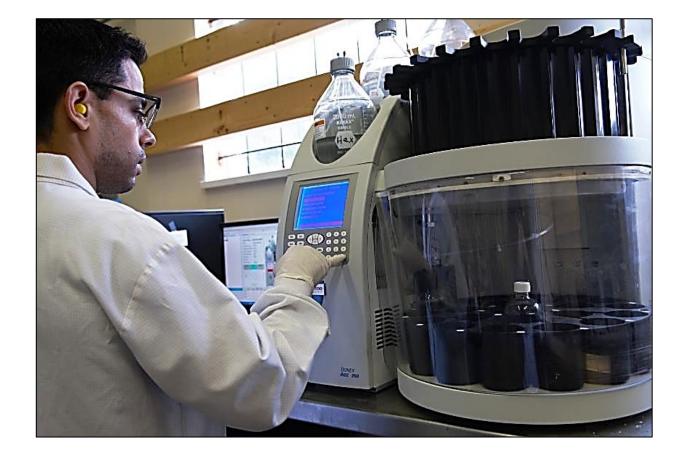
New Advancements in Preparing Solid and Semi Solid Samples for POPs Analysis

Matthew MacLennan – Pacific Rim Laboratories

Chris Shevlin – Thermo Fisher Scientific



EXTREMASE

Up-to-date Data Pacific Rim Laboratories



ASE 350 + Rocket Evaporator

Extreva ASE

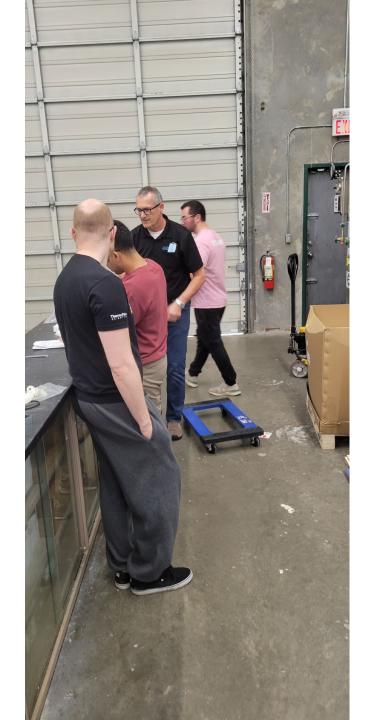


Table of Contents

- 1. Tests \rightarrow DxF/PCB and PFAS
- 2. Tests on ASE350 versus Extreva
- 3. Method Transfer Results
- 4. Conclusions and Recommendations

Extreva Specs

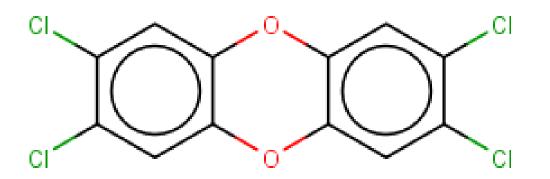
Test		Temp (°C)	Fill vol	Static phases	flow rate	control flow time	Extraction time	Comments
DF/PC	EXTREVA	100	50%		5.7 mL/min	20 mins	0:53:13	all four bottles have ~ 160 mL extracts
DF/PC	EXTREVA	100	50%		1.5 mL/min	20 mins	0:50:52	Low extracts volume~40- 50ml instead of 85 mL , especially 3210B with less than 10 mL extract collected
DF/PC DF/PC	A3L 330	100	70% 50%	2 x 5 mins 3 x 5 mins			2:08:00	as usual, nothing special
DF/PC	EXTREVA	100	50%		1.5 mL/min	20 mins	0:52:35	3218B from channel 1 also has low extract, re- extracted once more the next day .

