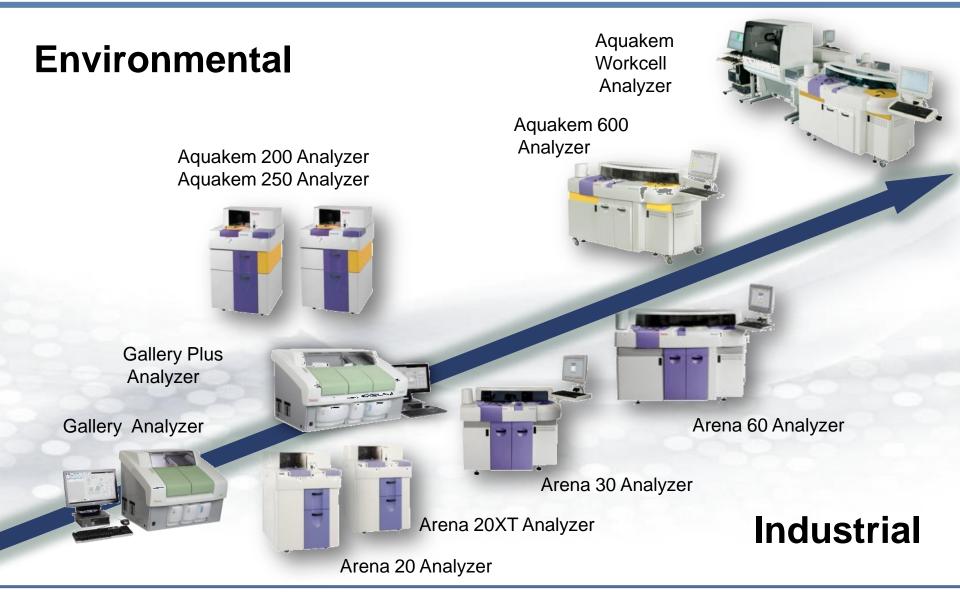


Key Product Launches Over 35 Years

SCIENTIFIC

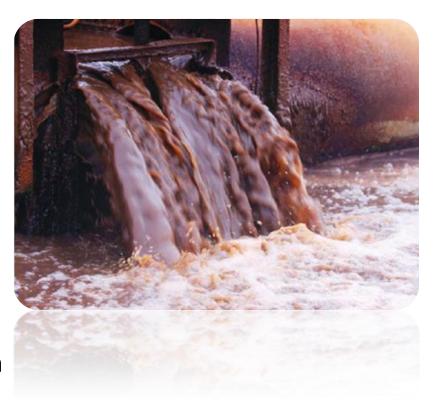

Industrial and Environmental System Solutions

- Thermo Scientific[™] Gallery[™] and Gallery Plus Analyzer – new automated, discrete photometric systems for food, beverage, water, waste water, soil/sludge digests, saline, process water, pharmaceutical, agricultural, chemical applications and bioprocess testing and QC
- Thermo Scientific[™] Arena[™] Analyzer random access photometric analyzers for product analysis and quality control in industrial processes like food and beverage, pharmaceutical, agricultural, and chemical analyses
- Thermo Scientific[™] Aquakem[™] Analyzer discrete, photometric analyzers for water and environmental samples like clean water, waste water, soil/sludge digests, saline, and process water

Thermo Scientific Discrete Analyzer Platforms

Range of Discrete Analyzers for Wastewater Analysis

	Gallery/Aquakem 200/ Arena 20 AnalyzersImage: Constraint of the second secon	Aquakem 250/ Arena 20 XT Analyzers	Gallery Plus Analyzer	Aquakem 600/ Arena 30/60 Analyzers	
Capacity (tests/hr)	Up to 200	Up to 250	Up to 350	Up to 600	
Incubation temperature	25 to 60 °C (Gallery Analyzer) 37 °C (Aquakem/Arena Analyzers)	37 °C	25 to 60 °C	o 60 °C 37 °C	
Optional units	pH and Conductivity (Gallery Analyzer) Cadmium reduction(Aquakem Analyzer)	Cadmium reduction	pH and Conductivity	Cadmium reduction and automation	


