Thermo Fisher s c i e n t i f i c

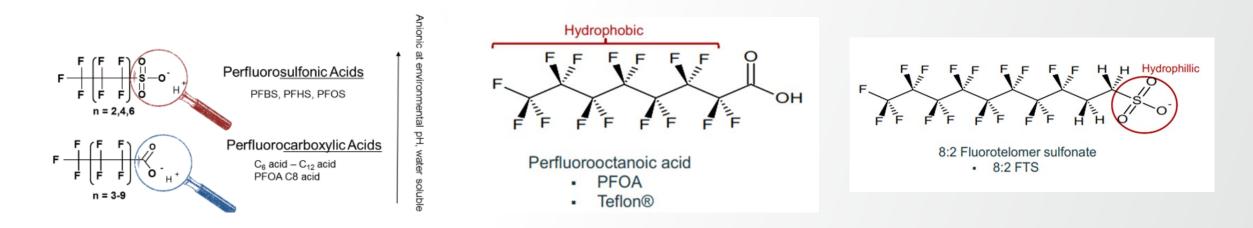
Sample Preparation Solutions for PFAS Analysis in Environmental Samples

Ed George- Thermo Fisher Scientific Environmental, Food and Beverage Market Manager Chris Shelvin- Thermo Fisher Scientific Product Marketing Manager- AIG

SETAC 2022- Vendor Seminar Wednesday, November 16, 2022 Pittsburgh, PA

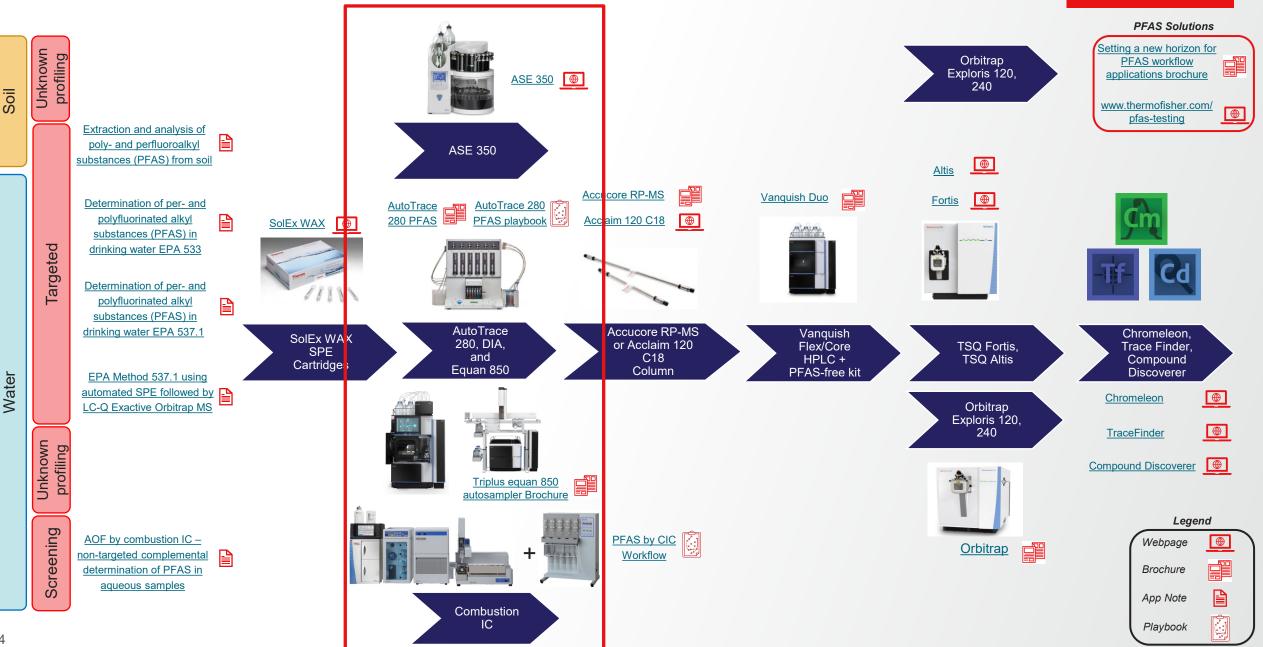
The world leader in serving science

Automated PFAS Workflows


Outline

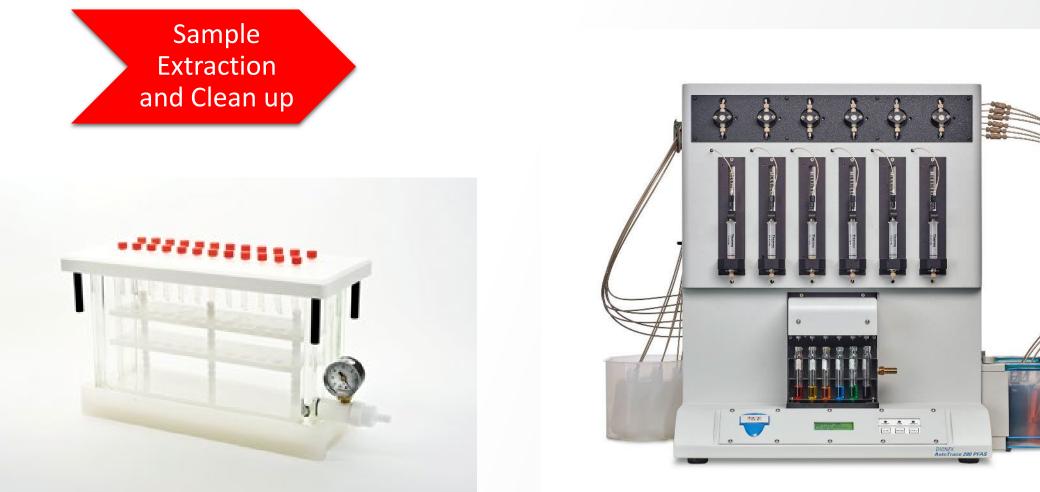
- Background
- Overall Solutions for PFAS offered by Thermo Fisher Scientific
- Automated Sample Preparation Solutions for Environmental Samples
- Water sample analysis with the Autotrace 280 (off-line solid phase extraction)
- Water sample analysis by direct aqueous injection
- Water sample analysis with the Equan 850 Autosampler (on-line solid phase extraction)
- Soil analysis with the ASE 350
- Screening samples with Combustion Ion Chromatography (CIC)

Background


- PFAS = Per- and Poly- Fluorinated Alkyl Substances
 - Class of structurally similar compounds
 - Hydrophobic C-F chain of various lengths with hydrophilic functional group on the end
 - Shorter carbon chains \rightarrow More water soluble
 - Longer carbon chain \rightarrow Less water soluble

