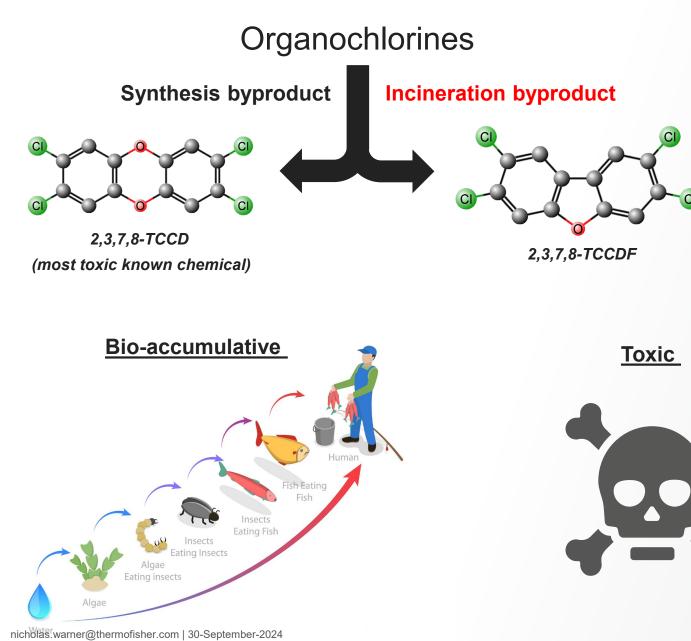


Thermo Fisher S C I E N T I F I C

Trace analysis of polychlorinated dibenzo-pdioxins/furans (PCDD/F) in food and feed using GC-MS/MS


Dr. Nicholas A. Warner

Product Specialist for GC and GC/MS

Thermo Fisher

Dioxins

2

POPs regulated by Stockholm Convention

Aldrin	
Chlordane	
DDT	
Dieldrin	
Endrin	
Heptachlor	
Hexachlorobenzene	
Mirex	
Toxaphane	
Polychlorinated	
biphenyls (PCB)	
Polychlorinated	
dibenzo-p-dioxins (PCDD)	
(Polychlorinated	
dibenzofurans (PCDF)	

The Dirty Dozen

Adoption of European safety guidelines

2001 - EU Scientific Committee on Food - risk assessment of PCDD/Fs and dioxin-like PCBs in food

- Weekly intake of 14 pg WHO TEQ/kg body weight limit established
- Maximum and action limits for PCDD/F within food and feed set highlighting the need for constant monitoring

Globalization of food market

- No one jurisdiction is risk free from exposure
- Monitoring of food and feed exports and imports need to avoid future accidental exposure

Instrumentation requirements

Meeting the needs of compliance

- High resolution magnetic sector mass spectrometry (HRMS)
 - Gold standard in Dioxin analysis (Worldwide compliance) •
- **2014** EU allows GC-MS/MS for dioxin analysis in