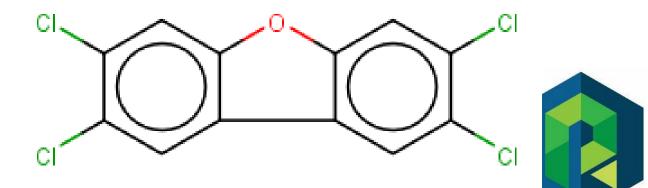
Test Summary: Dioxin/Furan; PCB \rightarrow *soil*

Two tests on Extreva

1. ASE350 method direct transfer

2. ASE350 method using half the solvent volume


Test Summary: Dioxin/Furan; PCB \rightarrow *soil*


2378-TCDD 12378-PeCDD 123478-HxCDD 123678-HxCDD 123789-HxCDD 1234678-HpCDD 0CDD

Analysis of

- 7 dioxins
- 10 furans

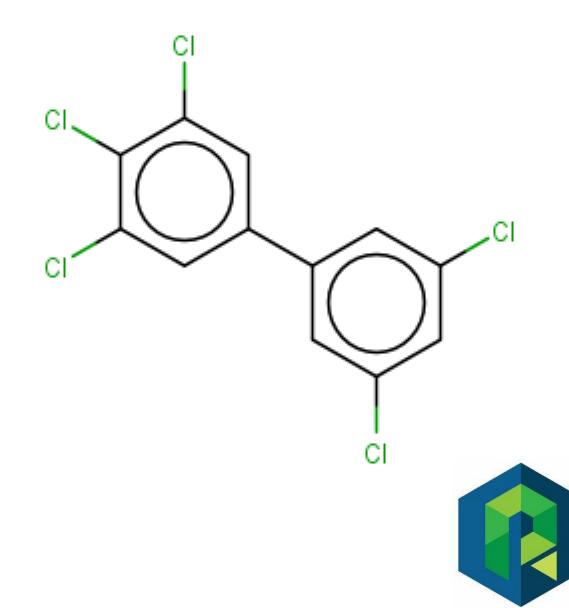
2378-TCDF 12378-PeCDF 23478-PeCDF 123478-HxCDF 123678-HxCDF 234678-HxCDF 123789-HxCDF 1234678-HpCDF 1234789-HpCDF 0CDF

GC-HRMS Analysis DxF in Soil

ASE 350 optimized method

INTERNAL STANDARDS	% REC	STDEV	RSD
2378-TCDD	50	5.57	11.2%
12378-PeCDD	68	5.32	7.8%
123478-HxCDD	72	4.55	6.3%
123678-HxCDD	105	10.02	9.6%
1234678-HpCDD	72	10.86	15.1%
OCDD	40	2.83	7.1%
2378-TCDF	44	5.44	12.4%
12378-PeCDF	51	0.82	1.6%
23478-PeCDF	60	6.45	10.8%
123478-HxCDF	68	8.29	12.2%
123678-HxCDF	95	6.90	7.2%
234678-HxCDF	94	9.00	9.5%
123789-HxCDF	86	4.03	4.7%
1234678-HpCDF	93	7.63	8.2%
1234789-HpCDF	74	8.46	11.5%

GC-HRMS Analysis DxF in Soil


INTERNAL STANDARDS	%REC	STDEV	RSD
2378-TCDD	44	4.65	10.5%
12378-PeCDD	61	5.51	9.1%
123478-HxCDD	59	7.70	13.1%
123678-HxCDD	82	10.87	13.2%
1234678-HpCDD	57	5.97	10.4%
OCDD	35	4.65	13.5%
2378-TCDF	37	5.45	14.9%
12378-PeCDF	46	6.32	13.7%
23478-PeCDF	52	5.19	9.9%
123478-HxCDF	54	4.11	7.6%
123678-HxCDF	77	9.36	12.1%
234678-HxCDF	76	5.35	7.0%
123789-HxCDF	60	6.55	10.9%
1234678-HpCDF	72	7.27	10.1%
1234789-HpCDF	59	7.27	12.3%

