

Mastering the Balance of ICP-MS: Sensitivity and Matrix Robustness Without Trade-offs

Christoph Wehe, Tim Elseberg, Hans-Jürgen Schlüter, Norbert Quaas, Benno Straßer, Georgina Thyssen, Lothar Rottmann

The world leader in serving science

20th European Winter Conference on Plasma Spectrochemistry - 04 March 2025

Thermo Scientific[™] iCAP[™] MX Series ICP-MS

Thermo Scientific™Thermo Scientific™iCAP™ MSX ICP-MSiCAP™ MTX ICP-MS

 Single quadrupole

Thermo Scientific[™] iCAP[™] MX Series ICP-MS

Around 25% of all parts have changed

Thermo Fishei

- Redesigned sample introduction system and interface
 - All new electronics
 - IP claims filed for innovative technology

Instruments have lost about 10% weight

.

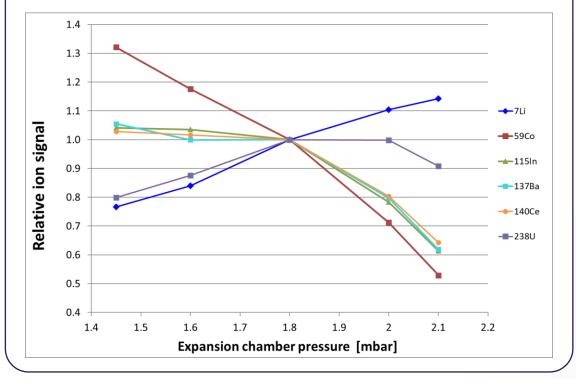
iCAP MX Series ICP-MS in a nutshell

Thermo Fisher S C I E N T I F I C

- Enhanced sensitivity
- Enhanced matrix robustness
- Ease of use

 How to combine higher sensitivity with higher matrix robustness?!?

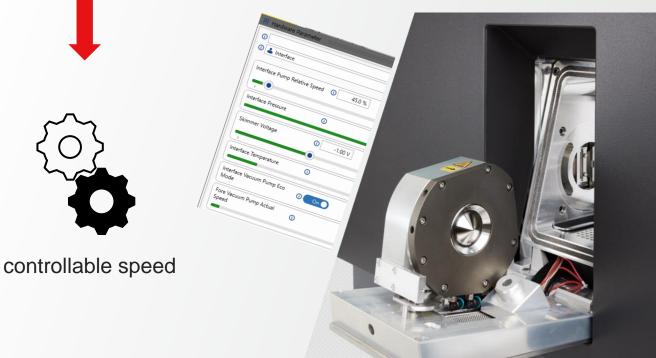
SENSITIVITY MATRIX EFFECTS

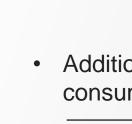

- Reduce matrix load to the system
- Adapt the system to handle difference matrices

- Areas of improvement
 - Interface between plasma and mass spectrometer
 - Tuning of ion optics
 - Sample introduction and online dilution system

Interface – keeping the pressure?

Static vs. adjusted interface pressure •


- Vacuum inside the interface region of the • instrument can be controlled via the pump speed of the fore vacuum pump
- Strong effect on sensitivity ٠