food and feed

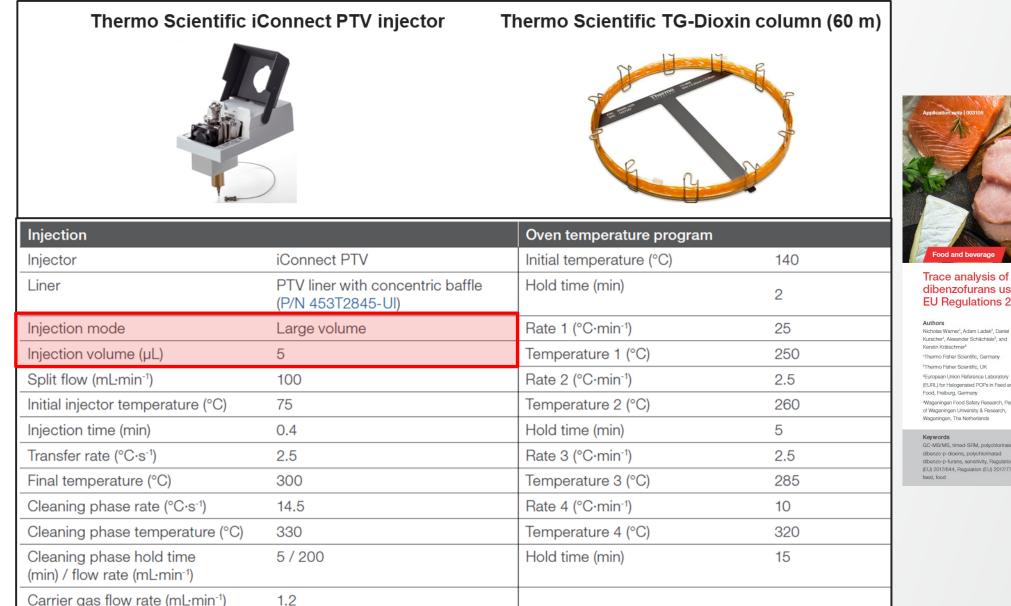
TSQ[™] 9610 GC-MS/MS

Thermo Scientific™

Project Goal

Compare performance between platforms in meeting Dioxin analysis criteria in food and feed

Internal evaluation


Thermo Fisher Scientific \triangleright

External evaluation

- EURL (Freiburg. Germany)
- Wageningen Food Safety **Research Institute** (Netherlands)

Injection and separation methodology

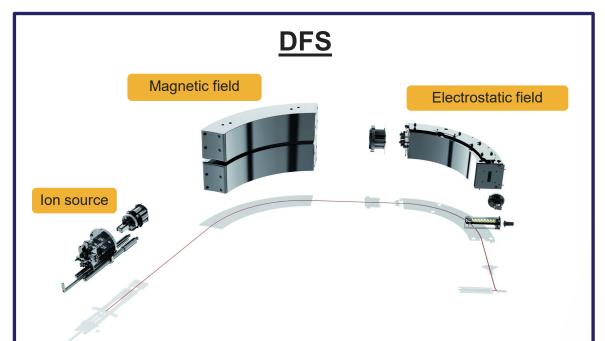
Thermo Fisher SCIENTI

Trace analysis of polychlorinated dibenzo-p-dioxins/ dibenzofurans using GC-MS/MS in accordance with EU Regulations 2017/644 and 2017/771 for food and feed

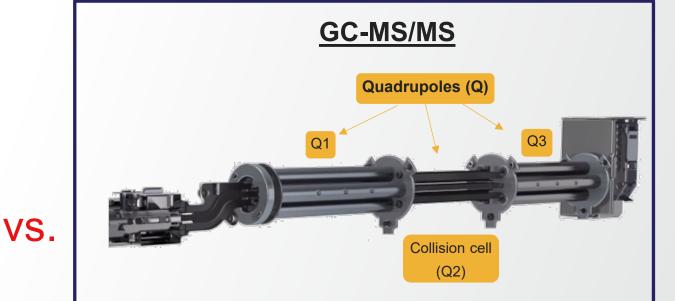
Nicholas Warner¹, Adam Ladak², Daniel Kutscher¹, Alexander Schächtele³, and Kerstin Krätschmer⁴ Thermo Fisher Scientific, Germany ²Thermo Fisher Scientific, UK

To demonstrate the suitability of the Thermo Scientific" TSQ" 9610 triple quadrupole GC-MS/MS system with Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS) software for the routine and regulatory compliance testing of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) in food and feed samples in accordance with Commission Regulations (EU) 2017/644 and 2017/771.

Introduction


Goal

(EURL) for Halogenated POPs in Feed and Food, Freiburg, Germany Wageningen Food Safety Research, Part of Wageningen University & Research, Wageningen, The Netherlands


Keywords GC-MS/MS, timed-SRM, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzo-p-furans, sensitivity, Regulation (EU) 2017/644, Regulation (EU) 2017/771

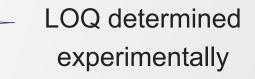
Polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/F), or dioxins as they are commonly referred to, are classified as persistent organic pollutants (POPs) under the Stockholm Convention. Due to their chemical stability and high fat solubility, these chemicals can accumulate within food chains and pose exposure/health risks to humans through consumption of food items (i.e., diary, meat, and fish). Regulations are in place to monitor food and feed for the presence of dioxins to protect the population.1 Current maximum levels allowable for PCDD/Fs in food and feedstuffs are at the pg-g⁻¹ concentration range due to the toxicity risk they pose.^{2,3} However, the European Commission has announced plans to lower the current maximum levels in certain feedstuffs in 2024 based an updated risk assessment.⁴ As of 2014, a change of EU regulations permitted the use of gas chromatography-triple quadrupole mass

