Automated data review by compound cross-confirmation

A powerful combination of chromatography data software and LC/GC triple-quadrupole mass spectrometers

Authors: Bénédicte Gauriat¹, Julie Moriceau¹, Jean-Francois Garnier¹, Darren Barrington-Light²

¹Customer Solution Center, Thermo Fisher Scientific, France ²Thermo Fisher Scientific, Altrincham, UK

Keywords: QuEChers, ACN extracts, organic honey, TSQ Altis, TSQ 9000, Chromeleon, European Commission directive EC 396/2005, cross-confirmation, LC/GC correlation, round robin/ interlaboratory comparison approach (BIPEA)

Application benefits

- Enhance productivity by immediate and direct crossconfirmation of quantitative results through a single, combined reprocessing sequence for LC-MS/MS and GC-MS/MS data.
- Increase confidence in the data through an interlaboratory comparison approach with multi-technique, mean-quantitation value.

- Use a single QuEChERS acetonitrile extract for direct injection into LC-MS/MS and GC-MS/MS.
- Obtain part-per-billion (ppb) level sensitivity that is compliant with European Commission directive EC 396/2005.

Goal

The goal of this study is to demonstrate the ability of Thermo Scientific[™] Chromeleon[™] Chromatography Data System (CDS) to reproduce user-specific data review workflows. Key improvements include enhanced productivity, increased confidence in analytical results and compliance with regulatory criteria. By simultaneously processing the same sample that has been analyzed with two orthogonal techniques, we can automatically crossconfirm the presence of a target analyte, minimize the risk of a false positive or negative result and prevent unwanted confirmation re-injections.

Introduction

Over 70% of potential food contaminants that are routinely monitored by testing laboratories can be detected and quantified at required regulatory concentration levels with LC-MS/MS and GC-MS/MS. However, the selection of the chromatographic front-end technique (either LC or GC) can vary from analyst to analyst and is often based on individual preferences rather than the physical properties of the molecule. With this variation in upstream technologies, analysts face two key challenges: first a complicated, multi-step, manual sample preparation and secondly, timeconsuming, disconnected data processing and reporting.

The proven solution for the first challenge is the established Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) extraction method, with the utilization of Chromeleon software enabling users to overcome the second challenge by processing data from different techniques.

Chromeleon CDS can automatically cross-confirm target compounds processed by both LC and GC techniques, with results combined into a single sequence with a single processing method. One consolidated report helps the analyst to quickly validate the analytical results. This report can then be exported to a Laboratory Information Management System (LIMS), such as the Thermo Scientific[™] SampleManager[™] LIMS.

In this technical brief, we will demonstrate the complete software workflow with a real-life sample of organic honey in accordance to the European Commission directive EC 396/2005, which sets the maximum residue levels for 29 pesticides. The results are compared in a round-robin test.

Strategy

The acetonitrile QuEChERS extract is divided into two samples: one is injected into the Thermo Scientific[™] TSQ Altis[™] Triple Quadrupole Mass Spectrometer, and the other into the Thermo Scientific[™] TSQ 9000[™] Triple Quadrupole GC-MS/MS System. All data is acquired, processed and reported using Chromeleon software.

Figure 2. LC/GC division of target pesticides in organic honey

Results and discussion

Separate injection sequences are analyzed on each instrument. Subsequently, the data is combined into a single sequence containing one processing method and report template to provide a holistic analysis. Figure 3 illustrates the component table of the Chromeleon Processing Method where we can see, for example, that the "Clopyralid" group includes both "Clopyralid_GC" and "Clopyralid_LC" components. Each compound has its corresponding retention time and SRM (Selected Reaction Monitoring) transition quantitation filter.