>9000 varieties more are being discovered

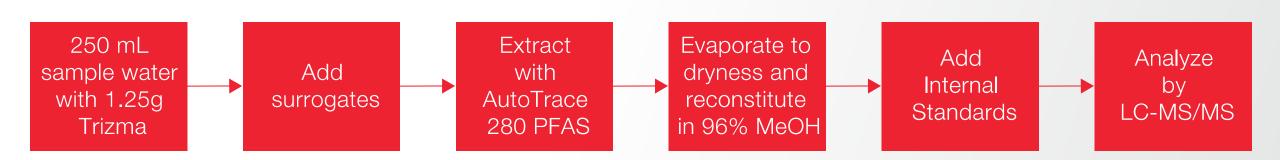
Individual PFAS molecule is determined by chain length and functional group


Overview of Thermo Fisher Scientific PFAS Workflows

Thermo Fisher

SCIENTIFIC

Sample Prep Devices for Large Sample Volumes



Thermo Scientific™ Dionex™ AutoTrace™ 280 PFAS Solid-Phase Extraction Instrument

Thermo Fisher

Vacuum Manifold

Solid Phase Extraction (SPE) for EPA methods 537/537.1

Thermo Fisher

Solid Phase Extraction Method

Thermo Fisher

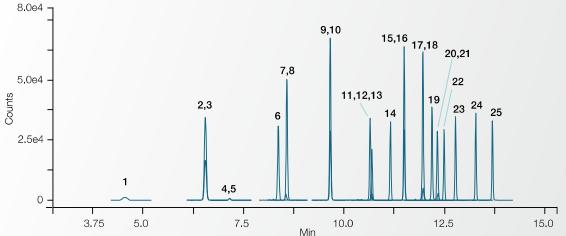
Vacuum SPE vs. AutoTrace 280 PFAS SPE Instrument

It's automated!

- Vacuum SPE
 - Problems maintaining consistent flow
 - Cannot let it run dry affects the flow rate and performance
 - Inconsistent volumes run to run
 - Requires <u>constant attendance</u>

- AutoTrace 280 PFAS
 - Pumps are set at a constant flow
 - Ensures cartridges do not dry on critical steps
 - Precise consistency run to run
 - Push "start" and have a cup of coffee

AutoTrace 280 PFAS SPE Instrument for Liquid Samples


- Sample and reagent tubing is PEEK
- Positive pressure instead of vacuum
- Method stored on the AutoTrace 280 PFAS SPE Instrument
 - No PC required
- Walk-up operation- Parallel sample processing steps
- Significant labor savings
 - Minimal user interaction required
 - Analysts can accomplish other lab tasks
 - · Lower costs due to increased efficiency
- Better data quality
- Lower risk of rerunning samples

Thermol

EPA 537.1 Performance Data using AutoTrace 280 PFAS SPE Instrument

Peak number	Analyte	Fortified Conc. (ng/L)	Mean Recovery (%)	RSD	Fortified Conc. (ng/L)	Mean Recovery (%)	RSD
1	PFBS	16.0	107	3.3	80.0	98.3	3.6
2,3*	PFHxA	16.0	108	2.3	80.0	106	2.6
4,5*	HFPO-DA	16.0	84.1	7.5	80.0	88.6	6.3
6	PFHpA	16.0	113	2.7	80.0	117	1.3
7	PFHxS	16.0	120	3.4	80.0	123	2.1
8	ADONA	16.0	117	2.5	80.0	121	1.1
9,10*	PFOA	16.0	113	2.5	80.0	119	1.6
11	PFNA	16.0	114	2.9	80.0	118	2.1
12,13*	PFOS	16.0	113	4.5	80.0	117	2.9
14	9CI-PF3ONS	16.0	96.1	4.1	80.0	103	2.6
15*,16	PFDA	16.0	105	3.2	80.0	111	2.1
17*,18	NMeFOSAA	16.0	103	5.2	80.0	110	5.2
19	PFUnA	16.0	96.8	5.0	80.0	103	3.1
20*21	NEtFOSAA	16.0	100	9.9	80.0	104	2.3
22	11CI-PF3OUdS	16.0	88.5	5.5	80.0	97.1	4.8
23	PFDoA	16.0	89.8	4.4	80.0	97.3	3.4
24	PFTrA	16.0	89.6	3.8	80.0	95.8	3.7
25	PFTA	16.0	89.0	4.8	80.0	98.1	3.3

Thermo Fisher

Precision and accuracy (n=6) of PFAS in fortified drinking water

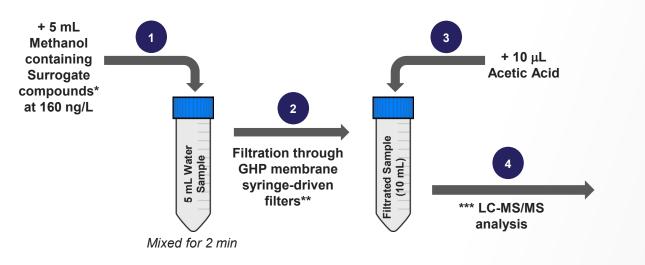
All recoveries and precision are well with in the method requirements

- Recovery must be 70 130%
- RSD < 20%

Direct injection sample analysis for PFAS

Non-potable groundwater, surface water, and wastewater testing protocols SW-846 Method 8327

- Direct injection of samples is easy and requires only minimal sample handling
- Reduces manual labor and increases efficiency
- Minimizes risk of sample contamination during a pre-concentration step
- Is a requirement in several published methods
- Note: This method requires greater LC-MS/MS sensitivity due to no sample preconcentration



Application Note 65397

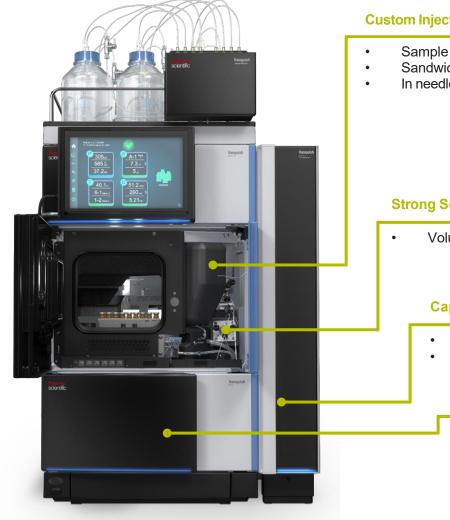
Direct Analysis of Selected Per- and Polyfluorinated Alkyl Substances (PFAS) in Ground, Surface, and Waste Water by LC-MS/MS (thermofisher.com)

Sample processing workflow – US EPA Method 8327

Preparation for direct injection analysis

Thermo Fisher

* All standards were obtained form Wellington Laboratories


**Acrodisc GxF/0.2 μ m GHP membrane syringe-driven filters were washed twice with LC-MS grade methanol (2x 10 mL) and acetonitrile (2x 10 mL)

*** Silanized-amber glass autosampler vials sealed with polypropylene caps were free of contaminants and interferences

Thermo Scientific Vanquish Flex Binary UHPLC system fitted with PFC-free kit and interfaced with Thermo Scientific **TSQ Altis Plus** mass spectrometer

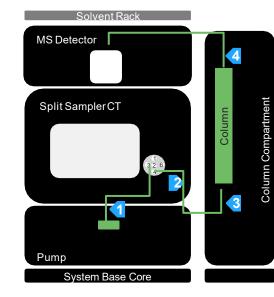
An Alternate Liquid Chromatography Set-Up for Large **Volume Injections**