Outline

- Wastewater
 - Sources
 - Reasons for analysis
 - Analytical challenges
- Common anions in wastewater
- Other industrial applications
- Discrete analysis
 - Automated photometric assays
 - Accurate, precise measurement
- Conclusion

Wastewater

- Municipal or household waste
 - Sewage effluent
 - Raw sewage
 - Treated effluent
 - Leachates
 - Surface run-off
- Industrial
 - Production effluents
 - Process and cooling waters
- Agriculture
 - Soils leached/extracted into solution

Reasons to Perform Wastewater Analysis

- Monitoring discharge
 - Regulatory limits
- Nutrient analysis
 - Excessive plant growth in aqueous environments
- Known samples
 - Historical analysis
 - Examining high chloride levels from a treatment facility with a water inlet near the sea/estuary
- Unknown samples
 - Investigative, pollution incident, farm run-off, milk spill, or industrial discharge due to plant failure

Wastewater Analytical Challenges

- The content of wastewater samples is often unknown
- Accurate, rapid results are needed
- Samples that are out of calibration range will have to be rerun
 - Ability to automatically perform dilutions pre-test or post-test is advantageous
- Samples can contain disparate analyte concentrations
 - May need to run multiple dilutions depending on the analytes of interest

Common Anions in Wastewater

- Inorganic anions
 - Chloride
 - Disrupts nitrification process (treatment)
 - Sulfate
 - Disrupts anaerobic digestion process (treatment)
 - Phosphate, nitrate, nitrite
 - Plant nutrients; phytoplankton blooms
 - Bromide
 - Ozonation, chlorination, e.g., disinfection by products such as brominated trihalomethanes, bromate (carcinogens)
- Organic acids
 - Formic, acetic, propionic acids
 - pH balance

Wide Selection of Tests Optimized for Anions

- Chloride
- Fluoride
- Nitrate Hydrazine
- Nitrate Enzymatic
- Nitrate Vanadium
- Nitrite
- Ortho-Phosphate
- Sulfate
- T.O.N
- TKN as N
- TP as P

- Additional analytes
 - Alkalinity
 - Ammonia
 - Calcium
 - Chromium (VI)
 - Iron (Ferrous)
 - Magnesium
 - Silica
 - Total hardness
 - Urea
 - pH
 - Conductivity

Industrial Water Refinery Processes: Instruments for Industrial Water and Scrubber Solutions

The Need for Accurate Industrial Water and Scrubber Solution Analysis

Proper care of amines can do more to improve plant throughput and lower operating costs than preventative maintenance. Alkanolamines (commonly referred to as amines) are used to neutralize hydrogen sulfide (a corrosive) and carbon dioxide (a greenhouse gas). Amines are added to boiler water to control pH. Analysis of "amines" is required for process monitoring to determine the concentrations of byproducts and corrosive analytes such as heat stable salts, acid gases, metals, anions, and cations.

We have the broadest array of analytical instrumentation for water refinery processes.

Hydraulic Fracturing: Instruments for Waters, Sediments, and Brine Analyses

The Need for Accurate Water and Sediment Analysis

The process of Hydraulic Fracturing results in addition of chemicals to the subsurface along with mobilization of anions, cations, metals, and radioisotopes in the shale layers that are returned to surface as flowback waters. Analytical instrumentation is required to determine the concentrations of these analytes in an effort to minimize the environmental impact of groundwaters, improve fracking processes, wastewater disposal, drill cuttings, and brines prior to disposal.

We have the broadest array of analytical instrumentation for the analysis of water and soil impacted by hydraulic fracturing.

Pharmaceutical, Enzyme Producers, and Other Markets

Pharmaceutical-like Creams, Tablets, Etc.

