Confident Quantitation
Any compound, any matrix, any user.

Ensuring Customer Success
Thermo Scientific™ TSQ Altis™ Triple Quadrupole MS and Thermo Scientific™ TSQ Quantis™ Triple Quadrupole MS

The world leader in serving science
Introduction to Thermo Scientific TSQ Altis MS and TSQ Quantis MS

Performance: Sensitivity, Selectivity (H-SRM)

<table>
<thead>
<tr>
<th></th>
<th>TSQ Altis MS</th>
<th>TSQ Quantis MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Range</td>
<td>5-2000</td>
<td>5-3000</td>
</tr>
<tr>
<td>SRM/sec</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>Selectivity (H-SRM)</td>
<td>0.2 Da FWHM</td>
<td>0.4 Da FWHM</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>500,000:1</td>
<td>150,000:1</td>
</tr>
<tr>
<td>Targeted Market</td>
<td>Omics, Research, Pharma/Biopharma, Clinical Research and Forensic Toxicology</td>
<td>Environmental and Food Safety, Clinical Research, and Forensic Toxicology</td>
</tr>
</tbody>
</table>

Robustness, Reproducibility, Speed, Ease-of-Use, Flexibility
Thermo Scientific TSQ Quantis MS: Unprecedented Robustness, Day After Day

Active Ion Management Plus (AIM+) - The next step in precision design delivers the ultimate in ion management, inception to detection, from the OptaMax™ ion source housing to the enhanced electron multiplier. Incorporates segmented quadrupoles with hyperbolic surfaces and enhanced RF Electronics to further optimize ion management precision, reliability, speed, and reproducibility.

Enhanced dual-mode electron multiplier detector ensures excellent linearity and dynamic range.

Stacked ring ion guide (SRIG) Increases ion flux.

Segmented Quadrupoles with hyperbolic surfaces for enhanced performance with both SRM and H-SRM (0.4 FWHM)

OptaMax™ NG APCI ready

Active collision cell with axial DC field facilitates more SRMs/sec

Ion beam guide with neutral blocker Reduces chemical background

NEW!

NEW!

NEW!

NEW!
Thermo Scientific TSQ Altis MS: Sensitivity with Robustness, No Compromises

Active Ion Management Plus (AIM+) - The next step in precision design delivers the ultimate in ion management, inception to detection, from the OptaMax™ ion source housing to the enhanced electron multiplier. Incorporates segmented quadrupoles with hyperbolic surface and enhanced RF Electronics to further optimize ion management precision, reliability, speed, and reproducibility.

- **Ion beam guide with neutral blocker**
 Reduces chemical background

- **High capacity ion transfer tube (HCTT)**
 Increases ion flux

- **Electrodynamic ion funnel (EDIF)**
 Increases ion flux

- **Segmented Quadrupoles**
 with hyperbolic surface for enhanced performance with both SRM and H-SRM (0.2 FWHM)

- **OptaMax™ NG**
 APCI ready

- **Active collision cell with axial DC field**
 facilitates more SRMs/sec

- **Enhanced dual-mode electron multiplier detector**
 Ensures excellent linearity and dynamic range

NEW!
OptaMax NG Source Housing

Benefits: Reliable and consistent performance with improved usability!

Re-designed APCI discharge assembly
- Built-in to every source (separate APCI sprayer required for APCI mode)
- Re-designed on/off switch (to improve usability)

Re-designed HESI Sprayer
- Needle adjustment is “set and forget”
- Tool available to help the user to correctly set needle protrusion

Usability and Consistency
- Vertical adjustment moved to the side for easier access
- Improved sprayer alignment and stability
- New finer threads on HESI and APCI sprayers to make installation easier
Segmented Quadrupoles

Benefits: Increased Sensitivity (more significant at higher mass range)
Flat tuning for consistent and robust performance

- The use of RF only pre-filters (segments) between the entrance lens and the quadrupole minimizes the effects of fringe fields, leading to improved transmission (and therefore sensitivity) at unit and higher resolution.