Vanquish Core HPLC system setup

Custom Injection Program

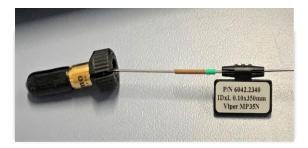
- Sample loop: 1000µL
- Sandwich injection
- In needle mixing

Strong Solvent Loop


Volume: 46.2 µL

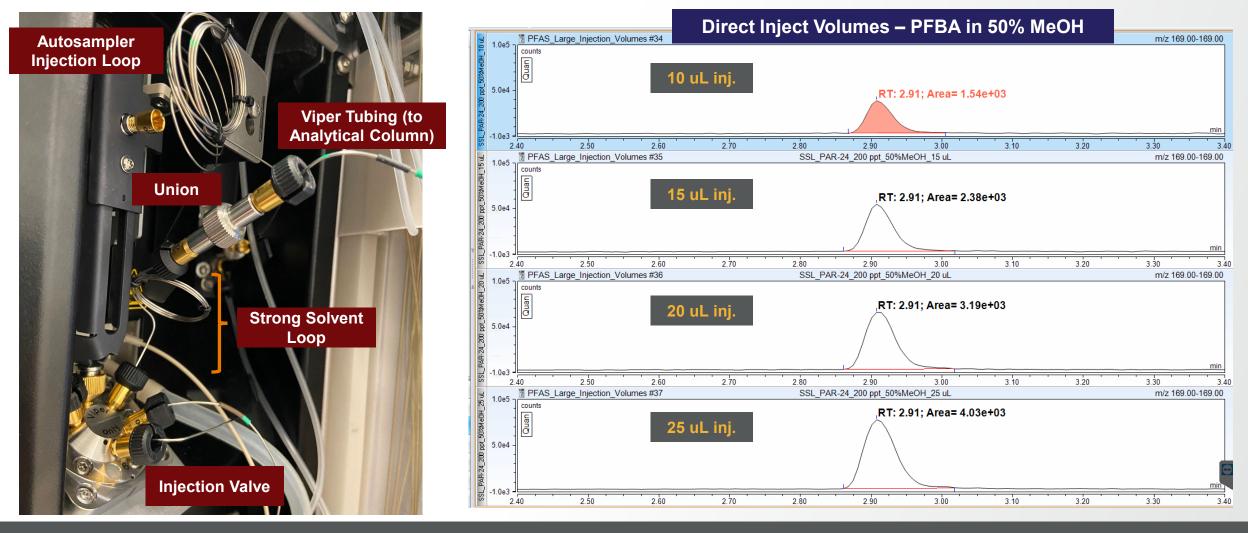
Capillary

Sampler-column Viper MP35N


Delay Column

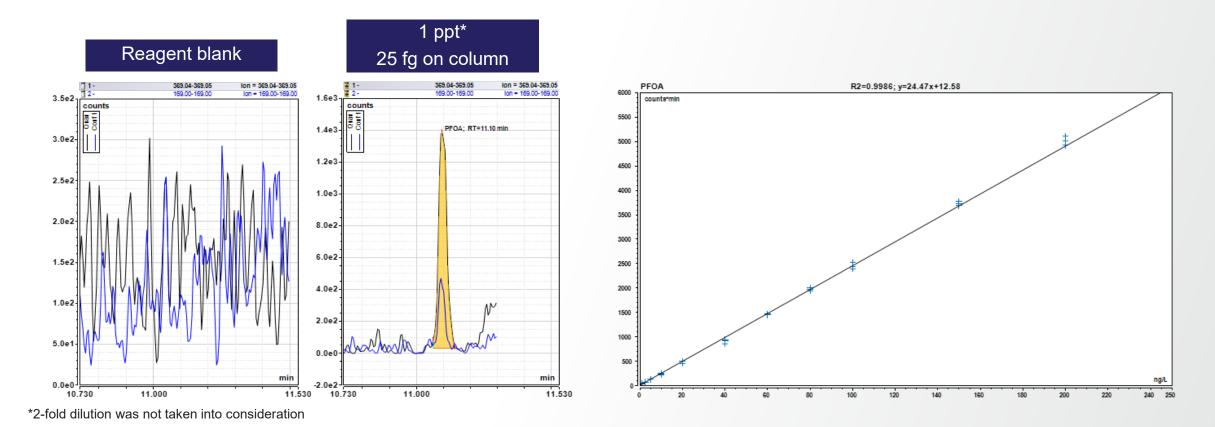
Accucore™ aQ, 3.0 x 50 mm, 2.6 µm)

#	Connection between	Description
1	Pump Out – Port 1	0.18 x 350mm, SST, P/N 6040.2375
2	Port 2 – Viper Union	Strong Solv ent Loop, SST, P/N 6036.2200
3	Viper Union – Column Inlet	0.10 x 350 mm, MP35N, P/N 6042.2340
4	Column Outlet - Detector	0.10 x 450 mm, MP35N, P/N 6042.2340


Thermo Fisher SCIENTIELC

Experimental – Liquid Chromatography

Strong Solvent Loop added in autosampler: Large volume direct injections


Thermo Fisher

SCIENT

Peak shape for PFBA is maintained up to 25 uL inj. of 50% MeOH solution

Low-level quantitation using the direct inject method

TSQ Altis MS results for PFOA analysis in reagent water following EPA Method 8327

Thermo Fisher

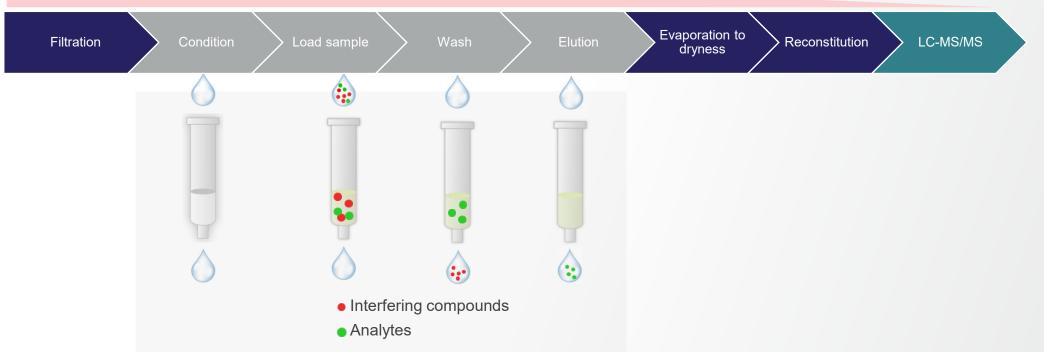
LLOQ = 1 ppt on TSQ Altis Plus MS, 5-times lower than the EPA 8327 reporting limit

TriPlus RSH EQuan 850 Autosampler- Online Solution

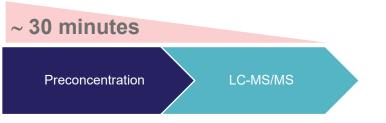
Automated high-throughput LC-MS solution for the analysis of contaminants in