C	Component Table								
	Group Area Drag a colum	n header here to group by that column.	Run Component Table Wizard Show Properties						
#	Peak Group(s)	Name	Ret.Time	MS Quantitation Peak	MS Confirming Peak 1				
15	Chlorpyriphos methyl	Chlorpyriphos-methyl_GC	6.890	285.84 / 93.00	124.90 / 47.00				
16	Chlorpyriphos methyl	Chlorpyriphos-methyl_LC	8.200	321.91 / 124.99	321.91 / 289.96				
17	Clopyralid	Clopyralid_GC	3.140	146.90 / 76.00	112.00 / 76.00				
18	Clopyralid	Clopyralid_LC	4.300 191.90 / 145.90		189.84 / 145.96				
19	Coumaphos	Coumaphos_GC	9.680 361.93 / 226.11		226.00 / 163.00				
20	Coumaphos	Coumaphos_LC	8.390	363.05 / 227.04	363.05 / 307.04				
21	Cypermethrines	Cypermethrines LC_n.a.	10.150						
22	Cypermethrines	Cypermethrines_GC_Quan	10.150	181.00 / 152.00	181.00 / 151.10				
23	Cyproconazole	Cyproconazole_GC	7.920	224.00 / 126.20	222.00 / 124.20				
24	Cyproconazole	Cyproconazole_LC	7.700	292.10 / 125.04	292.10 / 70.07				
25	DEET	DEET_GC	5.770	190.10 / 115.00	190.10 / 145.00				
26	DEET	DEET_LC	7.280	192.11/65.04	192.11 / 100.07				
27	Dimethoate	Dimethoate_GC	6.330	124.90 / 46.30	93.00 / 63.00				
28	Dimethoate	Dimethoate_LC	5.960	230.05 / 199.04	230.05 / 124.93				
29	Dimoxystrobin	Dimoxystrobin_GC	8.670	205.10/58.00	205.10 / 116.00				
30	Dimoxystrobin	Dimoxystrobin_LC	8.090	327.10/205.15	327.10 / 116.06				

Figure 3. Component table with single processing method as shown in Chromeleon CDS

З

The interactive and consolidated results for the combined analysis by LC-MS/MS and GC-MS/MS of an organic honey sample in a round-robin test are described in Figure 4.

- LC and GC results are reported respectively in the LC amount/GC amount columns.
- Final results are shown in the 'Mean value' column as either the mean value of LC + GC amount, with the corresponding variation in ppb, or as the required single result.
- The last column describes the requirement for the mean value, i.e. LC only, GC only, or LC+GC.

In this example, the 18 components of the 29 target compounds that are compatible with analysis by GC and/or LC have all been automatically cross-confirmed.

