	
Δ33	na (0)	Δ33	9.54	Δ33	11.39	
Δ36	na (0)	Δ36	-0.14	Δ36	0.33	
Δ17	na (0)	Δ17	3.3	Δ17	3.3	
Böhlke, USGS						

Samples provided by Joel Savarino Institut des Géosciences de l'Environnement/CNRS

[3] Geng L.; et al. J. Anal. At. Spectrom., 2019, 34, 1263–1271.

Preliminary results - unpublished data

Thermo Fisher

nils.kuhlbusch@thermofisher.com | 13-October-2022 | JESIUM 2022

Comprehensive IRMS of methanesulfonic acid (MSA)

Easy access to test new hypotheses

Thermo Fisher

SCIENT

[4] Ishino S.; et al. J. Geophys. Res. Atmos., 2021, 126 (6).[5] Wang K.; et al. Atmos. Chem. Phys., 2021, 21, 8357–8376.

26 nils.kuhlbusch@thermofisher.com | 13-October-2022 | JESIUM 2022

First results of methanesulfonic acid (MSA)

Thermo Fisher

SCIENT

Fragmentation of methanesulfonic acid (MSA)

Thermo Fisher

Thermo Fisher SCIENTIFIC

Analysis of two MSA samples

'noM0' experiments:

- Dual Inlet analysis of two MSA samples vs a working standard (Sigma-Aldrich)
 - $3x70 \text{ min runs} \rightarrow \text{error bars} \text{st. dev. of the 3 runs}$

Samples provided by Shohei Hattori Tokyo Tech & Nanjing

Outlook: isotopic anatomy of organic compounds

- Examples: amino acids, urea
- Position specific isotope analysis by fragmentation of organic molecules

Thermo Físher

.

Molecular targets for isotope ratio analysis

Application areas: ecology, environmental and paleoclimate research and similar disciplines

Thermo Fisher

Thank you to our collaborators

Cajetan Neubauer University of Colorado Boulder for close collaboration and help

Joel Savarino, John K. Böhlke and Shohei Hattori for providing sample and reference materials

Thermo Fisher Scientific : Kyle Fort Konstantin Aizikov Alexander Makarov Uwe Rickens Tabiwang Arrey Colin Wirth Christian Klaas Charles Cartwright John K. Böhlke Stan Mroczkowski

John Eiler Nathan Dalleska

Sebastian Kopf

Xingchen Wang

University of Colorado Boulder

BOSTON COLLEGE

science for a changing world

Caltech

32 nils.kuhlbusch@thermofisher.com | 13-October-2022 | JESIUM 2022

Thank you

33 nils.kuhlbusch@thermofisher.com | 13-October-2022 | JESIUM 2022

Copyright 2022

Basic characteristics for Orbitrap IRMS

eFT

- Intensity of very low abundant isotope species being affected by eFT not being triggered consistently (absorption and magnitude mode)
 - Increase of µScans
 - Use of magnitude mode only (turn off eFT)
 - PhiSDM?

34S18O clumped isotopolog at 5µscans

34S18O clumped isotopolog at 10µscans

How to increase precision for Orbitrap IRMS

• Ion statistics:

- 15,000 Resolution requires 40 ms / scan
- 24 Scans per second

Determining ion counts from Orbitrap measurements

(1)
$$R(^{15}N) = \frac{N(15N^{16}O_4)}{N(14N^{16}O_4)}$$

• Calculating the ion count (N) for every isotopolog in each scan based on its Orbitrap signal

[<u>1] https://doi.org/10.1021/acs.analchem.1c04141</u> Anal. Chem. 2022, 94, 1092–1100 [2] <u>https://doi.org/10.1016/j.jasms.2009.03.024</u> J Am Soc Mass Spectrom 2009, 20, 8, 1486–1495

ThermoFis

Isotope ratios

- Ratio (*R*) calculated by dividing the ion count (*N*) of the heavier isotope by the ion count of the lighter isotope
- For ¹⁵N in Nitrate:

(1

)
$$R(^{15}N) = \frac{N(15N^{16}O_3^{-})}{N(14N^{16}O_3^{-})}$$

- For the comparison of isotope ratios of natural abundances in between samples a working standards is sued
- The difference in the ratios expressed as δ -values

(2)
$$\delta({}^{15}\text{N}) = \left(\frac{R_{sample}({}^{15}\text{N})}{R_{standard}({}^{15}\text{N})} - 1\right) \cdot 1000 \,[\%_0]$$

Without pH adjustment:

- KH₂PO₄: 2.44E9 Intensity
- K₂HPO₄: 1.16E9 Inensity

 K_2HPO_4 gave <50% the intensity of KH_2PO_4

RT :0.00-70.00

70

20 10

100 1.93 3.09 4.46

Orbitrap Mass Analyzer

- Ions injected into the Orbitrap are trapped in an electrostatic field
- Each ion oscillates axially with a frequency that is proportional to its mass
- An image current of these oscillations is measured using a split outer electrode
- This image is then converted to a frequency spectrum using Fourier transform
- Frequency spectrum is converted to Mass Spectrum
- The longer a signal (transient) is measured, the higher the resolution