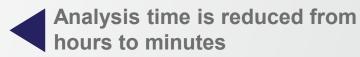
environmental water, drinking water and beverages at low ng/L levels

- Online sample pre-concentration
 - o 2 LC pumps: Loading and Eluting
 - o 2 injection valves and 1 switching valve
 - o 2 LC columns
- High injection volumes
 - o 1 − 20 mL
- Standard injection volumes
 - ο 1-100 μL

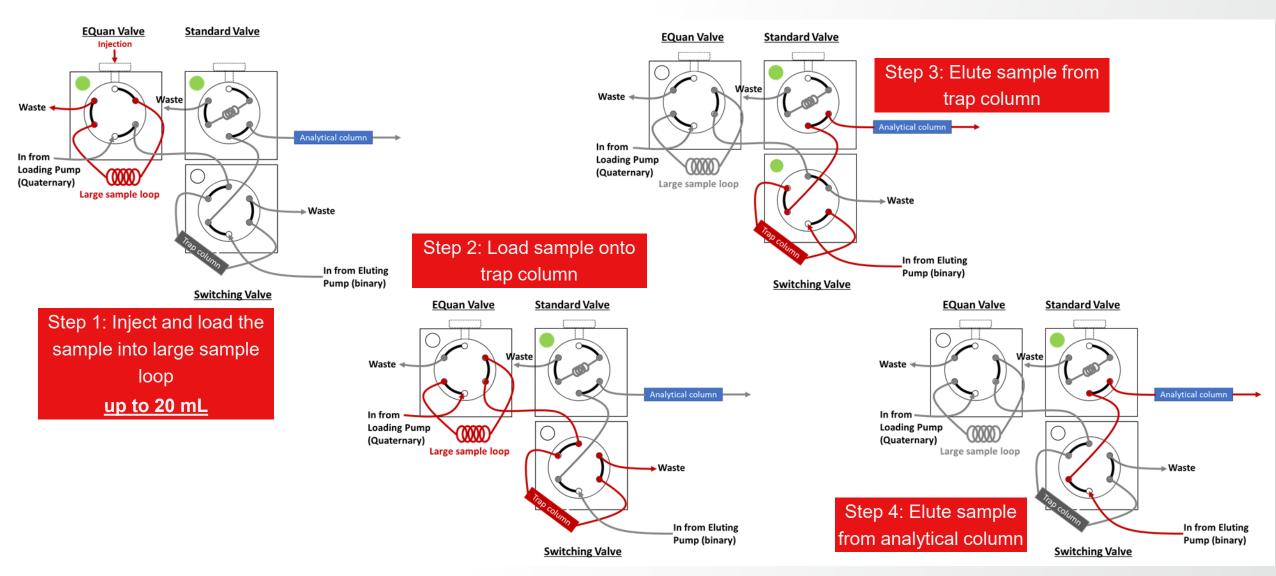


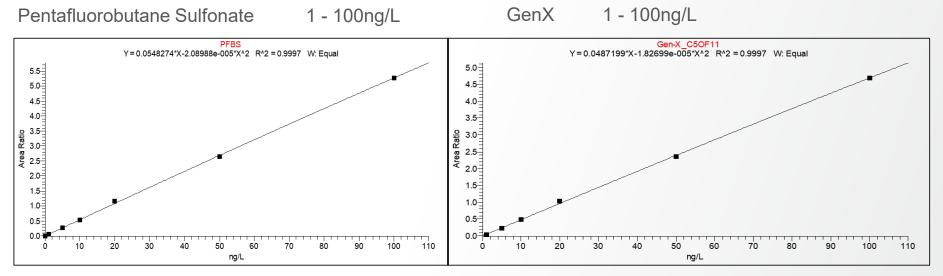
Thermo

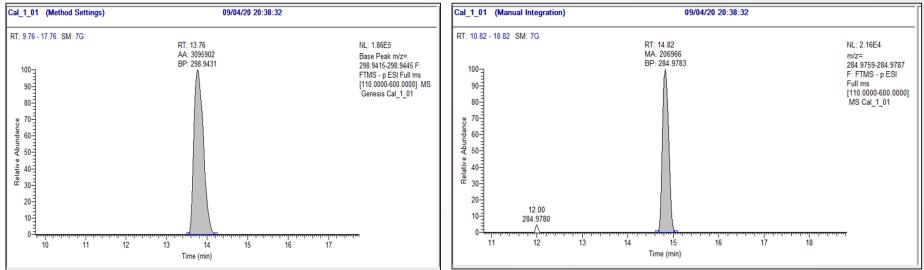

Offline vs. Online Sample preparation


Conventional Method: Offline Sample Preparation

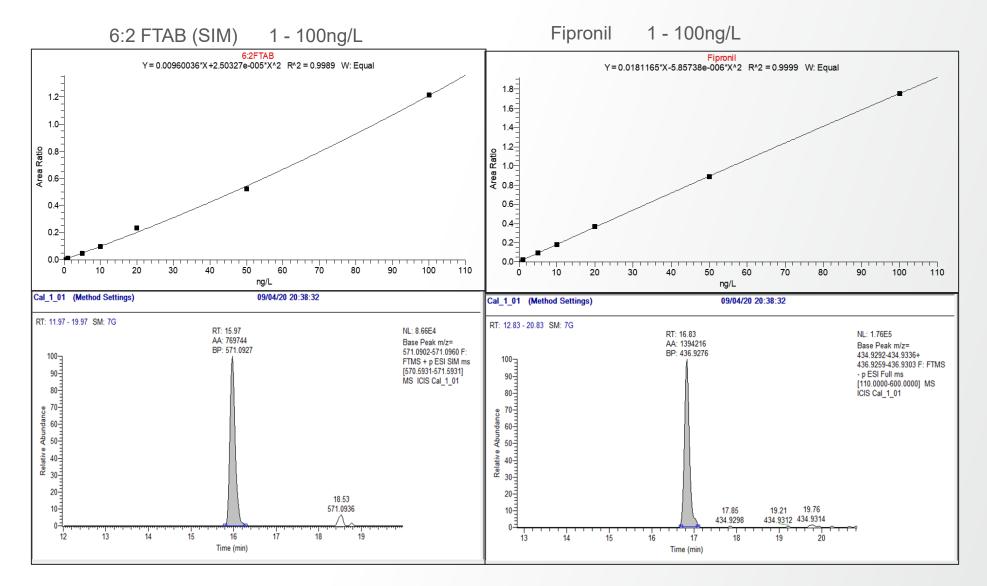
~ 2 Hours


TriPlus RSH EQuan 850: Online Sample Preparation




Online Sample Pre-Concentration: How it Works

EQuan Injection Mode: Red Flow Path



Sensitivity and Linearity- EQuan 5ml Injection- QE Focus

Sensitivity and Linearity- EQuan 5ml Injection- QE Focus

Thermo Fisher SCIENTIFIC

Method Validation Results- EQuan

Compound	Cal Range (ng/L)		Treated Sewage 10% Cal range		Treated Sewage 60% Cal Range		Surface Water 60% Cal range		Crude Sewage 60% Cal Range	
		%RSD	%Rec	%RSD	%Rec	%RSD	%Rec	%RSD	%Rec	
Ranitidine	10-1000	3.99	94.7	4.91	101	3.98	98.5	6.93	99.3	
Benzotriazole	10-1000	10.61*	106.0*	9.61*	95.7*	4.26	103.1	5.49	104.4	
Imidacloprid	1-100	3.14	96.9	1.61	101	1.64	99.6	6.95	98.8	
Bisphenol S	10-1000	3.09	97.1	3.03	99.8	2.61	99.3	6.18	97.7	
PFPeA	1-100	6.46	100	3.43	102	2.18	102	6.62	99.7	
Climbazole	10-1000	2.84	96.5	3.73	101	2.35	101	7.37	98.7	
PFBS	1-100	2.93	96.8	2.24	99.2	1.34	99.1	6.60	98.4	
PFHxA	1-100	2.33	97.1	3.33	101	2.28	100	6.38	97.7	
GenX	1-100	4.78	95.9	3.04	99.9	1.58	101	6.92	98.5	
PFHpA	1-100	2.29	95.7	2.42	99.2	1.49	99.1	7.52	97.8	
PFHxS	1-100	3.46	94.8	2.68	96.8	1.08	97.3	6.73	96.1	
6:2FTAB	1-100	18.19	93.9	9.73	98.2	9.70	128	12.50	109	
6:2FTS	1-100	2.60	95.3	2.32	99.1	1.69	101	6.95	94.9	
PFOA	0.1-10	4.54	84.0	5.70	105	2.53	102	2.48	102	
PFOS	0.1-10	*	*	5.38	118	2.92	101	11.27	118	
Fipronil	1-100	2.55	95.5	2.79	100	1.77	101	5.83	99.2	
Triclocarban	10-1000	5.28	96.2	3.93	98.5	2.49	98.9	7.25	98.2	

Samples centrifuged at 4000 rpm if suspended sediment visible; [*] PFOS present in matrix

Method Validation Results – EQuan Continued