- Hyperbolic surface enhances peak shape, increasing transmission at higher resolutions and masses.

- With the RF only pre-filter, the tuning of several lenses is flat across mass range allowing the voltage to be set and not tuned. This helps reducing the complexity of the tune and making the systems more consistent.
Detector

Benefits: Increased electron multiplier lifetime. Increased Uptime!

- Increased number of dynodes (21) for extended lifetime.
- Improved electron multiplier calibration routine.
- Reduced number of service visits leading to more uptime.
- Maintaining excellent linearity and dynamic range
RF Circuitry

Benefits: More compounds in the same run or longer dwells on existing method

- New main RF/DC electronics
- Analyze more compounds in the same time window or better Quantitation results with better ion statistics (more scans across your chromatographic peak)
- Up to 600 SRM/sec

965 peptides, 4762 transitions, 1 min RT window, 35 minute method
What do Thermo Scientific™ QqQs have to make them easier to use?

• Dynamic Retention Time Adjustment: on-the-fly RT window shifts to accommodate targeted workflows

Reference peptides are used to detect shifts in RT

Smaller RT windows can be used for other targets, increasing dwell time

• Result: More peaks detected without being cut-off or missed; less manual method updating
Interactive SRM Visualization

• Minimum dwell times shown, so adjustments can be made before data are generated!
• Number of transitions vs retention time plotted for user to see
• BONUS:
 • It is interactive!!

Take home message:
• Visualization allows the user to adjust the method BEFORE it is run, resulting in better data!
• Dwell times are shown, before poor-quality data can be generated!
Confident Quantitation
Any compound, any matrix, any user.

Robust
Consistent
Reliable
Fipronil in Eggs

What is Fipronil?
Fipronil is an insecticide commonly used against fleas, ticks, cockroaches, ants, termites, etc. It kills insects by disrupting their CNS and is used in various insect-control products for both agricultural and domestic use.

Why in Eggs?
Fipronil was mixed with Dega-16, used for red mite treatment commonly found in poultry farms.

Should I be worried?
Ingestion of large amounts can lead to kidney, liver, and thyroid damage. The amounts typically present in eggs are very low, however, it is a huge safety concern.

What’s Needed?
Robust, sensitive, reliable analysis and quantitation of Fipronil and Fipronil Sulfone in eggs.
Matrix Matched Calibration for UHPLC-MS/MS on a Thermo Scientific TSQ Quantis MS

Recovery (%)

<table>
<thead>
<tr>
<th>Compound name</th>
<th>Recovery (%) 0.5 µg/kg spike level</th>
<th>Recovery (%) 1 µg/kg spike level</th>
<th>Recovery (%) 5 µg/kg spike level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fipronil (434.9> 322.9)</td>
<td>104</td>
<td>89</td>
<td>99</td>
</tr>
<tr>
<td>Fipronil sulfone (450.9> 415.0)</td>
<td>99</td>
<td>95</td>
<td>102</td>
</tr>
</tbody>
</table>

LOD [µg/kg] and LOQ [µg/kg]

<table>
<thead>
<tr>
<th>Compound name</th>
<th>LOD [µg/kg]</th>
<th>LOQ [µg/kg]</th>
<th>Repeatability (%) 0.5 µg/kg spike level</th>
<th>Repeatability (%) 5 µg/kg spike level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fipronil (434.9> 322.9)</td>
<td>0.1</td>
<td>0.5</td>
<td>8.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Fipronil sulfone (450.9> 415.0)</td>
<td>0.1</td>
<td>0.5</td>
<td>7.7</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Ion Ratio Calculations

