

ThermoFisher SCIENTIFIC Integrated Solutions for Structural Biology: Introducing a Powerful New Workflow for Cross-linking Studies in Biology

Presenter: Rosa Viner

The world leader in serving science

Complexity of the Proteome; Layers of the Proteome

Protein databank January 2017

 5200 protein families (PFAM) with unknown structure

- Recognition of (supra)molecular complexes as the functional subunit of biology in health and disease
- De-constructing and constructing complexes accelerates our understanding of biological function

• Technologies capture structural information for proteins, DNA/RNA, metabolites, drugs

What Questions Does Structural Biology Answer?

- 3D Structure
- Stoichiometry
- Composition
- Topology (binding partners, cofactors, messengers, etc.)
- Binding affinity
- Dynamics
- Aggregates
- Biological function

Integrative Structural Biology Workflow Requires Many Tools

2017 Breaking News: Nobel Prize for CryoEM SPA Workflow

SCIENTIFIC

5

MS+ FEI Cryo TEM Workflows

Integrative Structural Biology Workflow Requires Many Tools

Thermo Scientific Native Mass Spectrometry Workflow

Thermo Scientific Hydrogen/Deuterium Exchange MS Workflow

H/D-X PAL[™] & Chronos

Since 2014

Thermo Scientific Cross-linking Mass Spectrometry Workflow

Introduction of Cross-Linking Mass Spectrometry

Cross-Linking Measures Distance Constraints

Pierce Portfolio of Chemical Cross-linking Reagents

MS-Cleavable Crosslinkers Facilitate MS Analysis

Disuccinimidyl Sulfoxide (DSSO)

Disuccinimidyl Dibutyric Urea (DSBU)

$$\Delta m = m_{\rm L} - m_{\rm S} = m_{\rm A-L} - m_{\rm A-S} = m_{\rm B-L} - m_{\rm B-S}$$
$$m_{\rm A} = m_{\rm A-L} - m_{\rm L} = m_{\rm A-S} - m_{\rm S}$$
$$m_{\rm B} = m_{\rm A-B} - m_{\rm L} = m_{\rm B-S} - m_{\rm S}$$

AL BL As Bs Mass

> Kao, A et al, MCP, 2011; Muller, M et al, Anal.Chemistry, 2010

Crosslinking Mass Spectrometry Workflow: MS Analysis

Top15 method	comment
NCE 10	
NCE 15	
NCE 20	
NCE 25	
NCE 30	
ISD15-NCE30	In-Source CID 15 eV
ISD25-NCE30	In-Source CID 25 eV
ISD35-NCE30	In-Source CID 35 eV
NCE15-NCE30	Two Top 15 experiments in one method alternating with NCE 15 and NCE 30

Disuccinimidyl Dibutyric Urea (DSBU)

Available since May 2017!

Crosslinking Mass Spectrometry Workflow: MS Analysis

Disuccinimidyl Sulfoxide (DSSO)

Crosslinking Mass Spectrometry Workflow: MS Analysis

Liu F. et al. (2017.) Nat. Commun. doi: 10.1038/ncomms15473

New Templates in Tune 3.0!

Enrichment Improves Crosslinked Peptides Identification

ThermoFisher s c i e n t i f i c

Enrichment Improves Crosslinked Peptides Identification

Thermo Fisher SCIENTIFIC

Enrichment Improves Crosslinked Peptides Identification

Leitner A et al. 2012. Mol Cell Proteomics, **11**(3):1-12.

Quantitative XL-MS

QCLM: Isotopically Labeled XL

Fisher, L et al (2016)MCP, 2769-2778

QMIX: Isobaric Mass Tags+XL-MS

Yu,C et al(2016)Anal.Chem, 10301-10308

Thermo Fisher SCIENTIFIC

QMIX: Isobaric Mass Tagging +XL-MS

Yu,C et al(2016)Anal.Chem,10301-10308

Thermo Scientific Proteome Discoverer 2.2 XlinkX* Node

XLinkX Node: Search

Processing Workflow

Definition of Crosslinks

- Addition of any linker (K-K)

Database search

- Any PTM defined in PD
- Full complexity databases
- Fragmentation: HCD/CID, ETD, EThcD
- Acquisition: MS2, MS2-MS2, MS2-MS3
- Percolator supported XL FDR control
- TMT quantitation*

XlinkX Node: Identification-Reporter Peak Detection

XlinkX Node: Identification - MS2

Algorithm:

- Deisotope + TopX filter
- We match both sets of fragments
- Target / decoy search score is a now standard likelihood calculation as developed by Olson et al; however it's fragment intensity weighted
- The lowest score is taken to prevent situations where 1 peptide is well covered and the other unidentifiable