Compound		LOD,	ug/L		MRL	Low Std (2	0% Cal range)	High Std (80	% cal range)
	Treated Sewage	Surface Water	Ground Water	Crude Sewage	ug/L	%RSD	%Bias	%RSD	%Bias
Ranitidine	0.00890	0.00230	0.000804	0.0225	0.1	3.10	-2.89	2.87	-0.63
Benzotriazole	0.944	0.0140	0.00399	0.361	0.1	5.43	-1.24	2.26	-0.59
Imidacloprid	0.00205	0.000462	0.000293	0.00644	0.001	4.57	-2.81	1.53	-0.43
Bisphenol S	0.00426	0.00243	0.00284	0.0233	0.01	4.52	-3.87	2.30	-0.57
PFPeA	0.00191	0.000623	0.000332	0.00467	0.001	4.11	-2.35	2.13	-0.22
Climbazole	0.00297	0.00170	0.00149	0.0110	0.1	3.91	-1.39	1.98	-0.29
PFBS	0.000426	0.0000973	0.000179	0.00176	0.001	2.37	-2.52	2.21	-0.48
PFHxA	0.00126	0.000292	0.000192	0.00159	0.001	4.24	-2.99	1.32	-0.70
GenX	0.00129	0.000334	0.000147	0.00816	0.001	4.07	-2.81	1.13	-1.87
PFHpA	0.000591	0.000230	0.000158	0.00137	0.001	2.37	-2.81	2.21	-0.35
PFHxS	0.000424	0.0000788	0.000107	0.00112	0.001	2.37	-3.63	1.94	-0.94
6:2FTAB	0.00535	0.000507	0.000995	0.0221	0.001	8.26	0.76	8.76	-4.30
6:2FTS	0.00249	0.000326	0.000176	0.00176	0.001	2.21	-1.73	2.21	1.39
PFOA	0.00108	0.000232	0.0000668	0.000594	0.00009	2.37	-4.04	2.01	-0.38
PFOS	0.00830	0.000151	0.0000233	0.0200	0.00009	10.01	-3.95	4.45	-0.77
Fipronil	0.000939	0.000216	0.000234	0.00227	0.01	6.47	-3.14	2.03	0.28
Triclocarban	0.00132	0.00110	0.00115	0.00736	0.1	4.83	-1.99	1.63	0.30

Samples centrifuged at 4000 rpm if suspended sediment visible

Soil Analysis- In the Beginning There Was Soxhlet...

de facto standard for solvent extraction

Slow, high solvent usage

Now...Accelerated Solvent Extraction

- Automates sample preparation for solid and semisolid samples using solvents at elevated temperatures and pressure.
- Operates above the boiling point of extraction solvents by using sealed extraction cells.
- pH Hardened pathways allows use of strong acids and bases for sample pretreatment
- Well established and proven technique that is superior to Soxhlet and approved for U.S.
 EPA Method 3545A.

Thermo Scientific[™] Dionex[™] ASE[™] 350 Accelerated Solvent Extractor system

Accelerated Solvent Extraction (ASE) for PFAS

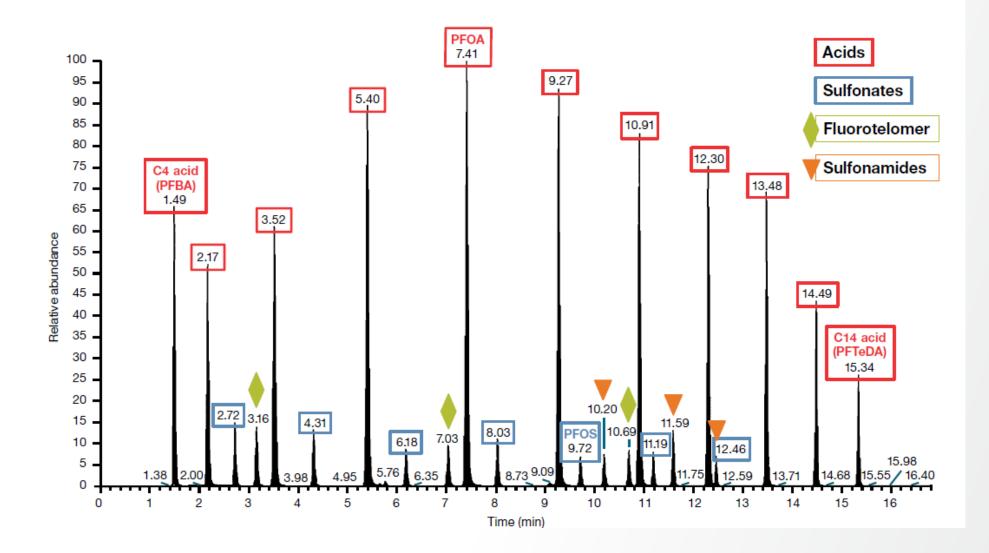
Thermo Fisher Scientific[™] Dionex[™] ASE 350[™] Accelerated Solvent Extractor