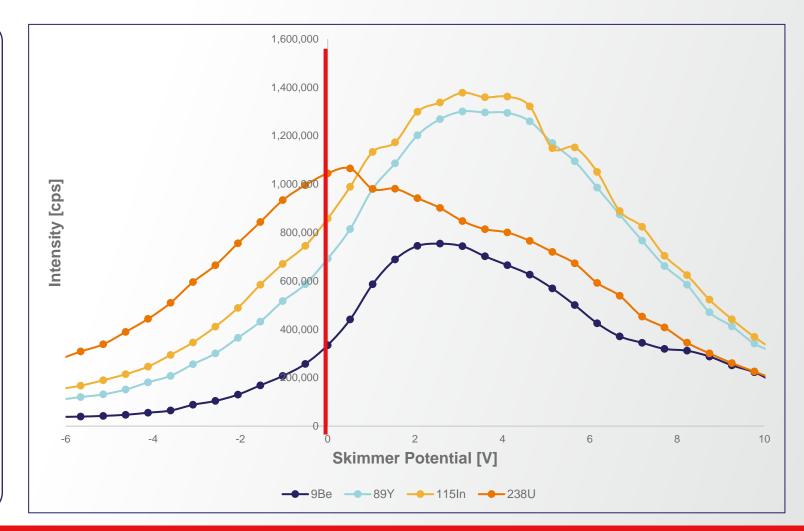
Additional benefit - less power ٠ consumption

Instrument	Average Energy Usage (kWh) / day		
iCAP MSX	24.7	72%	
iCAP MTX	25.6	75%	
RQ plus	34.1	100%	

Skimmer cone design

One interface for all applications

- Insert free skimmer cone offers flexibility with increased instrument uptime by eliminating need of insert changes
- Variable voltages can be applied to skimmer cone, mimicking the different skimmer inserts
- One interface hardware for all sample types no manual intervention, minimum inventory
- Automatic and easy switch-over between various applications: Matrix or Sensitivity

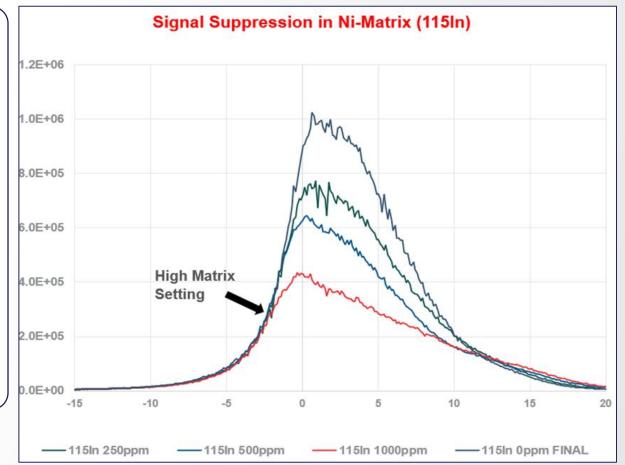

Thermo Fi

skimmer cone

Tailored performance without hardware modifications

Optimized settings for boosting sensitivity

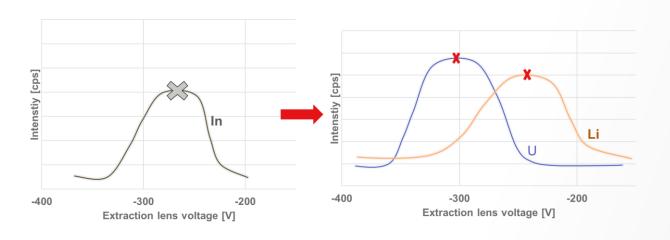
- Rapid pressure drop downstream of the skimmer orifice
- Increased mean free path due to fewer particle collisions
- Higher electron mobility leads to faster diffusion out of the beam than ions
- Net positive charge results in ion beam expansion inside the skimmer (space charge effect)
- Positive skimmer potential induces a radial force directing ions toward the beam axis
- This force counteracts beam expansion caused by the space charge effect

