

Increasing accuracy and precision of uranium isotope ratios by Thermal Ionization Mass Spectrometry using $10^{13} \Omega$ amplifier technology

Author

Hauke Vollstaedt¹, Stephan Richter², Johannes Schwieters¹ and Nicholas Lloyd¹

¹Thermo Fisher Scientific, Bremen, Germany ²IRMM, Geel, Belgium

Keywords

TIMS, uranium isotopes, total evaporation, $10^{13} \Omega$

Goal

To show improved precision of uranium isotope analysis by total evaporation of small sample amounts and minor isotopes using $10^{13} \Omega$ amplifiers.

Summary

Technological developments have enabled high precision isotopic measurements of uranium with thermal ionization mass spectrometry (TIMS) using large sample amounts. The precision of isotope ratios from small sample sizes is restricted by the ion yield of the analytical technique and the noise of the detection system. This study reports precision and accuracy for minor uranium isotopes measured on a Thermo Scientific[™] Triton[™] XT TIMS equipped with Thermo Scientific[™] 10¹³ Ω Amplifier Technology[™].

Introduction

The measurement of small uranium samples and/or low intensity uranium ion beams is required in nuclear safeguards and industrial applications. Moreover, the accurate detection of minor uranium isotopes is a prerequisite. The measurement of small uranium samples and minor uranium isotopes is limited by high noise levels of standard $10^{11} \Omega$ amplifiers, as well as the dynamic range and stability of ion counters. Using $10^{13} \Omega$ amplifiers, both obstacles can be overcome and highly precise analysis of all uranium isotopes is enabled, including the minor isotopes ²³⁴U and ²³⁶U.

Materials and methods

Certified reference materials NBS U-010 and NBS U-500 (New Brunswick Laboratory, Argonne, IL, USA) were loaded onto zone-refined double rhenium filaments in sample amounts ranging from 0.5–20 ng. All uranium isotopes were detected on Faraday cups, equipped with either $10^{11} \Omega$ or $10^{13} \Omega$ amplifiers (Table 1).

thermo scientific

Table 1. Amplifier arrangement for the analysis of NBS U-010 and NBS U-500 (0.5–20 ng total uranium loaded)

Cup	С	H1	H2	H3			
Mass	²³⁴ U	²³⁵ U	²³⁶ U	238			
NBS U-500							
Isotope Abundance (%)	0.5%	49.7%	0.1%	49.7%			
20 ng U	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω			
20 ng U	10 ¹³ Ω	10 ¹¹ Ω	10 ¹³ Ω	10 ¹¹ Ω			
NBS U-010							
U [ng]	0.005%	1.004%	0.007%	98.98%			
20 ng U	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω	10 ¹¹ Ω			
20 ng U	10 ¹³ Ω	10 ¹³ Ω	10 ¹³ Ω	10 ¹¹ Ω			
1 ng U	10 ¹³ Ω	10 ¹³ Ω	10 ¹³ Ω	10 ¹¹ Ω			
0.5 ng U	10 ¹³ Ω	10 ¹³ Ω	10 ¹³ Ω	10 ¹¹ Ω			

Filaments were analyzed by Total Evaporation, a technique that is often used in nuclear applications when the abundance of uranium isotopes is unknown and no mass bias correction could be applied. It allows the analysis of all sample material by continuous and complete evaporation of the sample from the filament. All isotopes are collected during the entire period of evaporation. During the run, the evaporation filament current is continuously adjusted in order to follow a predefined and reproducible evaporation profile (Figure 1). The final isotope ratio is the averaged isotopic mean value at the end of the analysis.

Two experiments were performed:

- 234 U/ 238 U and 236 U/ 238 U isotope ratio analyses of NBS U-500 and NBS U-010 were performed using classical 10¹¹ Ω as well as 10¹³ Ω amplifiers to get a direct performance comparison. Total sample size was 20 ng
 - $^{235}\text{U}/^{238}\text{U}$ analysis of NBS U-010 using 10^{13} Ω amplifier for $^{235}\text{U}.$ Total ^{235}U sample sizes were 0.2 ng, 10 pg and 5 pg

Figure 1. Schematic Procedure of the Total Evaporation Process

Different heating slopes at different intensity levels

Results

Accuracy and precision for ²³⁴U/²³⁸U and ²³⁶U/²³⁸U

Using the 10¹³ Ω amplifier for ²³⁴U, the precision of ²³⁴U/²³⁸U in both NBS U-500 and NBS U-010 is improved by factor 4–5 compared to 10¹¹ Ω amplifier measurements (0.05% vs 0.19% and 1.2% vs. 5.1% 1 RSD). For ²³⁶U/²³⁸U the improvement in precision is even up to a factor of 10 (0.08% vs. 1.08% and 0.6% vs. 7.3% 1 RSD, Table A1). Also, 10¹³ Ω amplifiers allow sample sizes of down to 1 pg to be analyzed with precisions between 0.6–1.2% (1 RSD).

