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Introduction
Gas chromatography-mass spectrometry (GC-MS) is a popular analytical technique 

used for unknown compound identification and quantitation. The technique finds  

utility in a variety of markets, such as environmental, food, clinical/toxicological, 

and petrochemical analysis. Electron ionization (EI) is the most common ionization 

technique utilized in GC-MS instruments. One of the primary advantages of EI is that 

the fragmentation pattern of a molecule using 70 eV electron energy is consistent, and 

this electron energy is used among various instrument manufacturers. The commercially 

available spectral libraries, such as those from NIST and Wiley, contain spectra 

generated at 70 eV, which can be used for identifying known unknowns. However, one 

of the disadvantages of EI is that some compounds show little or no molecular ion, and 

therefore identification of unknown compounds is difficult to confirm. This is especially 

true for compounds that are not in available libraries. In this case, a “softer” ionization 

technique is useful for preserving the molecular ion. Chemical ionization (CI) is one such 

soft ionization technique. There are two primary modes of CI, positive ion chemical 

ionization (PICI or PCI) and negative ion chemical ionization (NICI or NCI). It is more 

appropriate to refer to NCI as electron capture negative ionization (ECNI) since negative 

ions are mainly formed by low-energy electron capture as opposed to ion-molecule 

reactions prevalent in PCI. 

PCI is an ion-molecule reaction as opposed to an electron-molecule reaction that occurs  

in EI. The two essential requirements for PCI are a closed ion volume, which helps 

maintain relatively high pressures required for PCI, and the presence of an appropriate 

reagent gas that undergoes ionization under an electron beam (similar to what happens 

in EI). To perform chemical ionization effectively, a dedicated ion volume should be 

utilized that has smaller diameter openings with low conductance. 



Table 1. Instrument method conditions for the PCI experiments 

AS 1610 Autosampler

Syringe
10 µL, 25 gauge, 50 mm length,  
cone tip (P/N 36500525)

Injection volume 1 µL

Pre-injection  
solvent and cycles

None

Sample rinses 3

Post-injection  
solvent and cycles

None

One of the major advantages of Thermo Scientific™ NeverVent™ 

technology on the Thermo Scientific™ ISQ™ 7610 GC-MS system 

is the ability to change between dedicated EI and CI ionization 

sources without venting the system. This means an operator 

can change ionization modes within a few minutes, which allows 

samples to be analyzed rapidly in ideal ionization conditions. 

The reagent gases that are commonly used for chemical 

ionization include methane, ammonia, and iso-butane. The 

reagent gas ions react with other reagent gas and analyte 

molecules to undergo ion-molecule reactions that serve as  

the basis of PCI. When methane is used as a reagent gas  

the reactions include:

Primary ion formation: CH4 + e- → CH4
+˙ + 2e-

Secondary ion formation: CH4 + CH4
+˙ → CH5

+ + CH3
˙  

(CH3
+, C2H5

+, C3H5
+, etc. are other secondary ions formed)

These secondary ions can be clearly seen from the mass 

spectrum of methane reagent gas in PCI mode in Figure 1.  

The major ions m/z 29, m/z 41, and m/z 17 are C2H5
+, C3H5

+,  

and CH5
+, respectively. 

The analyte molecules react with the primary and secondary 

methane reagent gas ions to form M+, [M+H]+, [M-H]+, [M+C2H5]
+, 

and [M+C3H5]
+ ions.

M + CH5
+	 →	 CH4 + [M+H]+ (Protonation)

AH + CH3
+	 →	 CH4 + A+ (Hydride abstraction)

M + C2H5
+	 →	 [M+C2H5]

+ (Adduct formation)

M + CH4
+˙	 →	 CH4 + M+˙ (Charge exchange)

The presence of [M+1]+, [M+29]+, and [M+41]+ ions with  

methane-PCI are good confirmation for the molecular ion.1,2,3 

Figure 1. Mass spectrum of methane reagent gas in PCI mode

This technical note will focus on the analysis of compounds 

using PCI with the ISQ 7610 GC-MS. Examples of semi-volatile 

compounds (SVOC) of various analyte types and their behavior in 

PCI mode will be demonstrated and compared to the EI spectra. 

The effect of varying the ion source temperature on PCI is also 

demonstrated. 

Experimental
The PCI experiments were conducted on a Thermo Scientific™ 

TRACE™ 1610 GC and Thermo Scientific™ AI/AS 1610 

autosampler coupled with an ISQ 7610 MS system with 

NeverVent technology. The analytes used for this study were  

the Restek 8270 MegaMix™ (Catalog # 31850), which contains  

76 SVOC compounds with varying functional groups. A  

10 ppm mixture was prepared by diluting the standards with 

dichloromethane (DCM). Analysis was done in both EI and  

PCI modes. The experimental conditions of these experiments 

are given in Table 1.
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Experiments were initially conducted in EI mode to ascertain  

the identity of compounds using the NIST library. 

Note on PCI tuning: The tuning for PCI mode is done using  

FC43 (PFTBA) as the calibration gas. This is the same as that  

for EI tuning but the AutoTune routine performs the mass 

calibration and resolution tuning on m/z 219, m/z 414, and  

m/z 652. Figure 2 shows the FC43 calibration mass spectrum  

in PCI mode.

Results and discussion
EI and PCI spectral comparison 
Figure 3 shows the total ion chromatogram (TIC) comparison of 

the 8270 SVOC mix under the same GC conditions. All expected 

analyte peaks were observed in both EI and PCI modes. 