- Extraction Conditions
- 2g Soil + 10g Diatomaceous Earth

Thermo

- Extraction Solvent: Methanol
- Temperature: 100 °C
- Pressure: 1600 psi
- Heat Time: 5 min
- Static Time: 5 min
- Flush Volume: 70%
- Purge Time: 120 s
- Static Cycles: 3
- Total Extraction Time: 25 min per sample

Analytical Instrumentation


Thermo Fisher Scientific[™] Vanquish[™] HPLC System with PFC Free Kit

Thermo Fisher

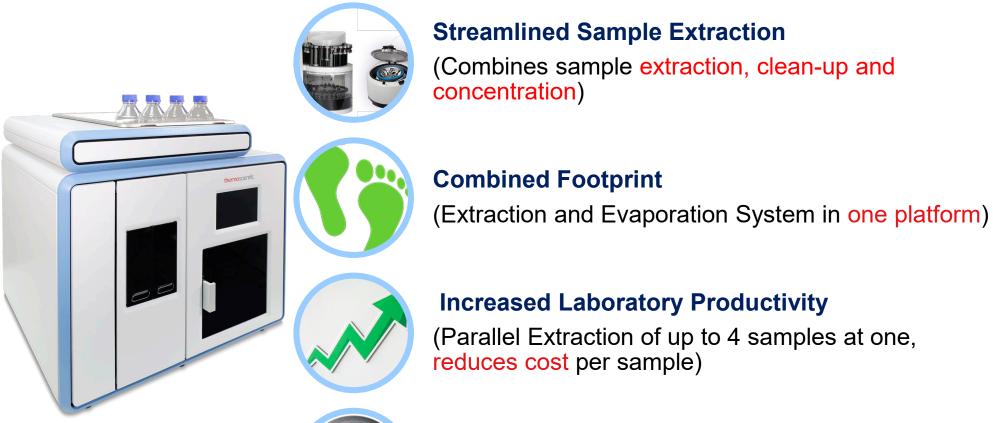
Thermo Fisher Scientific[™] TSQ Quantis[™] Mass Spectrometer

PFAS results using ASE 350

PFAS Recovery

Compound	Recovery (%)
¹³ C ₄ -PFBA	71
¹³ C ₅ -PFPeA	93
¹³ C ₅ -PFHxA	97
¹³ C ₄ -PFHpA	96
¹³ C ₈ -PFOA	94
¹³ C ₉ -PFNA	104
¹³ C ₆ -PFDA	99
¹³ C ₇ -PFUdA	95
¹³ C ₂ -PFDoA	97
¹³ C ₂ -PFTeDA	108

Compound	Recovery (%)
¹³ C ₃ -PFBS	98
¹³ C ₃₋ PFHxS	95
¹³ C ₈ -PFOS	91
¹³ C ₃ -HFPODA	56
² H ₃ -NMEFOSAA	93
² H ₃ -NETFOSAA	90
¹³ C ₈ -FOSA	92
¹³ C ₂ -4:2FTS	110
¹³ C ₂ -6:2FTS	93
¹³ C ₂ -8:2FTS	98


- Excellent Recoveries between 71% and 110%
- Only exception is HFPO-DA;

Analysis of Blanks

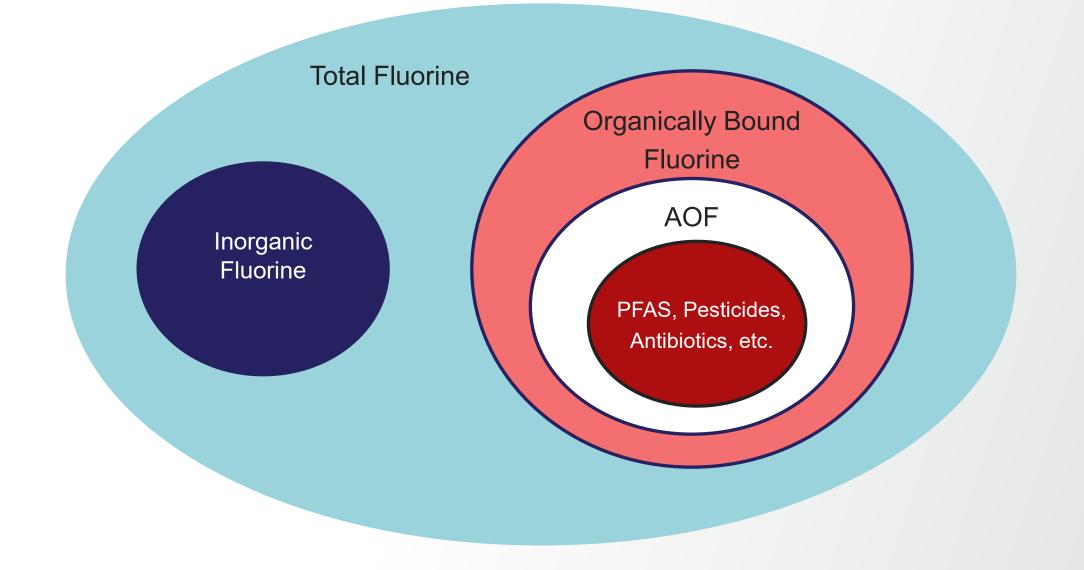
Spike level batch	1 ng/g	j spike	20 ng/g spike	400 ng/g spike	Spike level batch	1 ng/g	j spike	20 ng/g spike	400 ng/g spike
Units	ng/g	ng/g	ng/g	ng/g	Units	ng/g	ng/g	ng/g	ng/g
PFBA	0.01	0.01	0.05	0.05	NETFOSAA	n.d.	n.d.	n.d.	n.d.
PFPeA	n.d.	n.d.	n.d.	n.d.	FOSA	n.d.	n.d.	n.d.	n.d.
PFHxA	0.01	0.01	0.03	0.04	PFBS	n.d.	n.d.	0.01	n.d.
PFHpA	n.d.	n.d.	0.02	0.01	PFPeS	n.d.	n.d.	n.d.	n.d.
PFOA	0.01	0.01	0.04	0.04	PFHxS	n.d.	n.d.	n.d.	n.d.
PFNA	n.d.	n.d.	n.d.	n.d.	PFHpS	n.d.	n.d.	n.d.	n.d.
PFDA	n.d.	n.d.	n.d.	n.d.	PFOS	n.d.	n.d.	n.d.	n.d.
PFUdA	n.d.	n.d.	n.d.	n.d.	PFNS	n.d.	n.d.	n.d.	n.d.
PFDoA	n.d.	n.d.	n.d.	n.d.	PFDS	n.d.	n.d.	n.d.	n.d.
PFTRDA	n.d.	n.d.	n.d.	n.d.	4:2FTS	n.d.	n.d.	n.d.	n.d.
PFTEDA	n.d.	n.d.	n.d.	n.d.	6:2FTS	n.d.	n.d.	n.d.	n.d.
NMEFOSAA	n.d.	n.d.	n.d.	n.d.	8:2FTS	n.d.	n.d.	n.d.	n.d.