Report Designer	*	C	042						
35 BIPEA DIL2	^	1	A	F	G	1	J	ĸ	L
36 BIPEA_GC		1	Peak Name & Channel	LC Amount	GC Amount	Peak Name	Mean value	Variation	Quan/Conf
37 2 5746 DIL 2		5	2.4-DMA_GC	n d	n d		(ppb)	4/- (ppb)	
20 5 5740		6	2.4-DMA_LC	21	n.d.	24-DMA	21		LC quan, GC conf
38 2 5/46		7	Acetamiprid GC	n.d.	27				
39 🛜 6228 DIL2		8	Acetamiprid LC	50	n.d.	Acetamiprid	50		LC guan, GC conf
40 7 6228		9	Amitraz_LC	89	n.d.	Amitraz	89		LC quan
41 0 153575A DII 2		10	Boscalid_GC	n.d.	102				
		11	Boscalid_LC	96	n.d.	Boscalid	99	3	LC + GC quan
42 2 1535/5A		12	Bromopropylate_GC	n.d.	51	Bromopropylate	51		GC quan
43 🛜 6145 DIL2		13	Carbendazim_LC	46	n.d.	Carbendazim	46		LC quan
44 2 6145		14	Chlorpyriphos_GC	n.d.	26	Chlorpyriphos	26		GC quan
45 Clonuralid DII 2		15	Chlorpyriphos-methyl_GC	n.d.	5				
45 Clopyraid Dicz		16	Chlorpyriphos-methyl_LC	3	n.d.	Chlorpyriphos methyl	4	1	LC + GC quan
46 💽 Clopyralid		17	Clopyralid_GC	n.d.	n.d.				
		18	Clopyralid_LC	14	n.d.	Clopyralid	14		LC + GC quan
4 Channels	_	19	Coumaphos_GC	n.d.	113				
MS Quantitation		20	Coumaphos_LC	102	n.d.	Coumaphos	107	6	LC + GC quan
		21	Cypermethrines_GC	n.d.	26	Cypermethrines	26		GC quan
<u>M</u> ne		22	Cyproconazole_GC	n.d.	1	0			10.00
× Pump_Pressure		23	Cyproconazole_LC	n.d.	n.d.	Cyproconazole	1		LC + GC quan
	V	24	DEET_GC	n.d.	12	DEET	67	5	10.000
Components		20	Dimethosts CC	02	n.d.	DEEI	0/	5	LC + GC quan
Clopyralid_GC		20	Dimethoate_GC	n.d.	n.u.	Dimethoata	a.d.		LC + CC quan
24-DMA GC	1	28	Dimetrobie_CC	n.u.	1.0.	Dimetrioate	n.u.		LC + OC quair
Clowralid IC		20	Dimoxystrobin_CC	1	nd	Dimoxystrobin	1	0	LC + GC quan
Ciopyraid_EC	-	30	DME LC	24	n.d.	DMF	24		LC quan
S Amitraz_LC		31	DMPE LC	nd	n.d.	DMPF	nd		LC quan
Thiamethoxam_LC		32	Eipronil GC	n.d.	0				Lo quan
S DEET_GC		33	Fipronil LC	1	n.d.	Fipronil	1	0	LC + GC quan
Imidacloprid_LC	~	34	Flumethrines GC	n.d.	3			-	
	_	35	Flumethrines LC	1	n.d.	Flumethrines	2	1	LC + GC guan
Injection List		36	Fluopyram_GC	n.d.	1				
	_	37	Fluopyram_LC	n.d.	n.d.	Fluopyram	1		LC + GC quan
Instrument Method		38	Flutriafol_GC	n.d.	n.d.				
	_	39	Flutriafol_LC	n.d.	n.d.	Flutriafol	n.d.		LC + GC quan
My Data Processing		40	Fluvalinate Tau_GC	n.d.	26				
<u> </u>	_	41	Fluvalinate Tau_LC	n.d.	n.d.	Fluvalinate Tau	26		LC + GC quan
A Non-Targeted MS Processing		42	Imidacloprid_GC	n.d.	86				
	_	43	Imidacloprid_LC	24	n.d.	Imidacloprid	24		LC quan, GC conf
A Intact Protein Deconvolution	_	44	Matrine_LC	n.d.	n.d.	Matrine	n.d.		LC quan
		45	Oxymatrine_LC	17	n.d.	Oxymatrine	17		LC quan
Report Designer		46	Propamocarb_LC	n.d.	n.d.	Propamocarb	n.d.		LC quan
		47	Propargite_GC	n.d.	1				
Rectmpic Beport		48	Propargite_LC	1	n.d.	Propargite	1	0	LC + GC quan
Listituite report		49	Thiacloprid_LC	69	n.d.	Thiacloprid	69		LC quan
IIV Spectral Library		50	Thiamethoxam_GC	n.d.	83	This well and		2	10,00,00
Ung of spectral ubrary		51	niamethoxam_LC	/9	n.d.	iniametnoxam	81	2	LC + GC quan

Figure 4. Customized report table from Chromeleon CDS

Below are 2 examples of cross-confirmed peaks for Thiamethoxam and Coumaphos. LC_TSQ Altis GC_TSQ 9000

Figure 5. Cross-confirmation of thiamethoxam and coumaphos. TOP: chromatogram of Thiamethoxam (left LC, right GC) and BOTTOM: chromatogram of Coumaphos (left LC, right GC)