Arena Photometric Analyzer Applications

- Fructose
- Glucose
- Sucrose
- Lactose
- Starch
- Acetic acid
- Citric acid
- Gluconic acid
- Glutamic acid

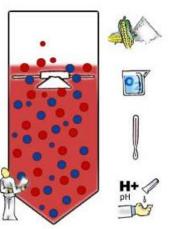
- L-Lactic acid
- L- and D-Malic acid
- Ethanol
- Cholesterol
- Glycerol
- Sorbitol

Cosmetics

Arena Photometric Analyzer Applications

- Glucose
- Fructose
- Lactose
- Starch
- Citric acid
- Gluconic acid
- L-Lactic acid
- L-Malic acid
- Ethanol
- Cholesterol

- Dihydroxyacetone
- Glycerol
- Sorbitol
- Urea


Laundry Detergents

- Enzymes for laundry detergents and machine dish washer products are analyzed with the Arena Analyzer
 - Proteases
 - Lipases
 - Amylases
 - Cellulases

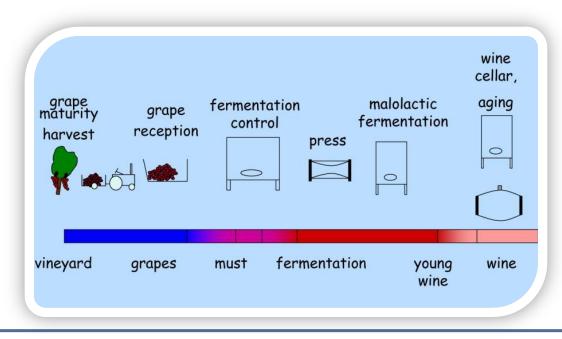
Enzymes

- Products that can be analyzed with the Arena Analyzer
 - R&D phase enzymes
 - Amyloglucosidase
 - An enzyme for high fructose corn syrup makers
 - Papaine
 - Lactase
 - Phosphate
 - Amylase
 - Phosphodiesterase

R&D

- To optimize fermentations for correct substrate: e.g. maize (corn), soy beans, potatoes or sugars
- To optimize the right nutrients for the microorganisms to produce that enzyme
- Optimize the fermentation atmosphere: temperature, oxygen level and pH

Production QC


 Enzyme activity assays of the products

Reason to choose the Arena Analyzer: incubation at 50 °C, flexibility and low CV

Reasons for Beverage Analysis

- Quality Control of raw material, must (wine) or wort (beer), and final product
- Monitoring of production processes (malolactic fermentation)
- Detection of adulterations and false declaration
- Label claims/legal limits

Sugar and Acid Analysis in Wine

- In wine, fructose is used as a process indicator and as a quality indicator for the final product
 - Yeast enzymes convert sugars (sucrose, glucose, and fructose) to ethanol and carbon dioxide
 - Sucrose is first converted to glucose and fructose, then glucose is consumed followed by fructose
- Acids play a significant role in taste, color, and microbial stability of juice. In wine, acids are present in both grapes and wine.
 - Acids, like D-malic acid are tested to check the fermentation process
- Other tests for wine
 - SO₂ regulated by legislation
 - Glycerol as a taste parameter

Sugar and Acid Analysis in Fruit Juice

- Sugars like sucrose, glucose, fructose, and sorbitol are tested from raw material and the final product
- Ratio of sugars from concentrate used to verify authenticity
 - Glucose fructose ratio from apple juice
 - Citric acid iso-citric acid ratio from citrus juices
- Acids and alcohol are measured to check the concentration of natural fermentation – limit is regulated by law

Beer Analysis

- Beer is composed of malt, water, and hops which first form wort; after wort fermentation, beer is formulated
- Typical analytes of wort
 - Beta-Glucans to monitor brewing process
 - NOPA free nitrogen for yeast
 - Proteins to control haze formation
- Final product
 - pH flavor indicator
 - Color to categorize various beers
 - Bitterness quality parameter for taste, foam, and stability
 - SO₂ effects flavor

System Reagents for Food and Beverage Analysis

Sugars

Acid

analysis

- **D-Fructose**
- D-Glucose
- D-Fructose+D-Glucose D-Fructose+D-Glucose+Sucrose Lactose (Glucose) Sucrose (Total)

Acetic acid

L-Ascorbic acid

- ß-Hydroxybutyric acid
- Citric acid
- D-Gluconic acid
- **D-Isocitric Acid**
- D-Lactic Acid L-Lactic Acid

L-Malic acid

- Oxalic acid
- **Total Acids**

- **Cholesterol Food** Alcohol analysis Ethanol Glycerol **Polyphenols (total)** Ammonia Acetaldehyde **α-Amylase** α-Amino Nitrogen (NOPA) **Bitterness** Others **Beta-Glucan (High MW)** Calcium (Ca) Copper Magnesium pH (Colorimetric) Potassium SO₂ free and total **Total iron Total protein**
 - Urea (Ammonia)