GC-HRMS Analysis DxF in Soil

EXTREVA (85 mL) total solvent

INTERNAL STANDARDS	%REC	STDEV	RSD
2378-TCDD	30	0.5	1.7%
12378-PeCDD	38	4.65	12.1%
123478-HxCDD	41	6.85	16.8%
123678-HxCDD	54	8.54	15.9%
1234678-HpCDD	37	2.94	8.0%
OCDD	23	4.69	20.4%
2378-TCDF	26	2.52	9.9%
12378-PeCDF	31	3.10	9.9%
23478-PeCDF	37	3.20	8.7%
123478-HxCDF	38	4.55	12.0%
123678-HxCDF	51	8.54	16.7%
234678-HxCDF	49	6.35	13.1%
123789-HxCDF	44	7.18	16.4%
1234678-HpCDF	44	5.74	13.2%
1234789-HpCDF	39	3.30	8.4%

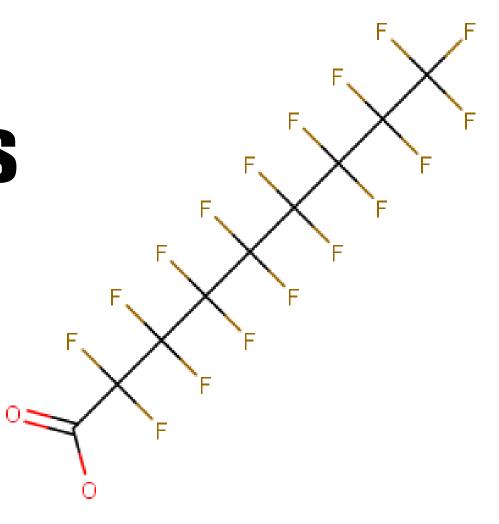
GC-HRMS Analysis of 209 PCBs in soil

GC-HRMS Analysis of 209 PCBs in soil ASE 350 Method – Std Recoveries

C13 INTERNAL STANDARD	%REC	RSD
PCB 1	7	33%
PCB 3	8	45%
PCB 4	13	30%
PCB 15	17	36%
PCB 19	20	25%
PCB 37	34	21%
PCB 54	27	21%
PCB 81	59	10%
PCB 77	64	10%

PCB 104	32	14%	
PCB 123	62	5%	
PCB 118	60	6%	
PCB 114	62	4%	
PCB 105	66	3%	
PCB 126	77	4%	
PCB 155	40	11%	ľ
PCB 167	65	3%	
PCB 156	68	7%	
	PCB 123 PCB 118 PCB 114 PCB 105 PCB 105 PCB 126 PCB 155 PCB 167	PCB 123 62 PCB 118 60 PCB 114 62 PCB 105 66 PCB 126 77 PCB 155 40 PCB 167 65	PCB 123 62 5% PCB 118 60 6% PCB 114 62 4% PCB 105 666 3% PCB 126 77 4% PCB 155 40 11% PCB 167 65 3%

	PCB 157	70	2%
	PCB 169	66	5%
	PCB 188	50	3%
	PCB 189	87	7%
	PCB 202	55	3%
1	PCB 205	74	1%
	PCB 208	70	8%
	PCB 206	61	3%
	PCB 209	60	3%


GC-HRMS Analysis of 209 PCBs in soil EXTREVA Method – Std Recoveries

C13 INTERNAL STANDARD	%REC	RSD
PCB 1	3	54%
PCB 3	3	63%
PCB 4	7	36%
PCB 15	10	46%
PCB 19	15	45%
PCB 37	24	35%
PCB 54	20	26%
PCB 81	44	27%
PCB 77	47	28%

PCB 104	25	24%
PCB 123	44	25%
 PCB 118	43	25%
PCB 114	44	25%
PCB 105	48	24%
PCB 126	55	25%
PCB 155	34	27%
PCB 167	47	26%
PCB 156	49	22%