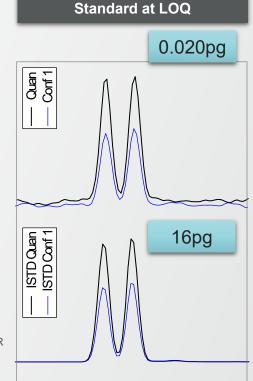
Differences in mass selectivity

- Double focusing mass analyzer
 - Magnetic and Electrostatic focusing
 - High mass resolution data obtained
 - R = 10,000 (10% valley definition)
 - R = 20,000 FWHM
 - Robust performance from source design

- Mass separation in alternating electric field
 - AC/DC applied across quadrupoles
 - Unit (low) mass resolution technique
- MS/MS selectivity
 - Monitor compound selective fragmentation
 - Fast scanning capabilities
 - -> 800 simultaneous transitions possible

LOQ determination


Calibration based approach for GC-MS/MS analysis¹


- Defined as the lowest level of analyte detected and meets performance criteria:
 - Within the specified retention time window (for all monitored ions).
 - *Ion ratio intensities* ≤ 15% of theoretical (or calculated from standards) values •
 - Deviation from the average *relative response factor* ≤ 30% for all calibration \bullet points
 - The LOQ calculated by taking the lowest point of the calibration curve and correcting for the final sample volume, sample intake weight, and associated internal standard recovery.

$$Sample \ LOQ \ (pg/g) = \sum_{n=PCDD/F}^{17} Min \ Conc_n (pg/\mu L) * \left(\frac{\text{Sample volume}(\mu L)}{\text{Sample weight}(g) * Recovery \ l \ (\%)}\right)$$

1. Wenzl, T., Haedrich, J., Schaechtele, A., Robouch, P., Stroka, J., Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food; EUR 28099, Publications Office of the European Union, Luxembourg, 2016, ISBN 978-92-79-61768-3; doi:10.2787/8931u