Slide courtesy of Richard Scheltema, Utrecht University

XlinkX Node: Identification - MS3

MS3 HCD – Which fragments can we expect?! Slide courtesy of Richard Scheltema, Utrecht University Peptide A (Alkene) m/z = 667.2994 #4901 RT: 34,5119 min FTMS, 943.9426@cid35.00 889.7307@cid35.00 Frequent mass differences from Frequently detected masses Spectrum Files 300 1403.60693 backbone cleavage 200 ab Potential specific neutral 100 Potential immonium ions? 1532.66467 losses? Spectrum 1500 Selector m/z 30000 • C₁₂ C-term 1500 K (y1 • C₁₃ 20000 ammonia (0) **Xlinkx Detect** 2 2x C₁₃ Intensity Intensity 10000 1000 • 1000 • 50 Count Count • 2000 • 100 • 150 • 3000 0 • 200 6 • 4000 **Xlinkx** Filter • 250 • 5000 500 10000 20000 water Xlinkx Search N-term -50 -25 25 50 140 160 180 200 Mz [Th] Mz [Th] Algorithm: (8) Xlinkx Validator 5

- **No** deisotoping + **but do** TopX filter
- We match both with standard settings (a[1-2], b, and y)
- Target / decoy search score is a standard likelihood calculation as developed by Olson et al

Spectral binning; Kelstrup et al; JPR; 2014 Precision mapping of the metabolome; Breitling et al; Trends in Biotech; 2006

XlinkX Node: Identification - MS2-MS3 FDR Control

FDR processes MS2 and MS3 independently

Percolator based FDR

Percolator; Käll et al; Nat meth; 2007 +30% identifications...

Score based FDR (Simple)

Matched ion intensity [ion-series]

Slide courtesy of Richard Scheltema, Utrecht University

MS3 features

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

MS2 features Score 1. Score Score ratio 2. Score ratio Mono isotopic mass 3. Mono isotopic mass Charge 4. Charge Delta mass 5. Delta mass Absolute delta mass 6. Charge [A / B] Missed cleavages 7. Mono isotopic mass [A / B] Variable modification ratio 8. Number matches [A / B] Unique variable modifications 9. Sequence coverage [A / B] Number modifiable residues 10. Missed cleavages [A / B] Number modified residues 11. Fraction ions matched [free / linked] Total intensity 12. Median fragment mass error Matched intensity 13. **Total intensity** Matched intensity percentage Matched intensity 14. Median fragment mass error 15. **Crosslink position** Median fragment mass ppm error Fraction ions matched [ion-series]

Data Analysis Statistics

Data set

- 1. $SC\overline{X}$ fractionated full lysate (11 fractions)
- 2. 2hr gradients mass difference triggered
- 3. Total 211,916 MS2 scans
- 4. Total 296,560 MS3 scans

Fasta

- 1. Uniprot human
- 2. Total 44,110 protein sequences

Computer

- 1. 8-core intel i7-4790 processor @ 3.6HhZ (64-bit)
- 2. 16Gb internal memory
- 3. 222Gb SSD drive

3.9 Gb
7
1764 (of 7474)
2835 (of 19698)
natches 1761
1198

Step	Time [hr]
Collect scans	0.57
Detect reporter peaks	0.18
Filter scans	0.02
Generate database	0.37
Search spectra	0.28
Collect results	0.05
FDR control	0.02
Grouping	0.08

Crosslink search

Left for OS tasks

Thermo Fisher

SCIENTIFIC

Slide courtesy of Richard Scheltema, Utrecht University

XLinkX Node: Results

Consensus Workflow

Full integration in PD

- Linked output tables
- Visualization

-

2000

2000

- Automatic export to xiNET

Automatic export to 3D structures (Xlink 2.0)

- Supporting pyMol
- Planned Haddock (modelling) -

XLinkX Node: Results

• Protein Structure

• Protein Complex

Interactomics

xiNET

http://crosslinkviewer.org/

Thermo Fisher SCIENTIFIC

Proteome-wide XL-MS application (E.coli)- 1158 Unique XL*

Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification

Fan Liu^{1,2,*,w}, Philip Lossl^{1,2,*}, Richard Scheltema^{1,2}, Rosa Viner³ & Albert J.R. Heck^{1,2}

Acknowledgements

Chris Etienne Sergei Snovida Kay Opperman Mathias Muller Derek Bailey Kai Fritzemeier Bernard Delanghe Torsten Ueckert Shijun Li David Horn Andreas Huhmer Terry Zhang Romain Huguet Chris Mullen Alexander Makarov Linda van Driel Huiling Liu Jenny Ho Vlad Zabrouskov

Ryan Bomgarden

Universiteit Utrecht

Fan Liu Richard Scheltema Albert Heck

Clinton Yi Craig Gutierrez Lan Huang