PCB 157	51	25%
PCB 169	47	26%
PCB 188	39	23%
PCB 189	58	24%
PCB 202	45	25%
PCB 205	54	25%
PCB 208	51	25%
PCB 206	45	27%
PCB 209	45	26%
	PCB 169 PCB 188 PCB 189 PCB 202 PCB 205 PCB 208 PCB 208 PCB 206	PCB 169 47 PCB 188 39 PCB 189 58 PCB 202 45 PCB 205 54 PCB 208 51 PCB 206 45

LC-MS/MS Analysis of PFAS in soil

Extreva Specs - PFAS

Test		Temp (°C)	Fill vol	Static phases	flow rate	control flow time	Extraction time	Comments
PFAS	ASE	100	50%	3 x 5 mins			1:36:00	as usual, nothing special
PFAS	EXTREVA	100	50%		5 mL/min	20mins	0:58:01	7076B on Channel 2 has low extracts ~30 mL instead of ~155 mL

Test Summary: PFAS \rightarrow *soil*

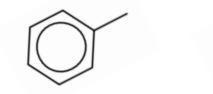
Extreva 1. ASE350 method direct transfer

LC-MS/MS of PFAS in soil

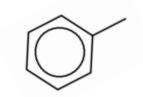
ASE 350

MPFBA	111	98	32
M5PFPeA	110	93	67
M5PFHxA	136	114	82
M4PFHpA	130	81	85
M8PFOA	104	100	95
M9PFNA	75	66	70
M6PFDA	97	90	89
M7PFUdA	83	92	90
MPFDoA	90	112	116
M2PFTeDA	61	95	91
M3PFBS	83	67	83
M3PFHxS	67	62	92
M8PFOS	118	98	101
M3HFPODA	87	78	64
D3NMEFOSAA	103	104	95
D5NETFOSAA	103	113	110
M8FOSA	85	64	75
M2-4:2FTS	52	37	50
M2-6:2FTS	61	55	87
M2-8:2FTS	103	79	104

LC-MS/MS of PFAS in soil

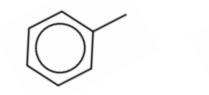

EXTREVA

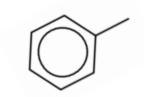
		-	
MPFBA	53	63	40
M5PFPeA	54	66	64
M5PFHxA	64	86	79
M4PFHpA	65	83	81
M8PFOA	77	102	93
M9PFNA	60	74	67
M6PFDA	74	95	88
M7PFUdA	64	86	79
MPFDoA	73	101	73
M2PFTeDA	65	93	74
M3PFBS	41	46	55
M3PFHxS	52	63	70
M8PFOS	77	101	92
M3HFPODA	43	8	94
D3NMEFOSAA	81	96	83
D5NETFOSAA	76	92	86
M8FOSA	59	87	69
M2-4:2FTS	24	21	30
M2-6:2FTS	46	51	61
M2-8:2FTS	64	73	76



Extreva Specs

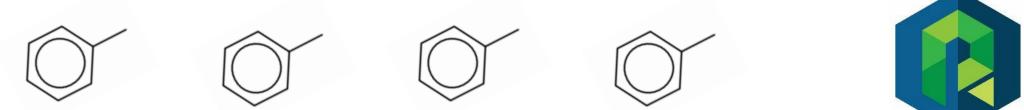
No. of	Extraction only time		No. of	Extraction + Evaporation		
samples	Extreva	ASE350	samples	Extreva	ASE350 + Rocket	
4 samples	~50 minutes	\sim 130 minutes	4 samples	~171 minutes	\sim 220 minutes	
16 samples	~200 minutes	\sim 520 minutes	16 samples	~684 minutes	~ 620 minutes	
Extraction Solvent	9:1 toluene: methanol		Extraction Solvent	9:1 toluene: methanol		

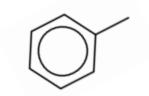




Extreva Specs

No. of	Extraction only time		No. of	No. of		Extraction + Evaporation		
samples	Extreva	ASE350	samples		Extreva	ASE350 + Rocket		
4 samples	~50 minutes	\sim 130 minutes	4 samples		~171 minutes	~ 220 minutes		
16 samples	~200 minutes	\sim 520 minutes	16 samples	~	~684 minutes	~ 620 minutes		
Extraction 9:1 toluene: methanol		Extraction Solvent		9:1 toluen	e: methanol			