<table>
<thead>
<tr>
<th>Ion ratio* (%)</th>
<th>Fipronil (434.9> 249.9)</th>
<th>Fipronil (434.9> 398.84)</th>
<th>Fipronil sulfone (450.9> 282.00)</th>
<th>Fipronil sulfone (450.9> 243.84)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 100 ng/ml</td>
<td>24.4</td>
<td>13.1</td>
<td>78.1</td>
<td>23.6</td>
</tr>
<tr>
<td>Spike 0.5 µg/kg</td>
<td>26.0</td>
<td>14.8</td>
<td>83.4</td>
<td>29.4</td>
</tr>
<tr>
<td>Ion ratio repeatability (RSD %)* 0.5 µg/kg spike level</td>
<td>9.1</td>
<td>16.3</td>
<td>4.4</td>
<td>18.9</td>
</tr>
<tr>
<td>Ion ratio repeatability (RSD %) 5 µg/kg spike level</td>
<td>4.4</td>
<td>4.5</td>
<td>1.8</td>
<td>5.8</td>
</tr>
</tbody>
</table>
Reproducibility and Long-term Stability Test

Rapid analysis of fipronil and fipronil sulfone in eggs by liquid chromatography and triple quadrupole mass spectrometry

Introduction
Recently, it was reported that millions of eggs contaminated with the insecticide fipronil have been distributed to more than 17 countries. On July 26th, 2011, it was made public that in some cases the pesticide fipronil was mixed with another formulation and sprayed on chickens against ticks, fleas and lice. As the determined levels were in some cases substantially higher (up to 1.2 mg/kg) than the EU MRL of 0.05 mg/kg for the sum of fipronil and fipronil sulfone, there is a demand for quick and efficient methods for the determination of both substances in egg matrix and potentially in other matrixes.

This brief presents a quick and simple method for the determination of fipronil and fipronil sulfone in eggs using a in-house modified QuEChERS acetonitrile extraction protocol and LC-MS/MS determination.

Experimental
Sample preparation
Egg samples purchased in a local store were extracted using the procedure described in Figure 1.

Sample preparation consumables
- 50 mL conical sterile polycarbonate centrifuge tubes, PN: 330662
- 15 mL conical sterile polycarbonate centrifuge tubes, PN: 330960
- Thermo Scientific™ HyperSep™ dispersive SPE, Mylarspun 400 mg
- Magnesium sulfate and 1000 mg NaCl, 50 pH, PN: 60-05-548
- Magnesium sulfate, 30%, for analysis, anhydrous: 12168721

Results
- RSD (n=100) Fipronil = 4.8%
- RSD (n=100) Fipronil sulfone = 5.9%
Confident Quantitation
Any compound, any matrix, any user.

LC-MS/MS Quantitation of ~100 Drugs of Abuse in Urine in Under Two Minutes on the Thermo Scientific™ TSQ Quantis™ MS
Why High-throughput LC-MS/MS for Drugs of Abuse Analyses?

- Large number of samples
 - Need to reduce analysis times
- Reduce false positives (immunoassays)
 - LC-MS/MS has high selectivity
- Reduce costs
 - Multi-class drugs of abuse require multiple immunoassays
 - Still may require LC-MS/MS confirmation

- Thermo Scientific™ Vanquish™ Horizon UHPLC and TSQ Quantis™ MS can meet these requirements
Thermo Scientific Vanquish Horizon UHPLC

Vanquish Horizon UHPLC Platform:

- Maximize UHPLC separations with 1500 bar (22,000 psi) pump pressure limit
- Unmatched retention time performance via parallel dual piston principle
- Ultra-low Gradient Dead Volume (35 uL) for faster separations
- Viper-based, tool-free fluidic connections
- Biocompatible, iron-free flow path
- Sample pre-compression for better injection reproducibility and longer column lifetimes
- Standard AS capacity: 4 racks (216 vials); expandable Charger module for up to 20 well plates
- New column thermostatting technology
- Removable doors for easy access
Experimental Design – Liquid Chromatography

