δ13C of carbon dioxide, δ15N of nitrogen and δ2H of hydrogen: interlaboratory comparison of isotopically characterized gases

Goal
To compare and validate isotopic values for δ13C-C\textsubscript{O}\textsubscript{2}, δ15N-N\textsubscript{2} and δ2H-H\textsubscript{2} in the Air Liquide stable isotope certified gases with isotope values obtained by the United States Geological Survey, Reston Stable Isotope Laboratory (USGS RSIL).

Introduction
Air Liquide has established stable isotope certified CO\textsubscript{2}, N\textsubscript{2} and H\textsubscript{2} that can be used as isotopically characterized gases for isotope ratio mass spectrometers. Using isotopically characterized CO\textsubscript{2}, N\textsubscript{2} and H\textsubscript{2} is important since nearly all stable isotope laboratory users connect these gases directly to their IRMS systems for analyses as laboratory working reference gases for comparison to their unknown samples.

Comparison
The primary analyses of the sample gases were performed at Air Liquide (USA) on a Thermo Scientific™ 253 Plus™ 10 kV IRMS operated in dual inlet mode. An aliquot of each gas was expanded into the dual inlet and analyzed against calibrated working reference gases. Air Liquide calibration methods for working reference gases (CO\textsubscript{2}, N\textsubscript{2} and H\textsubscript{2}) are described in each subsequent section below. Comparison analysis of these gas samples were further made at the USGS RSIL. The data comparison between Air Liquide and USGS RSIL values illustrate that they are statistically identical at the 95% confidence level (Table 1).
Table 1. Comparison of AL and USGS RSIL stable isotopic values for the range of isotopically characterized gases.

<table>
<thead>
<tr>
<th>Stable isotope ratio/gas</th>
<th>AL measured value</th>
<th>USGS measured value</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{13}C-\text{CO}_2</td>
<td>-3.3\pm0.5‰ (VPDB)</td>
<td>-3.27\pm0.03‰ (VPDB)</td>
</tr>
<tr>
<td>δ^{13}C-\text{CO}_2</td>
<td>-24.9\pm0.5‰ (VPDB)</td>
<td>-24.95\pm0.03‰ (VPDB)</td>
</tr>
<tr>
<td>δ^{15}N-N\text{O}_2</td>
<td>-1.9\pm0.5‰ (air)</td>
<td>-1.90\pm0.04‰ (air)</td>
</tr>
<tr>
<td>δ^2H-H\text{O}_2</td>
<td>-253\pm5‰ (VSMOW-SLAP)</td>
<td>-250.0\pm3.3‰ (VSMOW-SLAP)</td>
</tr>
</tbody>
</table>

δ^{13}C-\text{CO}_2
The isotopic value for the gaseous \text{CO}_2 was measured relative to 102% phosphoric acid-extracted \text{CO}_2 from the NBS-19 calcium carbonate standard, whose certified δ^{13}C = +1.95‰ (VPDB)
1,2. Table 1 summarizes the δ^{13}C value of that \text{CO}_2 along with the value obtained by the USGS RSIL.

δ^{15}N-N\text{O}_2
The isotopic value for the gaseous N\text{O}_2 was measured relative to a nitrogen isotope reference working gas that was calibrated against NSVEC (NIST-8552) nitrogen gas1, whose δ^{15}N value = +2.78‰ (Air-N\text{O}_2). The comparative analysis with the USGS RSIL is found in Table 1.

δ^2H-H\text{O}_2
The isotopic value for the gaseous H\text{O}_2 was measured relative to a H\text{O}_2 isotope reference working gas that was calibrated by means of water standards measured and normalized to the V-SMOW-SLAP scale according to Reference 2, where VSMOW = 0.0‰ and SLAP = -428‰. The comparison with the USGS RSIL analysis is located in Table 1.

Summary
At the 95% confidence level, the stable isotope values for the 13C-\text{CO}_2, 15N-N\text{O}_2 and 2H-H\text{O}_2 isotopically characterized gases measured by Air Liquide are statistically the same as those made by the USGS RSIL. Therefore, customers can use the isotopic values provided in the certificates of the Air Liquide isotopically characterized gases with confidence.

*For additional information on gas filling, processing, and storage protocols used in the manufacture of isotopically characterized gases, please see Technical Note TN30734.

References

Acknowledgement
We would like to acknowledge Dr. Tyler Coplen, USGS RSIL, for stable isotope analysis and discussion of the methods associated with this work.