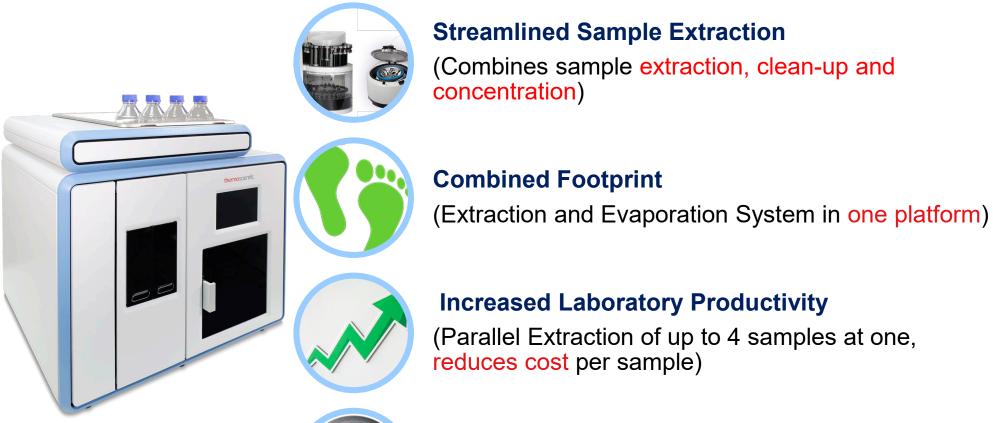




				Does not include manual labour for transferring samples from ASE350 to Rocket			
Extreva Specs							
No. of	Extraction only time		No. of		Extraction + Evaporation		
samples	Extreva	ASE350	samples		Extreva	ASE350 + Rocket	
4 samples	~50 minutes	~ 130 minutes	4 samples	,	~171 minutes	~ 220 minutes	
16 samples	~200 minutes	~ 520 minutes	16 samples	,	~684 minutes	~ 620 minutes	
Extraction Solvent	9:1 toluene: methanol		Extraction Solvent	9:1 toluene: methanol			