PH PH

alibrators

Alcohol std Acetaldehyde std Acid combination std **Beta-Glucan Std** Beta Hydroxybutyrate std **Cholesterol std** Copper std **Glycerol std** Lactose std NOPA std Oxalic acid std Sugar combination std Urea std

pH standards

CIENTIFIC

Over 50 optimized system products

Applications

• R&D

- Discovering new products using expensive, high sensitive systems
- to create rapid, easy-to-use and high quality methods for production QC > Arena analyzers
- Production QC
 - need quick response
 - need high quality
 - getting less qualified labor
 - budgetary pressures
 - Need for flexible and easy-to-use system > Arena analyzers
 - Need for high quality systems & service > Arena analyzers & distributors

Anion Determinations Using Photometric Assays

- Manual wet chemistry assays
 - Labor intensive
 - Waste reagents
 - Error prone
- Continuous flow analyzers
 - Relatively slow
 - Generates a lot of waste
- Discrete analyzers
 - Rapid, automated, efficient

Benefits of Automated Discrete Analysis

- Flexible various tests can be performed on each sample; there is no limitation to the number of tests
- Fast ready for immediate analysis; no reagent priming, no method changeover time
- Precise specific measurements with high reproducibility, achieves low detection levels
- Minimal carry-over each reaction takes place in its own cuvette

Discrete Analysis Routine Workflow

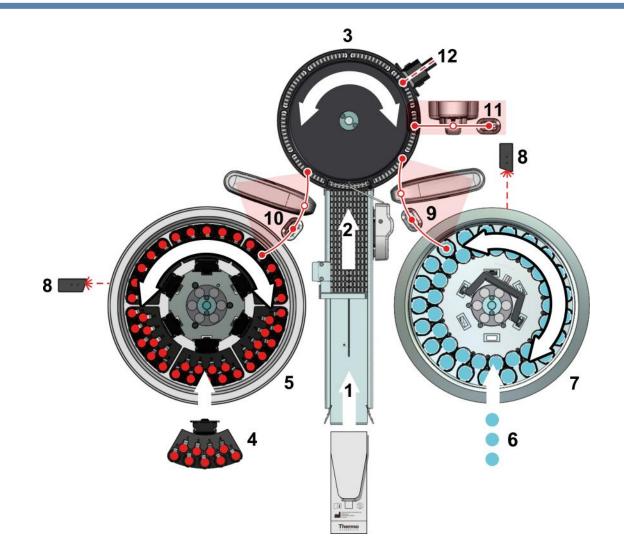
1.

2.

Check/ run calibration

Run samples: • up to 54 at a time^{*} with Gallery Plus • up to 45 at a time^{*} with Gallery

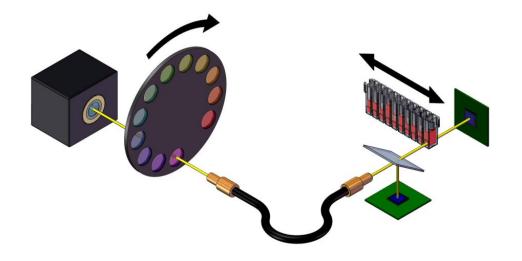
* continuous loading


3. Results

Date			Calibration results NO2 2mpl Vestor number 1.4			Page	1/1
Contract of Contra	3014-02-17	Usar	Dealer	see toang	er 1, 16		
Time	12:53.28		unsion: 4.1.1				
Test	M02.24	- Iar	Cust of a	eler.	0.2000006		
Status .			Total facto	200	0.387		
Accepted	2014-0	0.1510.36	0		0.00T		
Owited	2014-0	0.13 10.36					
User name	Dealer						
Command	1. 10 C.						
firmers.							
Factor	0.367						
Bas	0.003						
Californ	Assporas	Call. sone.	Given sone.	Let	Errors		
NG2-8	0,001	-6.001	0.008	Delaut			
N02-670	9,130	0.048	0,080	Default			
N02-610	9,390	0,100	0,100	Default			
NC3-810	0.622	0.201	6.306	Default			
N02-570 N08-570	0,740	0.267	0.294	Default			
NO2-510	1,018	0.401	0.400	Default			
ent-er-m	1,200	1.466	0.900	Oylaut			
21							
12.00							
8 14							
옷 14							
8							
	200	/					
8.5	1						
1000	*						
1	8.1 8.7 8	3 84 85	15 17				
	A. A. 8	Canal (mg	These services	u u			