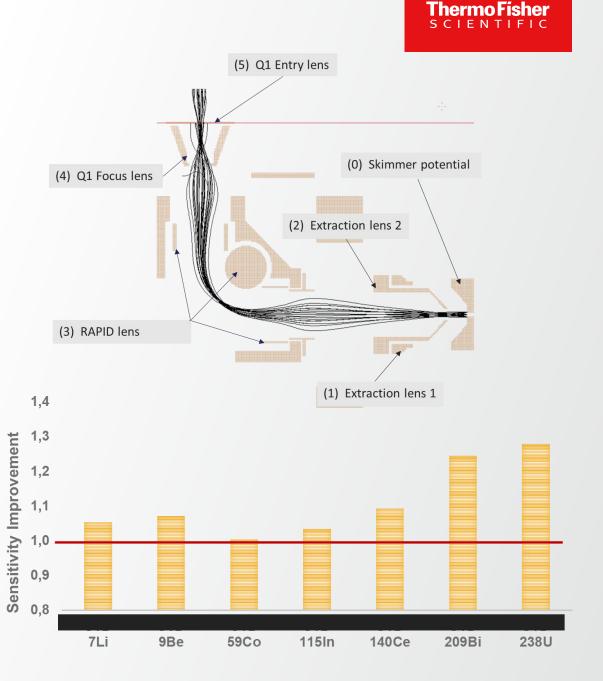

Positive Skimmer potential improves sensitivity

Optimized settings for optimized matrix handling

- Additional matrix ions increase beam expansion due to space charge, leading to higher analyte ion loss (matrix suppression)
- This effect is reduced if the initial ion beam (without matrix) has a larger diameter and is less concentrated on the beam axis
- A negative skimmer potential can achieve this for matrix measurements
- Negative skimmer potential induces a radial force directing ions away from the beam axis → defocusing
- Reduced matrix suppression in case of additional matrix ions
 (better matrix recovery)

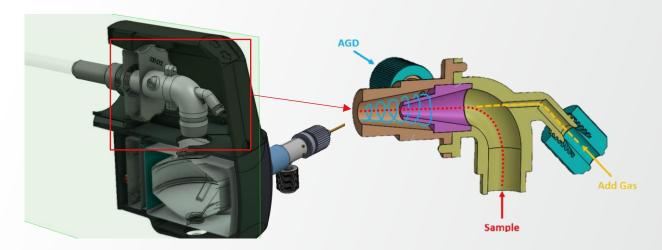
	59Co	38Ar	Ratio
"S-plus"			
" S-plus" 1.65 mbar	1127000	3.47E+07	3.3 %
2.0 V			
"M-minus"			
2.17 mbar	109450	1.02E+06	10.7 %
-3.0 V			

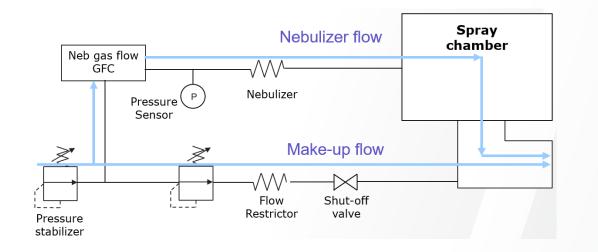



Analyte/Interference ratio improves in attenuated beam

8 20th European Winter Conference on Plasma Spectrochemistry - 04 March 2025

Revisiting ion optics tuning


- Ion optical lens voltages are changed according to desired *m/z* ratio for optimal transmission of certain mass ranges
 - Tuning across entire mass range setting multiple points across the full range, instead of the typical approach of using one mass and single optimized value
 - Tuned values from 4 to 6 points/masses will be used to calculate polynomial function for the entire mass range



Argon Gas Dilution

- Enables introduction of high matrix samples
- Dilute samples with Argon Gas Dilution
 - No manual dilution necessary, less solvent needed
 - No hardware change required

- AGD introduced via integrated nozzle ensuring tangential argon flow
- Pre-defined gas dilution allows analysis direct analysis of samples with up to 35% total dissolved solids (TDS)

Argon gas dilution

Thermo Fisher

Controlled Interface Vacuum

Skimmer on Potential

Scanning Lenses

- Higher linear dynamic range of up to 11 orders of magnitude
- Longer cleaning intervals

- Enhanced sensitivity
- Enhanced matrix robustness
- Ease of Use

Thank you

Come visit our booth for in-depth discussions!

12 20th European Winter Conference on Plasma Spectrochemistry - 04 March 2025