Thermo Scientific[™] Chromeleon Chromatography Data System (CDS) 7.3.2

Chromeleon Conse 📀 Back 💿 🛛 Create

⊡ 🞬 ChromeleonLocal

÷ 2024

Instruments

eWorkflows

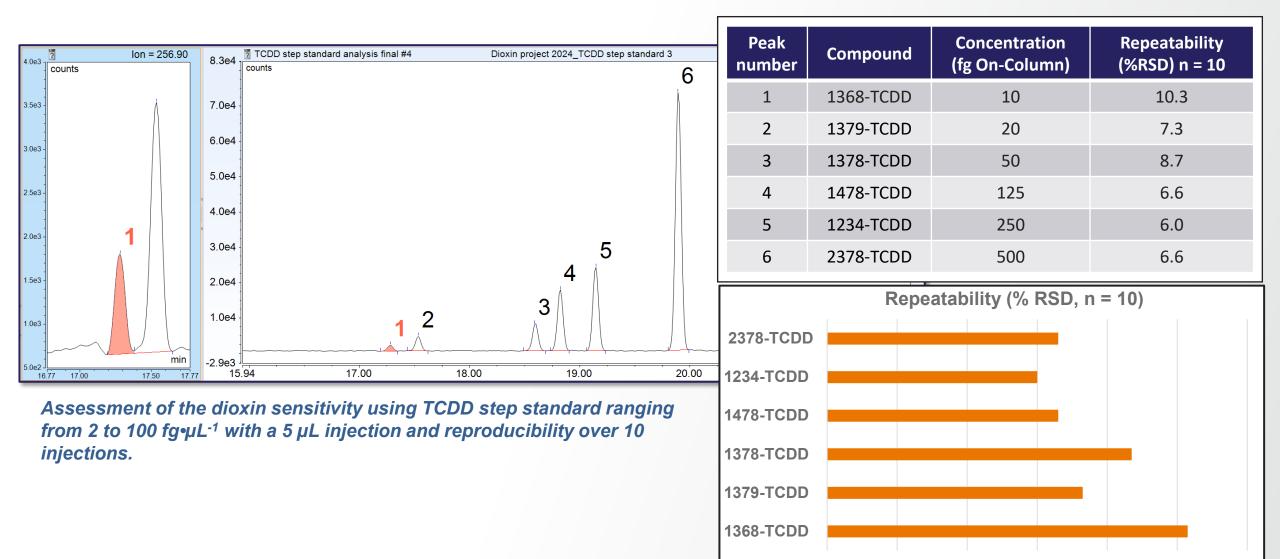
eWorkflow 'Dioxin Anal

Data

11/

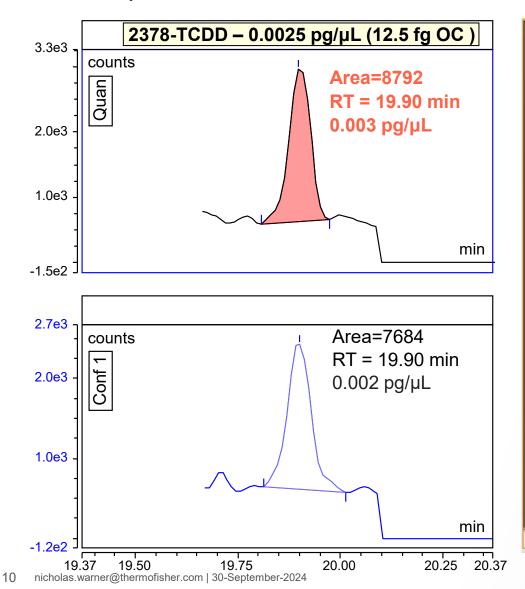
🗄 📄 delete 🗄 🛅 Dioxins ÷ 2023

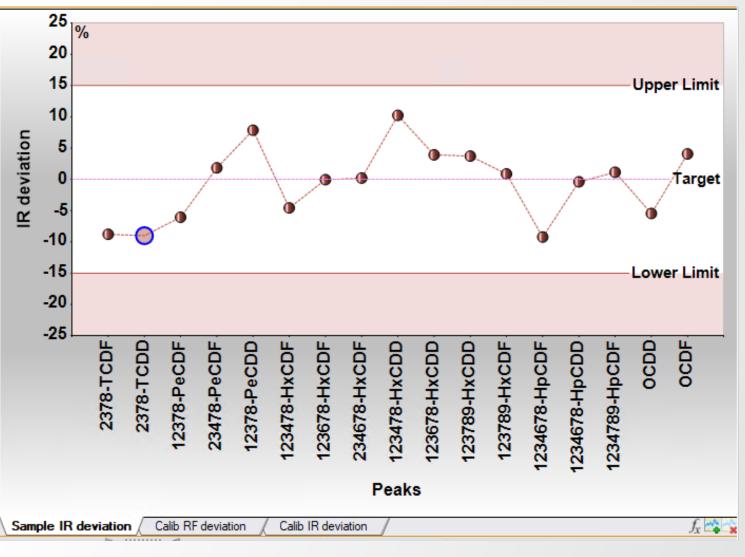
Data


meleon Console	#2						eWorkflows	«	
Create	File I	Edit	View	Tools	Help	р	😸 🔕 🚖	Filter Y	
						«	More filters (none)	*	
×				F	Filter	Y	ChromeleonLocal	*	
nromeleon Local delete							Dioxin Analyzer - v1.3		
Dioxins							Name	Date Modified	Туре
							teur 28099 en_lod log guidance document.pdf	3/28/2019 3:50:19 PM +01:00	chment
2024							PCB review	5/29/2019 12:54:44 PM -05:00	new Settings
🗂 Dioxin analyze	er initial s	setup					PCBs	3/29/2019 2:32:45 PM +00:00	Report Template
							PCBs	3/29/2019 2:50:50 PM +00:00	Processing Metho
struments							PCBs - PTV(bk) - AI-AS1610 - 1µL	5/31/2024 4:17:24 PM +02:00	Instrument Method
iatrumenta							PCBs - PTV(bk) - TriplusRSHSmart - 1µL	5/31/2024 4:20:13 PM +02:00	Instrument Metho
							PCBs - PTV(fr) - Al-AS1610 - 1μL	5/31/2024 4:17:40 PM +02:00	Instrument Metho
ata							PCBs - PTV(fr) - TriplusRSHSmart - 1µL	5/31/2024 4:20:01 PM +02:00	Instrument Metho
							PCBs - SSL(bk) - Al-AS1610 - 1µL	5/31/2024 4:17:47 PM +02:00	Instrument Metho
Workflows							PCBs - SSL(bk) - TriplusRSHSmart - 1µL	6/3/2024 9:54:57 AM +02:00	Instrument Metho
							PCBs - SSL(fr) - Al-AS1610 - 1μL	5/31/2024 4:19:53 PM +02:00	Instrument Metho
							PCBs - SSL(fr) - TriplusRSHSmart - 1µL	6/3/2024 9:55:06 AM +02:00	Instrument Metho