Time to first results typically 10 min

Discrete Analysis Process



- 1. Cuvette entry point
- 2. Cuvette loader
- 3. Incubator
- 4. Sample racks
- 5. Sample disk
- 6. Reagents
- 7. Reagent disk
- 8. Barcode reader
- 9. Reagent dispenser
- 10. Sample dispenser
- 11. Mixer
- 12. Photometer unit

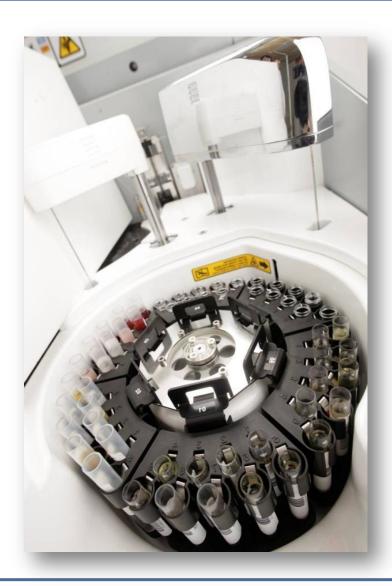
Fast Photometric Measurement

- Spectral range 275–880 nm
 - 12 filter positions
- Fast measurement with a flash lamp
 - Main and side wavelengths measured at the same time
 - Water blank measured in all wavelengths at the same time

Optional Electrochemical Unit

- Conductivity and pH measurements
- Measuring range for
 - conductivity 20 µS/cm 112 mS/cm
 - pH 2–12
- Sample types
 - Water samples: natural water, waste water, drinking water, sparkling water, and still water

Flexible, Reliable, Temperature-Stabilized Measurement


- Several calibration options
 - Factor, Bias, Linear, Logit-log, Spline, Polynomial, Point-to-point
- Possibility to add up to four reagents per test
 - Automation even for the most complex methods
- Real-time QC program assures reliable performance
- Measurement temperature can be adjusted between 25° C and 60° C
 - Default setting at 37° C

Flexible Sample Management

- Sample volumes from 2–120 μL
- Any mix of sample containers
 - 0.5, 2.0, and 4.0 mL sample cups
 - 5.0, 7.0, or 10.0 mL sample tubes
- Automatic identification via an internal barcode reader
- Tests can be requested individually or by using a profile

Easy Reagent Handling

- Reagent volumes from 2–240 µL
- Reagent containers
 - 10 and 20 mL vials
- Barcoded system reagent containers are automatically identified
 - Non-system reagents can be entered without barcodes
- Clearly displayed
 - Real-time reagent volume
 - Remaining test capacity
 - Expired reagents flagged automatically

Comprehensive Data Handling

- Application parameter values readable from barcode or electronically from a file
- Results
 - Calculated from both measured and off-line results
 - Automatically flagged in case of
 - Abnormal values
 - Repeats
 - Out-of-limit control values
- Long term storage of results
 - Associated calibrations
 - Reagent lot data

Reporting Options

- Reports available
 - Spreadsheet export for further calculations
 - Export to LIMS
 - Printouts
 - PDF files