Blanks are very clean Very little background PFAS

EXTREVA ASE Key Benefits

Complete Workflow from Sample to Vial (True walk-away technology)

Increased productivity, better consistancy & reduces costs


Combustion IC- Complement to Other PFAS Methods

 The AOF-CIC-method, as a complement to existing approaches, provides an easy-to-use and economically attractive way to generate a cumulative parameter, and can help to optimize the utilization of the more expensive LC-MS/MS and GC-MS/MS instrumentation by selecting and only analyzing "suspicious" samples.

Thermo Fi

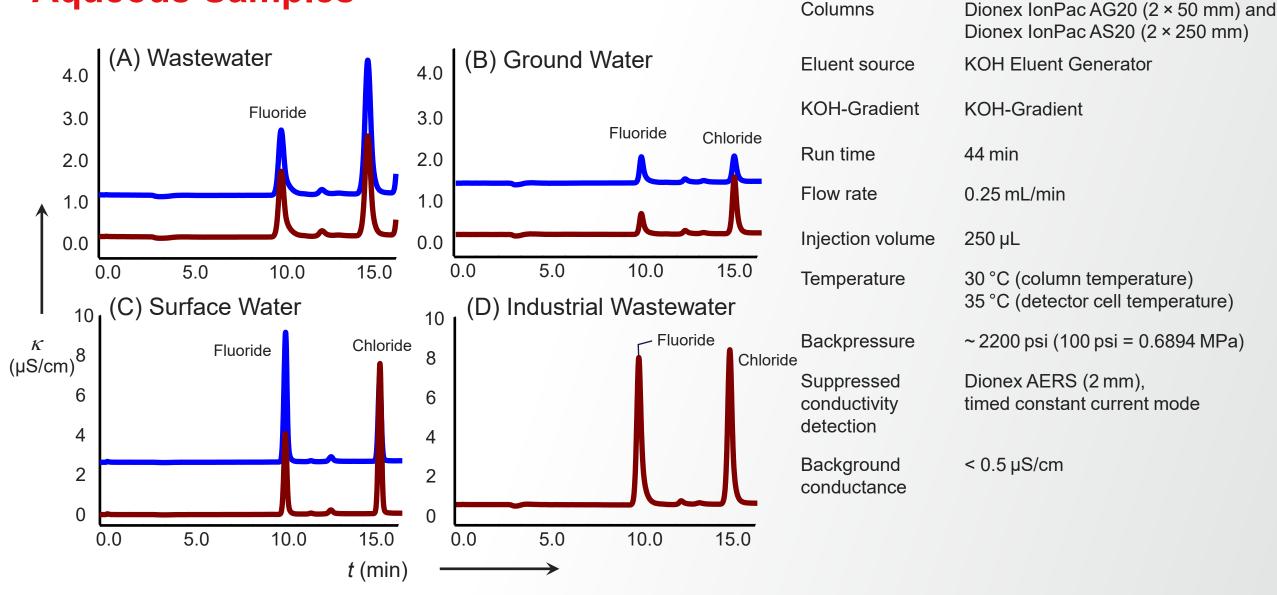
Distribution of Fluorine in the Environment

Analytical method for the determination of AOF

What is CIC?

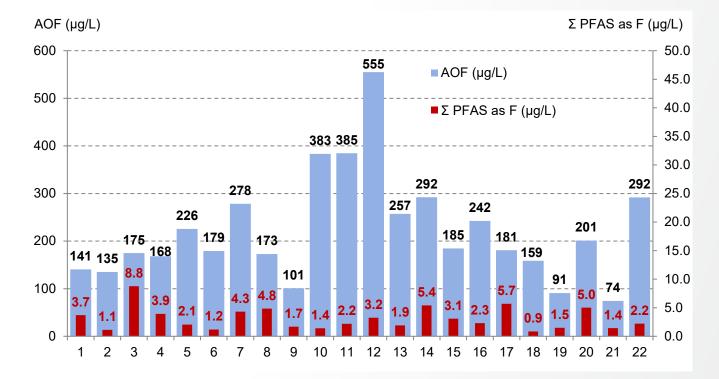
- Combination of Ion Chromatography (IC) with an automated sample preparation step (Combustion)
 - Combustion Ion Chromatography (CIC)
 - Total S, F, CI, Br in Liquid, Solid and Gas Samples
 - Environmental, Polymers, Raw Materials, Oil, Fuel, Coal
 - Standard Methods: ASTM, DIN, ISO, Others

Sample	Combustion Tube	Absorption Solution	IC System	
Organicsulfur Halogens	SO _x HX, X ₂	SO ₄ ²⁻ X ⁻		


CIC theory

ThermoFisher SCIENTIFIC

000


Non-Targeted Complemental Determination of PFAS in Aqueous Samples

Thermo Fisher s c | e N T | F | C

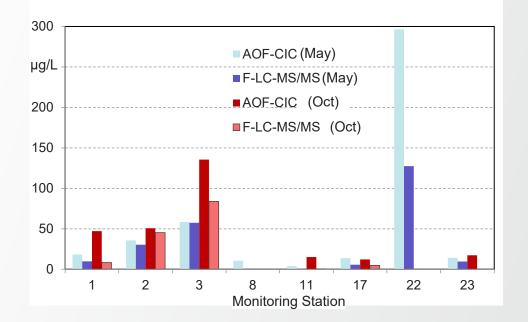
AOF in Aqueous Environmental Samples

AOF in Industrial wastewater samples

AOF and total F-PFAS in Industrial Wastewater over one year (n=22, 2016-2017) The individual AOF values and the sum of the PFAS of each sample, calculated as fluorine (Σ of PFAS as F) are shown.

AOF in Aqueous Environmental Samples

AOF in and targeted Analysis (LC-MS/MS)


- Matrix: PFAS contaminated surfacewater
- 23 monitoring stations (May and October 2015)
- 14 individual PFAS targeted (DIN 38407-42, 2011)

AOF (µg/L): < 2-300 µg/L

F-PFAS: 0.01-130 µg/L

Samples with AOF Results above 10 μ g/L

In general, 50% of the AOF values were reflected by the targeted F-PFAS results.