Mass spectral comparisons for each of these analytes show a 

distinct difference. For example, Figure 4 shows mass spectrum 

comparison of the peak for pyridine (molecular weight - 79 Da)  

in EI and PCI modes. The EI spectrum shows the presence of  

the molecular ion, M+ (m/z 79), and the expected fragmentation 

pattern matches that of the NIST library (SI match score of 934).  

The PCI mass spectrum shows the protonated molecule,  

M+1+ (m/z 80) and the presence of adduct ions, M+29+  

(m/z 108) and M+41+ (m/z 120).

Figure 5 shows the comparison of EI and PCI mass spectra for 

nitrobenzene where protonation is the major reaction mechanism  

for PCI with little to no adduct formation occurring. One also 

observes less fragmentation of the molecular ion in the PCI mode.

Table 1 continued. Instrument method conditions for the PCI 
experiments 

TRACE 1610 GC system

Column
Thermo Scientific™ TraceGOLD™  
TG-5MS, 30 m × 0.25 mm × 1.0 µm

Liner
Splitless Liner single taper with wool,  
4 mm i.d., 78.5 mm length  
(P/N 453A0924)

SSL mode Split

Inlet temperature 300 ˚C

Split flow 15 mL/min (split ratio = 8)

Septum purge flow Constant flow of 5.0 mL/min

Carrier flow Constant He flow of 1.8 mL/min

Oven program 
60 ˚C (1.0 min), 10 ˚C/min to 265 ˚C  
(1 min), 2 ˚C/min to 315 ˚C (2 min)

ISQ 7610 GC-MS system

MS transfer line 
temperature 

300 ˚C

Ion source 
temperature 

Varied from 150 to 320 ˚C

Source type
Thermo Scientific™ ExtractaBrite™  
with CI ion volume

Ionization mode,  
electron energy

PCI, 70 eV

Emission current 50 µA

Scan range 45–500 Da

Dwell time 0.2 s

Detector gain 3E+05

Tuning used AutoTune_PCI
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Figure 2. Mass spectrum of FC43 cal gas in PCI mode
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Figure 3. Comparisons of TICs of the 8270 SVOC mix in EI and PCI modes
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Figure 4. Comparison of the mass spectrum for pyridine in EI and PCI modes
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Figure 5. Comparison of the mass spectrum for nitrobenzene in EI and PCI modes

Figure 6. Comparison of the mass spectrum for hexachlorocyclopentadiene in EI and PCI modes
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Figure 6 shows a comparison for EI and PCI mass spectra for 

hexachlorocyclopentadiene, and neither protonation nor adduct 

formation is observed. In this case, a simple charge exchange 

between the reagent gas and the analyte molecule occurs and 

both EI and PCI mass spectra look similar. The NIST library hits 

in both modes give hexachlorocyclopentadiene as the first hit but 

with the PCI mode having a much lower SI match factor.
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Figure 7 shows an example of diethyl phthalate (molecular  

weight - 222 Da) where there is almost complete fragmentation 

of the molecular ion in the EI mode. Even though the NIST library 

shows diethyl phthalate as the first hit, it is plausible for the user to 

doubt this because of the lack of observable molecular ion. In this 

case, PCI can be used as a confirmation technique. One observes 

the typical M+1+, M+29+, and M+41+ pattern associated with 

methane-PCI.

EI Spectrum

EI Spectrum

PCI Spectrum
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Figure 7. Comparison of mass spectrum for diethylphthalate in EI and PCI modes

 Figure 8. Effect of ion source temperature on fragmentation pattern

(molecular weight - 178 Da) at various ion source temperatures  

in Figure 8. The ion source temperature was varied from  

150 ˚C to 320 ˚C, and we can observe that adduct formation  

and protonation reduces with increasing temperature.

Effect of source temperature on positive  
chemical ionization 
The ion source temperature has a pronounced effect on PCI 

mass spectral pattern of an analyte molecule. This can be 

exemplified by the mass spectral pattern for phenanthrene 
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Thus, higher ion source temperatures are less useful for 

molecular weight confirmation of analytes. However, higher 

temperatures are recommended for keeping the source more 

robust as lower temperatures tend to foul the ion source 

rapidly with reagent gases such as methane and iso-butane. 

It is recommended to use a higher ion source temperature for 

quantitation purposes once the identity of the compound is 

confirmed. The ability to remove the source without venting the 

MS on the NeverVent system allows for easy ion source removal 

for cleaning purposes. NeverVent technology allows the rapid 

switching between dedicated ionization EI and CI ionization 

modes without breaking vacuum. This technology allows the 

instrument to be quickly purposed for the analysis of interest  

with minimal downtime. 

Conclusion 
The primary purpose of this technical note is to educate the 

reader on positive chemical ionization mode used in GC-MS 

analytical techniques and to show the performance on the  

ISQ 7610 system. The examples of the 8270 SVOC compounds 

and the comparison of the EI and methane-PCI spectra 

showed the advantages of using PCI for analyte confirmation. 

Low ion source temperature is best suited to determine an 

unknown analyte molecular weight, and higher temperatures are 

recommended for robustness and quantitation. The utilization 

of NeverVent technology on the ISQ 7610 GC-MS allows users 

to change between dedicated ionization modes, clean the ion 

source, and exchange the analytical column without breaking 

instrument vacuum. This technology minimizes instrument 

downtime and maximizes the number of samples that can be  

run on the system.
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