NO2 2mg/l Version number 1.4 Date 2014-02-17 User Dealer Time 12:53:25 Software version: 4.1.1 Test NO2 2mg/l Coeff. of deter. 0.999956 Status Total factor 0.387 Accepted 2014-02-13 10:36 Checked 2014-02-13 0:36 User name Dealer Comment Errors Factor 0.387 Bias 0.003 Default NO2-STD 0.260 0.100 Default Errors NO2-STD 0.280 0.100 0.000 Default NO2-STD 0.280 0.100 Default NO2-STD NO2-STD 0.287 0.287 0.286 Default NO2-STD 1.288 0.498 0.500 Default	'		Calibrat	Calibration results			Page	1 / 1
Time 12:53:25 Software version: 4.1.1 Test NO2 2mg/l Coeff. of deter. 0,999956 Status Total factor 0,387 Accepted 2014-02-13 10:36 0 Checked 2014-02-13 10:36 0.387 User name Dealer 0 Comment Errors Factor 0,387 Bias 0,003 Call. conc. Given conc. Lot NO2-57D 0,130 0,049 0,060 NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,260 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default	×		NO2 2mg/	Ver:	sion numbe	er 1.4		
Test N02 2mg/l Coeff. of deter. 0.999956 Status Total factor 0.387 Accepted 2014-02-13 10:36 Total factor 0.387 User name Dealer Coeff. of deter. 0.999956 Comment Errors Errors Errors Factor 0.387 Old Old Errors N02-0 0.001 -0.001 0.000 Default N02-5TD 0.130 0.049 0.050 Default N02-STD 0.522 0.201 0.200 Default N02-STD 0.743 0.287 0.286 Default N02-STD 0.743 0.287 0.286 Default N02-STD 1.038 0.401 0.400 Default N02-STD 1.038 0.401 0.400 Default N02-STD 1.038 0.401 0.400 Default N02-STD 1.288 0.498 0.500 Default 0.500 Default <tht< th=""><th>Date</th><th>2014-02-17</th><th>User</th><th>Dealer</th><th></th><th></th><th></th><th></th></tht<>	Date	2014-02-17	User	Dealer				
Status Total factor 0,387 Accepted 2014-02-13 10:36 0.387 Checked 2014-02-13 10:36 0.367 User name Dealer 0.387 Factor 0,387 0.387 Bias 0.003 0.003 Cal/Ctrl Response Calc. conc. Given conc. Lot NO2-50 0.001 -0.001 0.000 Default NO2-STD 0,130 0.049 0.050 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0.287 0.286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default NO2-STD 1,288 0,498 0,500 Default	Time	12:53:25	Software ve	rsion: 4.1.1				
Accepted 2014-02-13 10:36 Checked 2014-02-13 10:36 User name Dealer Comment Errors Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors N02-0 0,001 -0,001 0,000 Default N02-STD 0,130 0,049 0,050 Default N02-STD 0,260 0,100 0,100 Default N02-STD 0,622 0,201 0,200 Default N02-STD 0,743 0,287 0,286 Default N02-STD 1,38 0,401 0,400 Default N02-STD 1,288 0,498 0,500 Default	Test	NO2 2m	ng/l	Coeff. of de	ter.	0,999956		
Accepted 2014-02-13 10:36 Checked 2014-02-13 10:36 User name Dealer Comment Errors Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors 0,001 -0,001 0,000 Default N02-STD 0,100 0,010 Default N02-STD 0,260 0,100 Default N02-STD 0,743 0,287 0,286 Default N02-STD 1,038 0,401 0,400 Default N02-STD 1,288 0,498 0,500 Default N02-STD 1,02 0,3 0,4 0,5 0,5 0,7 0,8 0,9 1	Status			Total factor		0,387		
User name Dealer Comment Errors Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,280 0,100 0,100 Default NO2-STD 0,280 0,100 0,286 Default NO2-STD 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default NO2-STD 1,288 0,498 0,500 Default No2-STD 1,28 0,498 0,500 Default No2-STD 1,28 0,498 0,500 Default Diagonal Output Output Output Output Output Output Output Output	Accepted	2014-02	2-13 10:36			and a second		
Comment Frors Factor 0,387 Bias 0,003 Calc. conc. Given conc. Lot Errors Calc. conc. Given conc. Lot Errors NO2-0 0,001 0,000 Default NO2-5TD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,260 0,201 0,260 Default NO2-STD 0,2287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default NO2-STD 1,288 0,498 0,500 Default NO2-STD 0,50 Default NO2-STD 0,50 Default NO2-STD 0,50 Default NO2-STD 0,50 Default NO2-STD Default Default Default Default Default Default Default Default <td< td=""><td>Checked</td><td>2014-02</td><td>2-13 10:36</td><td></td><td></td><td></td><td></td><td></td></td<>	Checked	2014-02	2-13 10:36					
Errors Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default O O O O O O O O O O O O	User name	Dealer						
Factor 0,387 Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0.001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,288 0,498 0,500 Default NO2-STD 1,288 0,498 0,500 Default	Comment							
Bias 0,003 Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default Of 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <	Errors							
Cal/Ctrl Response Calc. conc. Given conc. Lot Errors NO2-0 0,001 -0,001 0,000 Default NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,522 0,201 0,286 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default	Factor	0,387						
NO2-0 0,001 -0,001 0,000 DefaultNO2-STD 0,130 0,049 0,050 DefaultNO2-STD 0,260 0,100 0,100 DefaultNO2-STD 0,522 0,201 0,200 DefaultNO2-STD 0,743 0,287 0,286 DefaultNO2-STD 1,038 0,401 0,400 DefaultNO2-STD 1,288 0,498 0,500 Default $NO2-STD 1,288 0,498 0,500 Default$	Bias	0,003						
NO2-STD 0,130 0,049 0,050 Default NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default NO2-STD 1,288 0,498 0,500 Default	Cal/Ctrl	Response	Calc. conc.	Given conc.	Lot	Errors		
NO2-STD 0,260 0,100 0,100 Default NO2-STD 0,522 0,201 0,200 Default NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default	NO2-0	0,001	-0,001	0,000	Default			
NO2-STD 0.522 0.201 0.200 Default NO2-STD 0.743 0.287 0.286 Default NO2-STD 1.038 0.401 0.400 Default NO2-STD 1.288 0.498 0.500 Default NO2-STD 1.288 0.498 0.500 Default				0,050	Default			
NO2-STD 0,743 0,287 0,286 Default NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default				0,100	Default			
NO2-STD 1,038 0,401 0,400 Default NO2-STD 1,288 0,498 0,500 Default 1,5 1,5 1,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0								
NO2-STD 1,288 0,498 0,500 Default								
Per 2 1.5 1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0								
I I I I 0.5 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I I<	NU2-51D	1,288	0,498	0,500	Default			
	p 1,5							
	S							
0.5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	-							
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1								
0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		-						
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1	0,5	-						
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1								
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1	0							
Conc. (mg/l)	ŬO	0,1 0,2 0			0,8 0,9	1		
			Conc. (mg/l)					