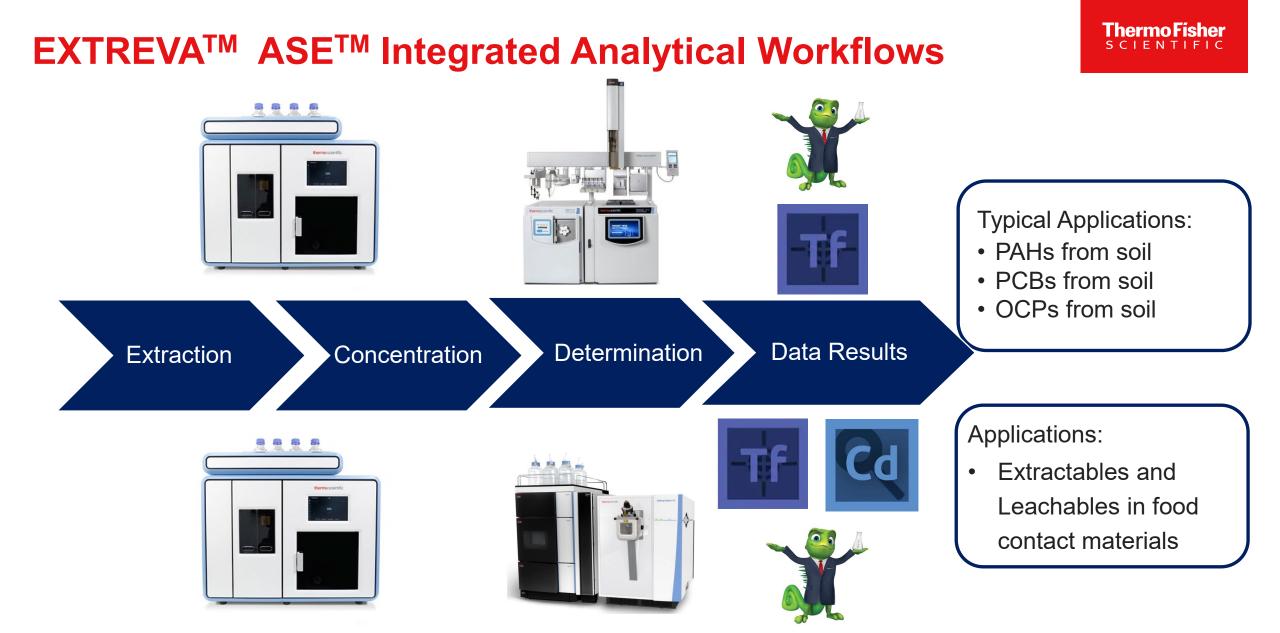
Summary \rightarrow METHOD DEVELOPMENT

Summary \rightarrow EXTRACTION TIME



General Recommendations

- We are working to increase uptime; notification system
- Push the limit to reduce solvent usage; design of experiment
- Continue to test real-world samples (soil, solids, tissue) at random


EXTREVA ASE Key Benefits

Complete Workflow from Sample to Vial (True walk-away technology)

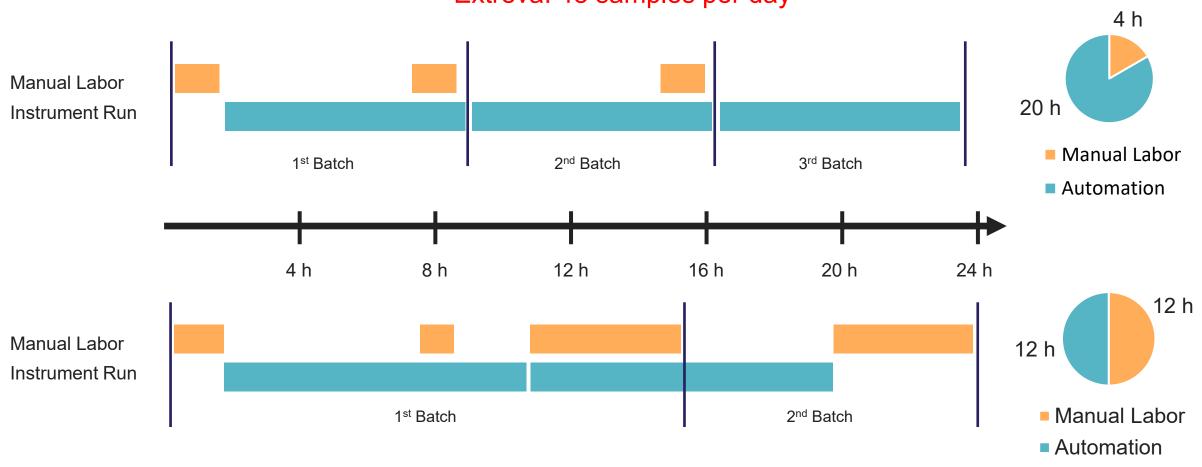
Increased productivity, better consistancy & reduces costs

Automation from Sample to Vial Eliminates Pressures of Sample Preparation

How does EXTREVA ASE helps you

Sample prep pain points

- Complicated workflows
- 2 Sample throughput
- Labor intensive workflows
- 4 Risk of errors
- High costs Labor and solvent usage
- Target analyte recovery and reproducibility
- Sample tracking


How EXTREVA ASE solves issues

- 1
- Accomplishes extraction and concentration without user interaction
- 2
- Extract and concentrate 4 samples in parallel
- 3
 - Completes the entire process without the need for intervention
- 4
- Methods are performed consistently without outside distractions
- 5
- Reduces the required hands-on time and solvent used for extraction
- 6 Automation brings a higher level of consistancy and accuracy over manual prep
- 2D barcode reading records sample prep parameters