Comparison AOF and F-PFAS. Measuring Stations with AOF > 10 μ g/L

Customer Application Note: AOF by combustion IC

iternational standardization and

ical methods for their detection.

ble organically bound halogens

of as many PFAS as possible.

natography (IC) cannot directly

AS. Automated combustion ion

3. however, is used to determine

Sulfur-containing compounds are

loxide (SO_), and halogen-containing

aminants, such as ACX.³³ In CIC, the

olysis takes place at temperatures

CIC system for the determination of adaproable organic halogens?

ed by O, at elevated temperatures. As

rities have established regulatory

us PFAS, chlorinated and brominated

and their precursors, and fluorinated

sample, are not accounted for by the

ods. As a result, there is a growing

thermoscientific

CUSTOMER APPLICATION NOTE 73481

AOF by combustion IC - non-targeted complemental determination of PFAS in aqueous samples

Authors: Eleonora von Abercron, Udo Neist, Inge Klocke, Dr. Sebastian Georgii, Prof. Dr. Hubertus Brunn Hessian State Laboratory, Wiesbaden, Germany

Dr. Detlef Jensen Thermo Fisher Scientific GmbH, Dreieich, Germany

Keywords: AOX, combustion, gradient elution, ion chromatography, parametric value, perand polyfluorinated organic substances, perand polyfluoroalkyl substances, RFIC, Dionex IonPac AS20, sum parameter, suppressed conductivity

Goal

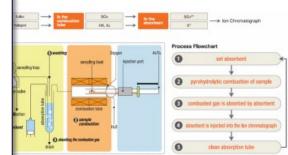
To develop an automated method to determine a range of perfuorinated alkyl substances (PFAS) by combustion IC within environmentally relevant matrices and compare the results with existing highly specific methods based on liquid chromatography mass spectrometry (LC-MS/MS)

Introduction

PFAS are human-made chemicals, which have been manufactured since the 1940s. The most well-known PFAS compounds, perfluorooctanoic acid (PFOA) and

perfuorooctanesufonic acid (PFOS), have been extensively studied for their chemical properties and toxicological effects. PFAS are used in a wide variety of consumer products, such as nonstick cookware, food containers, stain- and water-repellent fabrics, polishes, waxes, paints, and cleaning products. Other sources of PFAS are frefighting foams, which are primary groundwater contaminants at airports and military bases. Further environmental exposure to PFAS comes from industrial production facilities (e.g., chrome plating, electronics, manufacturing, or oil recovery). Living organisms, including plants, animals, and humans, can accumulate PFAS compounds in their tissue, which can build up over time and impact their health."

> **ThermoFisher** SCIENTIFIC


we developed methods specifically for halogens (X.). Loss of hydrogen fluoride through the PFAS in aqueous samples.** These reaction with the oven liner (guartz glass or ceramic) is based on solid-chase extraction (SPE) avoided by continuously adding water during combustion MS detection for only a select number (hydropyrolysis). The volatile pyrolysis products are then absorbed into an aqueous solution and subsequently detected as sulfates and halides (e.g., fluoride) by IC.1012.00 vironmentally relevant fluoroorganic

In contrast to the conventional titrimetric AOX methods, where only the sum of organic halogens is measured. the CIC approach provides halogen speciation as well as additional information about the adsorbable organic fluorcontaining compounds.

substances form hydrogen halides (HX) or elemental

This method can be considered a combination of several existing methods for organic-halogen measurement.1920 Halogen-containing organics from aqueous samples are adsorbed on activated carbon. The activated carbon dical workflow that would allow for a is washed to remove inorganic halides. Sample and adsorbent are combusted, and the volatile oxidization products are absorbed in deionized (DI) water. This solution is subsequently analyzed by IC. A corresponding DIN standard using CIC is under development.²⁰

> This work focuses on PEAS, and the adsorbable organically bound fuorine (AOF). The use of this technique is welldocumented for the determination of other adsorbable organic halogen-containing components (ACX).11.21.22

pounds or compound products served as model nated alkyl compounds were 121%. The proportion of 38407-42", and other PEAS to information provided ds, as well as firefighting foam industrial products, the ided. The chemical information explain the high recover

tical data are summarized in

ed compounds and technical products from a DI water matrix after ac

andard substance	Abbreviation	CAS No.		AO
huoroscelic acid	TFA	76-05-1	3	
ntafuoropropionic acid	PEPA	472-54-0	1	
nuorobutanoic acid	PFDA	375-22-4	6	
nuoropentancic acid	PFPaA	2705-90-3	5	
fuorohesanoic acid	PEHNA	307-24-4	1	
rtuorcheptanoic acid	PfHpA	375-85-0	1	
nuorooctanoic acid	PEGA	335-67-1	÷.	
nuorononanoic acid	PENA	375-95-1	3	
fuorodecanoic acid	PEDA	335-78-2		
Aucromethanesultonic acid	TMSA	1403-13-6	1	
fuorobutaneeulfonic acid	PFBS	29420-49-3		
huoroheane sufbre acid	Pfths	355-46-4	3	
Ruorosotane sulfenic acid	PFDS	56773-42-3	2	
Ausochelomer auffortic acid	H4PF08	27619-97-3		
sture of PECAs (C4-C10) and SAs (C4, C6, C8)	Chiron AS	n.a.	4 5	
scium perfluoro-1- mensulfonale	PEPS	na.	2	
odum perfluoro-1- oparesulforate	PPPs	n.a.	2	
13.3-tetraluoro- (1.1.2,2,3,3,3- ptelluoroproposy)proparois ed	HFPO-DA	7.8.	2	
ntuoro-1-butaneaulfonyl pride	PBSF	375-72-4	2	
r fuoro-1-octanesultonyi orde	POSF	307-35-7	2	
Londerzok add	4-FBA	C7H5F02	з	
ochetA	n.a.	n.a.	10	
educt Al	n.a.	71.8.		
procentrate Product B	n.a.	n.s.	2	
erris Product B	7.8.	n.e.	1	

Table 3. Recovery ranged from 16% to 121%; the activated carboni did not retain the perfluorinated C1 and C3 carboxylic and sulfonic acids. The firefighting foam products showed recoveries in a range between 64% and

Recoveries of PFBS and 4-fluorobenzoic acid in environmental water samples

PFBS was added to seven municipal wastewater and eight surface water samples to a final concentration of 10 µg/L AOF to test the recoveries of organic fluorinated compounds in environmental matrices. The wastewater matrix showed recoveries from 85% to 102%, while the surface water samples had AOF recoveries between 92% and 109%. The analytical recovery for 4-fluorobenzoic acid (4-FBA) in the municipal wastewater samples at a spiked concentration of 10 up/LAOE ranged between 82% and 127% (Table 4). Willach et al. reported mean AOF recoveries from 51% to 100% for selected non-PFAS compounds (fluorinated pharmaceuticals and herbicides) in surface, ground, waste, and drinking water.29

Figure 4 shows a selection of example chromatograms obtained after combusting samples of different types and origins. The same analytical column setup was used throughout the two years of this study.

Table 4. Recovery data for PFBS and 4-FBA

Surfac	e water	Wastewater					
Sample	PFBS recovery	Sample	PFBS recovery	4-FBA recovery			
1	94	1	102	90			
2	105	2	91	83			
3	99	3	86	82			
4	92	4	89	n.d.			
5	109	5	93	n.d.			
6	98	6	85	83			
7	98	7	94	127			
-	-						

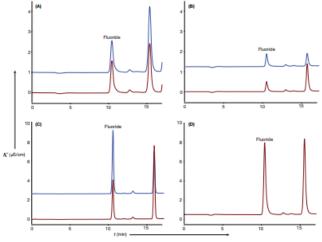


Figure 4. Selection of representative chromatograms obtained after adsorption on activated carbon and co (B) croundwaters, (C) surface waters, (D) industrial wastewater (d),ded 1 to 10

ThermoFisher SCIENTIFIC

39 ed.george@thermofisher.com | 4-Aug-2022