							PCDDF	4/25/2019 11:45:45 PM -05:00	Report Template
w 'Dioxin Analyze	er - v1.3	selec	ted				PCDDF review	5/29/2019 12:51:55 PM -05:00	View Settings
							A PCDDFs	3/29/2019 3:07:36 PM +00:00	Processing Metho
							PCDDFs - PTV(bk) - Al-AS1610 - 1μL	5/31/2024 4:18:10 PM +02:00	Instrument Metho
							PCDDFs - PTV(bk) - TriplusRSHSmart - 1µL	5/31/2024 4:19:21 PM +02:00	Instrument Metho
							PCDDFs - PTV(fr) - AI-AS1610 - 1µL	5/31/2024 4:18:30 PM +02:00	Instrument Metho
							PCDDFs - PTV(fr) - TriplusRSHSmart - 1µL	5/31/2024 4:19:15 PM +02:00	Instrument Metho
							PCDDFs - SSL(bk) - AI-AS1610 - 1µL	5/31/2024 4:18:37 PM +02:00	Instrument Metho
							PCDDFs - SSL(bk) - TriplusRSHSmart - 1µL	5/31/2024 4:19:08 PM +02:00	Instrument Metho
							PCDDFs - SSL(fr) - AI-AS1610 - 1µL	5/31/2024 4:18:47 PM +02:00	Instrument Metho
							PCDDFs - SSL(fr) - TriplusRSH - 1μL	4/25/2019 7:22:55 PM -05:00	Instrument Method
							TSQ ion ratio intensity calculator PCB.xlsx	3/4/2019 10:16:46 AM +01:00	Attachment
							TSQ ion ratio intensity calculator PCDD.xlsx	3/5/2019 11:44:09 AM +01:00	Attachment
							TSQ ion ratio intensity calculator PCDF.xlsx	3/1/2019 12:17:38 PM +01:00	Attachment
							WHO-TEQ_Upperbound calculator - standards.xlsx	3/28/2019 3:42:37 PM +01:00	Attachment

Automated full method setup for PCBs and PCDD/Fs including:

- Instrument methods for TriPlus RSH Smart and Al-AS 1610 autosamplers
- Isotopic dilution quantification methods
- Reporting \bullet layouts/templates
- Supporting compliance documentation