- Thermo Scientific™ Vanquish™ Horizon UHPLC
 - Column: 2.1 x 50 mm, 1.9 um Hypersil Gold AQ
 - Column Temp: 40 C
 - Mobile Phase: [A] H₂O + 0.1% HCOOH; [B] ACN + 0.1% HCOOH
 - Flow Rate: 1.0 mL/min (no split)
 - Gradient: see table
 - Injection Volume: 2 uL

Note: total LC runtime is 2.2 minutes for ~100 drugs of abuse
Experimental Design – Mass Spectrometry

- Thermo Scientific™ TSQ Quantis™ MS
 - Ionization Mode: HESI, Positive ion mode
 - MS Acquisition Mode: Selective Reaction Monitoring (SRM) – see # Transitions vs. RT below
 - Cycle time: 0.15 s
 - Quad Isolation (Q1,Q3) = Unit (0.7 Da FWHM)

Note: elution of 6-MAM & Buprenorphine occur at the times of highest # SRM transitions (i.e., during lowest dwell times)
For Research Use Only. Not for use in diagnostic procedures.

SRM chromatograms of ~100 drugs of abuse in under 1.3 minutes [THC-COOH elutes at 1.21 min, inset]
Separation of opiate isomers @ m/z 286

Opiate isomers at m/z 286 are well separated in under 12 s [typical LC peak = 1.2 s wide]
1:2 dilution of 10 ng/mL 6-MAM in urine, 2 uL injections [%CV = 8.5%];
- Dwell Time = 1.63 ms (50 simultaneous SRM transitions w/ 0.15 s SRM Cycle Time)
~100 Drugs of Abuse on Thermo Scientific TSQ Quantis MS

Buprenorphine, Calibrator @ 5 ng/mL

- RT: 0.80 - 1.15
- NL: 1.13E4
- m/z 396.16-396.26 F: + c ESI SRM ms2 468.310
- [396.209-396.211, 414.259-414.261] MS ICIS
doa_urine_assay_2x_dilution_2016

- NL: 1.80E4
- m/z 396.16-396.26 F: + c ESI SRM ms2 468.310
- [396.209-396.211, 414.259-414.261] MS ICIS
doa_urine_assay_2x_dilution_2017

- NL: 6.86E3
- m/z 396.16-396.26 F: + c ESI SRM ms2 468.310
- [396.209-396.211, 414.259-414.261] MS ICIS
doa_urine_assay_2x_dilution_2018

- NL: 1.28E4
- m/z 396.16-396.26 F: + c ESI SRM ms2 468.310
- [396.209-396.211, 414.259-414.261] MS ICIS
doa_urine_assay_2x_dilution_2019

- NL: 1.23E4
- m/z 396.16-396.26 F: + c ESI SRM ms2 468.310
- [396.209-396.211, 414.259-414.261] MS ICIS
DoA_Urine_Assay_2x_Dilution_2020

- For Research Use Only. Not for use in diagnostic procedures.

- 1:2 dilution of 5 ng/mL Buprenorphine in urine, 2 uL injections [%CV = 16.5%];
- Dwell Time = 0.82 ms (60 simultaneous SRM transitions w/ 0.15 s SRM Cycle Time)
Confident Quantitation
Any compound, any matrix, any user.

Sensitive, Robust, Reproducible Peptide Quantitation Workflows
Targeted Peptide Quantitation Workflow Solutions with Thermo Scientific™ TSQ Altis™ MS
Why Choose a Triple Quad for Peptide Quantitation?