Intuitive User Interface

- Graphic user-interface
 - Provides fast guidance
 - Includes context-sensitive help
 - Available in different languages
- Secure and traceable data handling
 - Different user groups can have different access rights
- Touch screen option

Thermo Scientific System Reagents

- Optimized system solution
 - System applications for water analysis
 - Loadable application data from 2D barcode
 - Optimized kit sizes and on-board stability
 - Wide range of calibrators
- Productivity and efficiency
 - Ready-to-use liquid reagents eliminate reagent preparation
 - Minimal reagent waste
 - Bar-coded reagent vials provide easy and reliable identification
 - lot, expiration date, vial size
 - real-time reagent monitoring

Reasons Automated Industrial Systems Are Used

- 200 open channels, easy-to-use software
- Pick-and-choose application steps, four different reagent additions possible
- Incubator temperature from 30–50 degrees in 1 degree steps
- Filters available from 275 to 880 nm (filter wheel holds 12 filters which can be changed)
- Dilution possibilities for calibration, high range results, pre dilutions
- Secured export function to Excel sheet or with ASTM protocol
- Multi-language software availability
- High quality photometer resolution: 0.0001A, linear abs.: 0-2, 5A, Reproducibility: 0.0005 at 2A
- Disposable, contamination-free cuvettes
- Different user levels available
- Low water consumption, no external water connection required
- Large customer base with long-term experience in creating methods
- Very experienced pre and after sales

Conclusions

- Determination of anions in wastewater is critical to verify its suitability for discharge
- Variety of other applications available
- Discrete analyzers use photometric assays
 - That are specific for individual analytes
 - To provide fast, specific, high-throughput anionic measurements of up to 600 tests/hour
 - To produce accurate, precise data even from challenging matrices such as wastewater
- Electrochemical measurement unit
 - Additional 67 tests/hour