Cost of Errors -%RSD, Reruns, Lost samples

Extreva vs. ASE-350: 24-h Total Workflow (Extraction + Evaporation)

Based on 10-mL cell extraction

Extreva: 48 samples per day

ASE-350 + Rocket Evaporator: 36 samples per day

Thermo Fisher

Thermo Fisher S C I E N T I F I C

EXTREVA ASE impact on your lab

"I want to put my sample in one side and have it ready for analysis"

First of its kind! Start to finish sample prep without user intervention

Save time, increase productivity

 Parallel processing, combined automated extraction and evaporation without instrument interaction

Control cost

- New gas assisted extraction saves on solvents and extraction time
- ✓ Automation of whole process reduces errors
- ✓ Training new analysts faster and easier

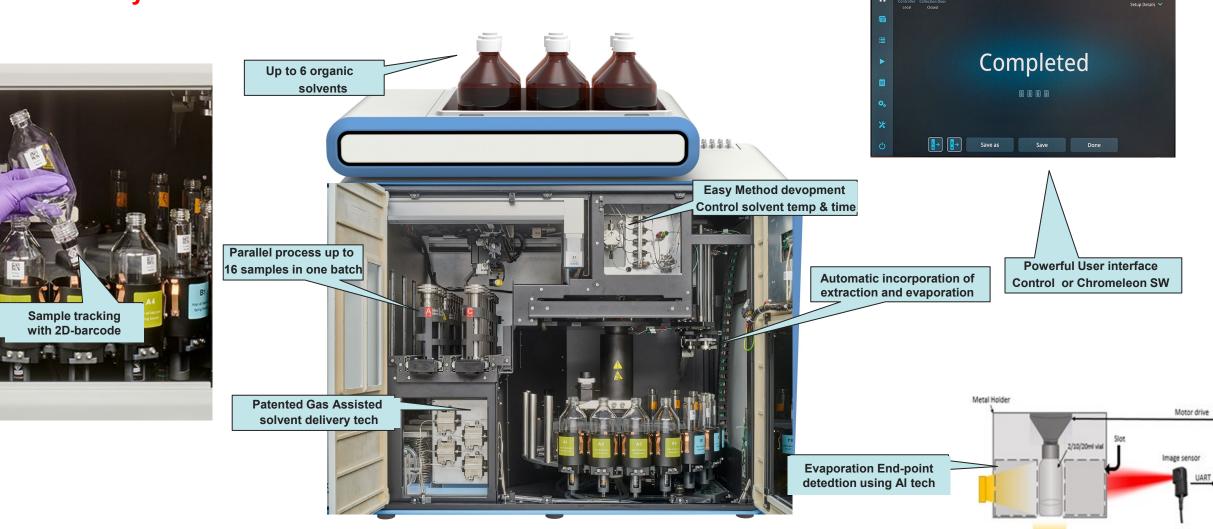
✓ 2D barcode tracking allows for full documentation of all sample conditions

Inside the EXTREVA ASE system

33 Proprietary & Confidential | chris.shevlin@thermofisher.com | 4-October-2022

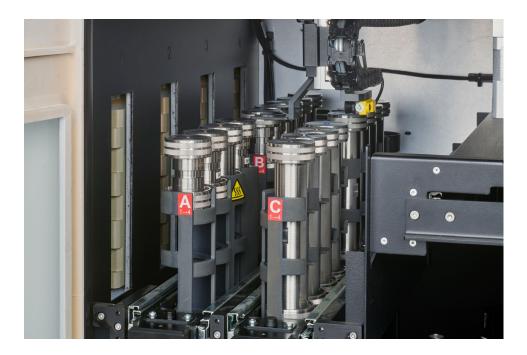
Thermo Scientific- EXTREVA[™] ASE[™]