Meeting performance criteria


Analysis repeatability at trace levels

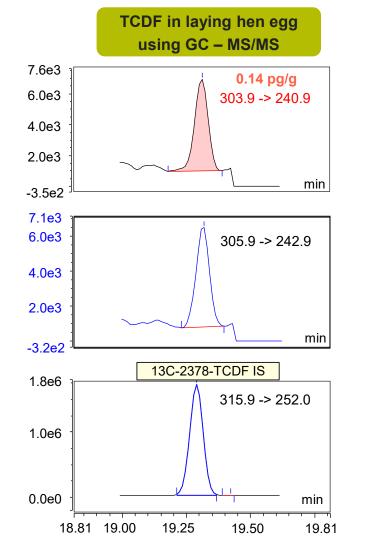
Meeting performance criteria

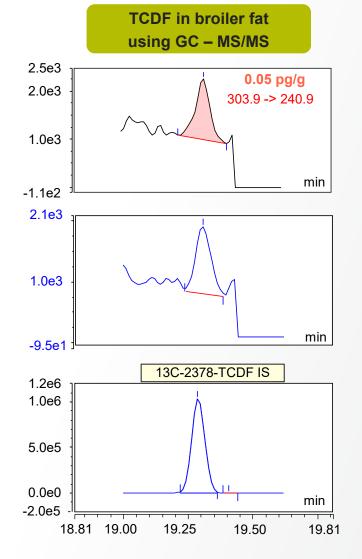
Ion ratio performance at trace levels

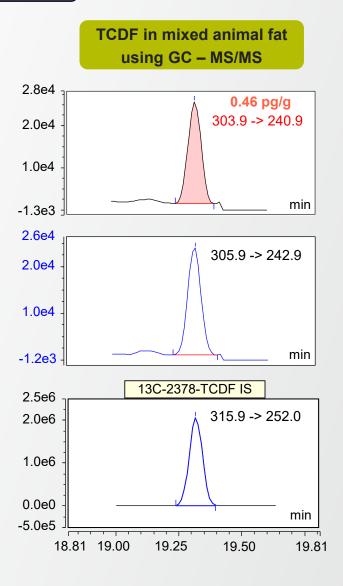
Meeting performance criteria

0.07 Response factor variance and accuracy Area * (Amount_ISTD/Area_ISTD) 0.06 2378-TCDD MS Quantitation **EURL** external 1.525 0.05 check std 1.4 Upper RF 1.275 0.04 1.15 0 0.03 ш. 1.025 Ф AvRF LOQ std 0.9 (50 fg OC) 0.02 0.775 Lower RF 0.01 0.65 0.525 0 0.4 LOQ/2 std CS2 PCDD/F LOQ PCDD/F CS1 PCDD/F CS3 PCDD/F CS4 PCDD/F CS5 -0.01 (25 fg OC) PCDD/F (LOQ/4 (12.5 fg OC) -0.02 Injections 0.010 0.020 0.030 0.037 0 Sample IR deviation Calib RF deviation Calib IR deviation Amount (pg•µL⁻¹⁾

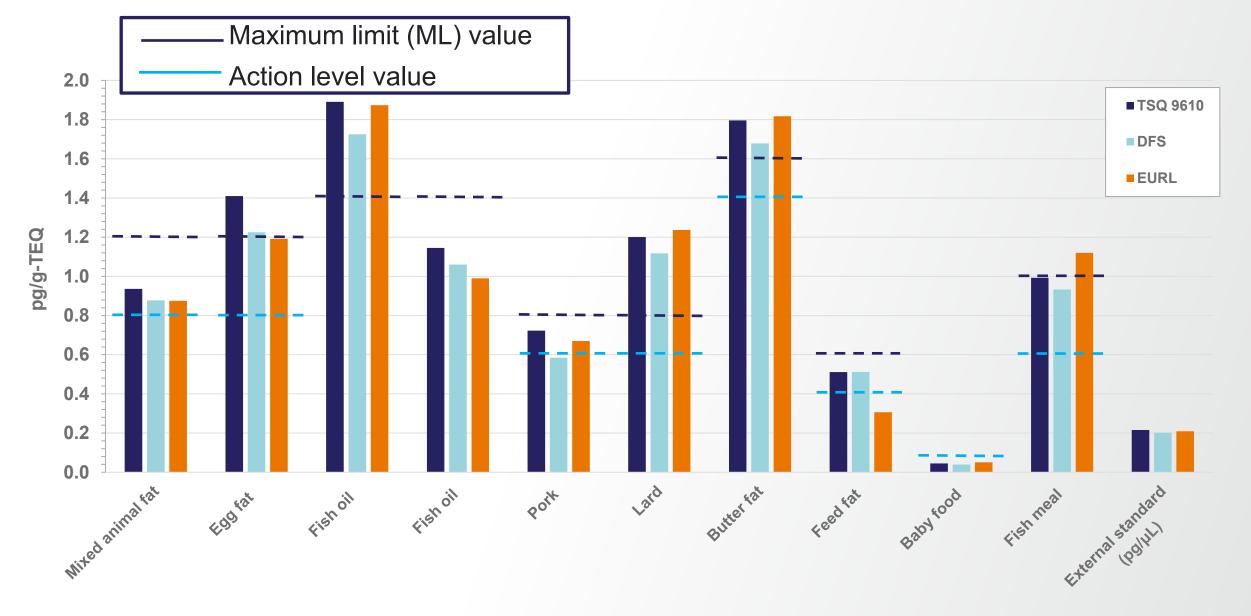
	Α	В	H		J
1	Peak Name	Ret.Time			
2		min			
3	First Injection	First Injection	EURL external check standard	EURL analysis LOQ/4 -4	EURL analysis LOQ/2 -4
5	2378-TCDF	19.292	Pass	Pass	Pass
6	2378-TCDD	19.852	Pass	Pass	Pass
7	12378-PeCDF	23.319	Pass	Pass	Pass
8	23478-PeCDF	24.704	Pass	Pass	Pass