Table 1. Interpretation of results and recommended action

Result	Interpretation of detected peak	Example (Figure 4)	Recommended action for analyst
Positive	Reciprocally confirmed by GC and LC	Boscalid at 99 \pm 3 ppb, Coumaphos at 107 \pm 6 ppb, and DEET 67 \pm 5 ppb	No need to visually check the chromatograms.
Confirmed	Not considered as positive because concentration is below regulated limit of 5ppb for organic honey	Chlorpyriphos-methyl at 4 ± 1 ppb and Dimoxystrobin at 1 ± 0 ppb	No need to visually check the chromatograms.
	Reciprocally confirmed by GC and LC but standard deviation is out of tolerance: target is preferentially quantified by LC	Acetamiprid at 50ppb, Imidacloprid at 24ppb	No need to visually check the chromatograms, the LC calculated amount will be the only reported value.
Positive, but	Reciprocally confirmed by GC and LC but standard deviation is out of tolerance: target should be both LC and GC amenable	None in this example	Check peak integration (double-click on quantitation value's cell – this will automatically show the corresponding chromatogram). If a manual integration occurs, the new result is automatically implemented into the result table.

thermo scientific

 Table 2. Interlaboratory comparison results

Target in Honey	TSQ ALTIS μg/kg	TSQ 9000 μg/kg	Mean value LC/GC μg/kg	Assigned value µg/kg	Automatically Cross confirmed
AMITRAZ (including the metabolites containing the 2,4 -dimethylaniline moiety expressed as amitraz). CAS 33089-61-1	89 + 21 = 110	N/A	110	121 ± 58	✓ LC only
BOSCALID. CAS 188425-85-6	96	102	99 ± 6	115 ± 56	\checkmark
BROMOPROPYLATE. CAS 18181-80-1	N/A	51	51	65 ± 33	✓ GC only
COUMAPHOS. CAS 56-72-4	102	113	107 ± 11	112 ± 55	\checkmark
CYPERMETHRIN. CAS 52315-07-8	N/A	26	26	36 ± 18	✓ GC only
DIETHYLTOLUAMIDE. CAS 134-62-3	62	72	67 ± 5	76 ± 38	\checkmark
THIAMETHOXAM. CAS 153719-23-4	79	83	81 ± 4	121 ± 58	\checkmark

Round-robin, interlaboratory comparisons approach

BIPEA (Bureau Interprofessionnel d'Etudes Analytiques) is a European non-profit organization located in France. Serving nearly 2500 laboratories worldwide in 120 countries, it offers more than 150 regular proficiency testing programs. BIPEA is ISO 9001 certified by the Lloyd's Register Quality Assurance (LRQA) and ISO/IEC 17043 accredited for the organization of interlaboratory comparisons. BIPEA creates and organizes proficiency testing plans with an annual series of one or more tests.

The cross-confirmation is defined in Table 2, which shows the analysis results in a BIPEA sample of organic honey (April 2020). All the values conform with BIPEA target values. This table also presents LC, GC and mean value (second, third and fourth column respectively), the BIPEA assigned target value and tolerance value (fifth column) according to their procedure. Target values and tolerance are generally assigned using a combination of the original formulation value of the spike matrix and participating laboratories values, encompassing different technologies such as LC or GC, MS or MS/MS, or a specific detector.

Conclusion

A single processing sequence that combines and automates cross-confirmation of LC-MS/MS and GC-MS/MS data with Chromeleon CDS is a clear enhancement to laboratory productivity. This approach drastically reduces the number of time-consuming tasks such as visualizing each sample chromatogram or checking all chromatographic peak integrations. Overall, the reviewing process was at least three times faster than normal, considering that only one sequence has to be checked, and more than 60% of target compounds were automatically validated. This method also improves confidence in analytical results, allowing data to be consolidated and validated immediately after injection, even before exporting into LIMS.

Find out more at **thermofisher.com/chromeleon**

For Research Use Only. Not for use in diagnostic procedures. © 2021 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. **TB74122-EN 1021S**

Thermo Fisher