Accelerated Solvent Extractor


True Walkaway Automated Extraction & Concentration

Backlight drive

Light source


EXTREVA-SVT2 09:21:37 AM | 08-10-2022

Parallel Processing

EXTREVAASE delivers value:

- Increases lab throughput → Increases profitability
- Improves processing time → Reduced risk of missing hold times and helps lab bottom line

Features:

- Parallel process of 4 samples
- In cell clean up and moisture removal
- 16 sample autosampler Same cell size per group of 4

Extract collection and solvent evaporation

- Extracts are collected on 4 independent channels
- After collection or during the needles can be rinsed
- With the vessels still sealed, evaporation process starts automatically – no user intervention required
 - Gentle vacuum is applied to not lose semi volatile compounds
 - N2 is blown through the same collection needle
 - Each bottle can be heated to help facilitate evaporation

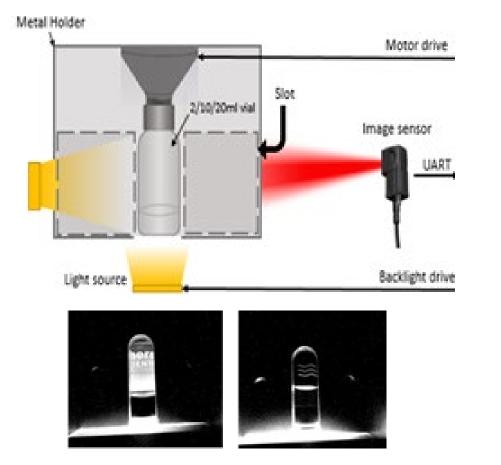
Thermo

Combining extraction and evaporation

Why combine two operations?

- Allows for true walk-away sample prep
- Less user intervention required for the entire process
- Analyte can dedicate time to more important tasks
- Alleviates worry of errors, spills or the need for purchase and maintain multiple devices

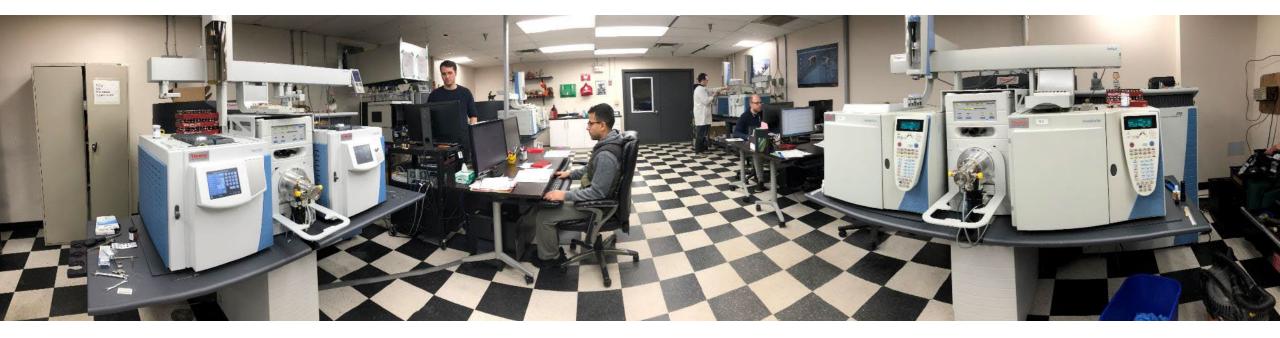
Patented design:


- Vacuum nitrogen connect directly to the collection vessels
- Combined mode helps facilitate evaporation
- Incorporate the GC or LC vial into the collection vessel

Automated end-point detection

Monitoring of evaporation no longer required

- Allows for true walk away sample prep
- Each channel will stop at end point even if the others have not reached the end point


Automated end-point detection using machine learning solves this issue

- Using an image sensor and proper backlighting allows the instrument to get a real picture of the evaporation level
- Machine learning is employed to teach the instrument to stop at the process at the desired level

Acknowledgements

ThermoFisher SCIENTIFIC