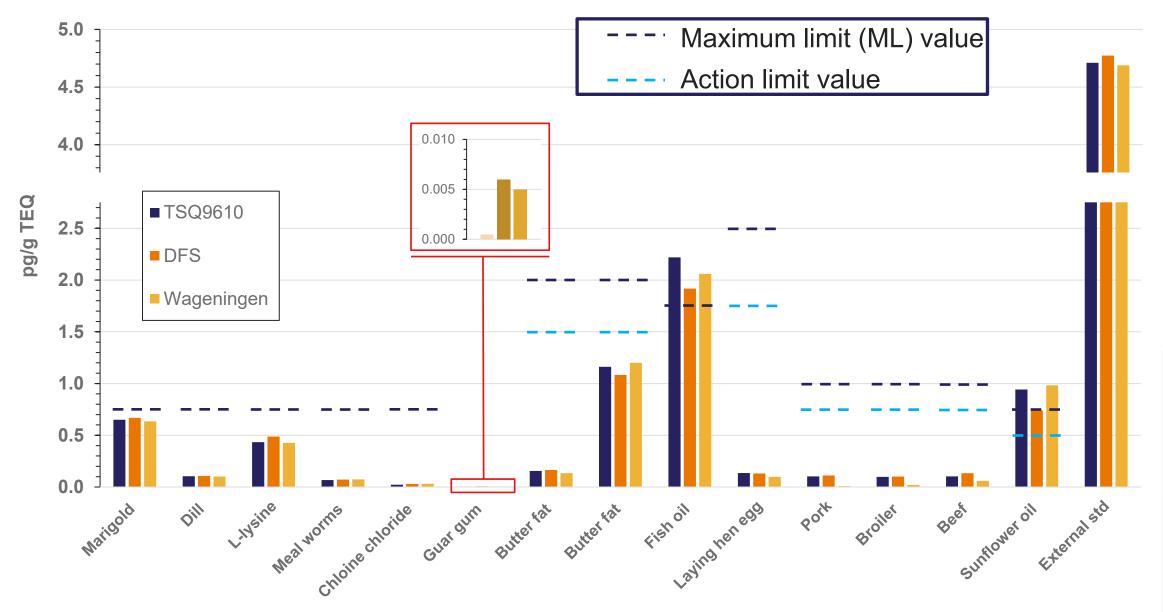

0.08


2378-TCDD


MS/MS selectivity in complex matrices

Thermo Fisher


Minimal matrix impact at sub –pg/g concentrations



EURL sample analysis (Freiburg, Germany)

Wageningen Food Safety Research (Netherlands) analysis

Conclusions

- Femtogram level sensitivity achievable by TSQ 9610 GC-MS/MS in food and feed samples
- Check standard performance within ion ration thresholds for EU regulatory compliance at femtogram levels
- Good data agreement between TSQ 9610 and DFS through internal and external evaluation highlights accuracy and precision performance of the TSQ 9610
- Easy implementation with the Chromeleon 7.3.2 CDS Dioxin analyzer eWorkflow

Thank you

Any Questions

16 nicholas.warner@thermofisher.com | 30-September-2024