- They’re FAST!
- They’re cost effective for targeted work!
- They are DESIGNED TO TARGET your analytes!!
- They are simple to use for targeted analyses!!!
- Once method development is done, DATA ANALYSIS is EASIER!!!
- Sensitivity and robustness of the QqQ platform is well demonstrated!!
A workflow from HRAM to QqQ Targeted Peptide Quantitation

1 week (work by Dr. David Sarracino)

- Pooled, fractionated, and/or individual samples
- Protein ID characterization QE-HF Orbitrap MS
- Data Dependent Analysis (DDA)
- Proteome Discoverer
- Consolidated Spectral Library Creation
- Skyline

35 minutes

Iterative Empirical Determination

- iRT Prediction
- Retention Time Scheduling
- Collision Energy Optimization
- Final Method

2 days

- Spectral Libraries can be additive
- SRM parameters can be stored
- RTs can be stored
- Targeted methods can be generated from cumulative databases

1 day

- Protein name, accession number
- Spectral Library example
- Peptide m/z, z
- Top ranked transitions
- Optimized CE
- Retention time with LC conditions
• Human proteome was digested *in silico* and compared to spectral libraries
• ~1200 tryptic peptides matched a spectral library hit
• 53 untargeted methods set up for SRM refinement
 • 2 charge states for most peptides
 • 8-10 transitions per precursor
 • ~20,000 transitions
 • 31 hours of acquisition time
 • 10-15 hours of analysis time
• Result:
 • 950 plasma peptides + 15 PRTC peptides
 • 4762 transitions in a 35 minute run
 • RT scheduling with 1 min windows; dRT so no RT updates necessary
Peaks detected over 3-fold range intensity from digested neat plasma

- Peptides ID’d in Q Exactive HF analysis of fractionated plasma (48 BRP fx)
- Intensity ranking for each peptide on the Altis spans ~3 log
- Blue bars indicate PRTC peptides spiked in (5 fmol/uL plasma digest; 1 ug/uL plasma concentration)
Detection of changes in peptide intensity due to plasma/serum processing

Vacutainer and centrifugation
- 800 rcf
- 2000 rcf

Heparin
- H800
- K2000
- H2000
- K800
- S1
- S14
- S24
- S48

K₂ EDTA
- H800
- K2000
- H2000
- K800
- S1
- S14
- S24
- S48

Hemoglobin subunit A (HBA1)
- VGAGAGEYGAELER

Plasma minimum conc: ~100 ng/mL* (~6 fmol/uL plasma)

Thrombospondin-1 (THBS1)
- GTLLALER

Plasma range: 20-500 ng/mL** (~0.5-10 fmol/uL plasma)

Serum Time Course
Whole blood spun after 1, 14, 24, 48 hours on bench, then digested according to protocol

** Peterson et al 2010, Am. J. Hematol

** n = 5 for all samples
Superior Sensitivity with H-SRM (0.2 Da FWHM) – GPSVFPLAPSSK

GPSVFPLAPSSK - Peptide from monoclonal antibody hinge region

GPS H-SRM
- Q1 0.2 Da FWHM
- %CV = 1.3
- AA: 621
- SN: 21

GPS SRM
- Q1 0.7 Da FWHM
- %CV = 11.3
- AA: 2689
- SN: 5

Internal Standard SRM
- Q1 0.7 Da FWHM
- %CV = 3.2
- AA: 63810

Experimental Details
- LC: Ultimate NCS-3500RS
- Flow rate: 25µL/min
- Solvent A: 2% ACN in H₂O w/0.1% FA
- Solvent B: 5% H₂O in ACN w/0.1% FA

H-SRM
- LOQ = 25 ng

SRM
- LOQ = 100 ng

25 ng GPSVFPLAPSSK and IS

Professor Jun Qu
University of Buffalo
Confident Quantitation – Any compound, Any Matrix, Any User

Team Confident Quantitation

• Dr. Mary Blackburn (Sr. Platform Manager, TSQ)
• Dr. Claudia Martins (Product Manager, Triple Quadrupole MS)
• Dr. Alan Atkins (Technical Trainer)
• Dr. Sue Abbatiello (Product Specialist)
• Dr. Neloni Wijeratne (Product Specialist)
• Dr. Eric Huang (Product Specialist)
• Dr. Deb Bhattacharyya (Sr. Marketing Manager, Triple Quadrupole MS)
Confident Quantitation
Any compound, any matrix, any user.