Towards smaller sample sizes – accuracy and precision for $^{235}\text{U}/^{238}\text{U}$

The 10¹³ Ω Amplifier Technology allows extremely high precision analysis of ²³⁵U/²³⁸U in 20 ng total uranium sample loads (NBS U-010); the achieved precision is 0.018%, 1 RSD (Table 2). Lower sample sizes still provide good precision and accuracy. Even in 0.5 ng total uranium (corresponding to total ²³⁵U amount of 5 pg, NBS U-010), a precision of 0.5% (1 RSD) on ²³⁵U/²³⁸U can be achieved using 10¹³ Ω amplifiers. Table 2. Accuracy and precision of 235 U/ 238 U in NBS U-010. Total 235 U sample size ranging 0.2 ng down to 5 pg. Blue: both 235 U and 238 U detected on 10¹¹ Ω amplifiers. Red: 235 U detected on 10¹³ Ω amplifier, 238 U on 10¹¹ Ω amplifier.

	²³⁵ U	²³⁵ U/ ²³⁸ U	1 RSD	Amplifier	Reference value 1
20 ng	0.2 ng	0.010143	0.065%	10 ¹¹ Ω	0.010140(10)
20 ng	0.2 ng	0.010142	0.018%	10 ¹³ Ω	0.010140(10)
1 ng	10 pg	0.010152	0.21%	10 ¹³ Ω	0.010140(10)
0.5 ng	5 pg	0.010139	0.53%	10 ¹³ Ω	0.010140(10)

Conclusions

The attainable precision for uranium isotope ratios using total evaporation TIMS has been significantly improved using $10^{13} \Omega$ amplifier technology. For NBS U-500 both $^{234}U/^{238}U$ and $^{236}U/^{238}U$ can be detected with a precision down 0.05% (1 RSD) in 20 ng total uranium sample loads. This is a factor of 10 better compared to conventional $10^{11} \Omega$ amplifiers. For NBS-U010, 0.5% (1 RSD) on $^{235}U/^{238}U$ is routinely possible in 0.5 ng total uranium sample loads (i.e. 5 pg total ^{235}U).

Figure 2. Precision and accuracy for 234 U/ 236 U (A) and 236 U/ 238 U (B) in 20 ng NBS U-500. Total 234 U and 236 U sample size were 104 and 15 pg. In blue: all U isotopes analyzed on 10¹¹ Ω amplifiers, in red: 234 U and 236 U analyzed on 10¹³ Ω amplifiers.

Figure 3. Precision and accuracy for 234 U/ 238 U (A) and 236 U/ 238 U (B) in 20 ng NBS U-010. Total 234 U and 236 U sample size were 1.08 and 1.36 pg. In blue: all U isotopes analyzed on $10^{11} \Omega$ amplifiers, in red: 234 U and 236 U analyzed on $10^{13} \Omega$ amplifiers.

References

1. Richter et al. (2011) J. Anal. At. Spectrom. V26, p550-564.

Appendix

Table A1. ²³⁴U/²³⁸U and ²³⁶U/²³⁸U of NBS U-500 and NBS U-010 (20 ng total uranium). Blue: all isotopes detected on 10¹¹ Ω amplifiers. Red: minor isotopes detected on 10¹³ Ω amplifiers.

	Amplifier	²³⁴ U	²³⁴ U/ ²³⁸ U	1 RSD	Reference value 1	²³⁶ U	²³⁶ U/ ²³⁸ U	1 RSD	Reference value 1
NBS U-500 20 ng	10 ¹¹ Ω	– 104 pg	0.010435	0.19%	0.010425(14)	15 pg	0.001528	1.02%	- 0.0015233(11)
	10 ¹³ Ω		0.010422	0.05%			0.001524	0.08%	
NBS U-010 20 ng	10 ¹¹ Ω	- 1.08 pg	0.0000528	5.1%	0.000054484(77)	1.36 pg -	0.0000688	7.3%	0.000069242(57)
	10 ¹³ Ω		0.0000549	1.2%			0.0000704	0.6%	

Learn more at thermofisher.com/tims

General Laboratory Equipment – Not For Diagnostic Procedures. © 2023 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. The data presented in this document are not warranted. The warranted product specifications are provided in PS30252. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representatives for details. **TN002071-EN 0623C**

thermo scientific