TECHNICAL NOTE

Quantification of 15 tricyclic antidepressants in human plasma by LC-HRAM-MS using the Orbitrap Exploris 120 mass spectrometer for clinical research

Authors: Mariana Barcenas<sup>1</sup> and Magnus Olin<sup>2</sup> <sup>1</sup>Thermo Fisher Scientific, Les Ulis, France <sup>2</sup>Thermo Fisher Scientific, Stockholm, Sweden Keywords: Orbitrap Exploris 120 MS, TraceFinder software, Vanquish Flex UHPLC, high-resolution mass spectrometry, mass spectrometry, plasma, quantification, tricyclic antidepressants, TCAs, Orbitrap technology

## **Application benefits**

- Accurate and confident results, simple sample preparation, and rapid quantitation
- Robust, sensitive LC and HRAM MS platforms enable increased confidence in data
- Quantification of 15 tricyclic antidepressants in human plasma in a single method

#### Goal

Implementation of an analytical method for the quantification of 15 tricyclic antidepressant drugs in human plasma on a Thermo Scientific<sup>™</sup> Orbitrap Exploris 120<sup>™</sup> mass spectrometer

#### Introduction

Antidepressants are commonly prescribed to alleviate symptoms of clinical depression and anxiety. There are different types of antidepressants, based on their mode of action. Tricyclic antidepressants (TCAs) are a group of psychoactive drugs that are mainly used for the therapy of endogene depressions, anxiety, and pain management.



Their name is derived from a common chemical structure with a tripartite ring system.

In this study, a fast and robust analytical method for clinical research for the quantification of 15 tricyclic antidepressants in human plasma is reported. Samples were processed by protein precipitation followed by chromatographic separation on a Thermo Scientific<sup>™</sup> Vanquish<sup>™</sup> Flex Binary UHPLC system. Detection was performed on an Orbitrap Exploris 120 mass spectrometer with heated electrospray ionization (HESI) operated in positive ionization mode. Method performance was evaluated using the ClinMass<sup>™</sup> LC-MS/MS calibrators, controls and internal standards from RECIPE Chemicals + Instruments GmbH (Munich, Germany) in terms of linearity of response, lower limit of quantification (LLOQ), accuracy, and intra- and inter-assay precision for all analytes.



66063

# **Experimental**

# **Target analytes**

The 15 tricyclic antidepressant drugs, their internal standards, and their corresponding exact masses are presented in Table 1.

# Sample preparation

Reagents included three calibrators (MS9113, lot no. 1308), two controls (MS9182, lot no. 1456) and 12 deuterated internal standards (MS9112 lot no. 1199) from RECIPE. The nominal concentrations of the calibrators are given in Table 2 together with the retention times of each compound.

#### Table 1. Compounds, internal standards, chemical formulas, and exact masses of the protonated ion [M+H]\*

| Compound name   | Formula                                          | Exact mass [M+H]⁺<br>( <i>m/z</i> ) | Internal standard name         | Exact mass [M+H]⁺<br>( <i>m/z</i> ) |
|-----------------|--------------------------------------------------|-------------------------------------|--------------------------------|-------------------------------------|
| Amitriptyline   | C <sub>20</sub> H <sub>23</sub> N                | 278.1903                            | Amitriptyline-d <sub>3</sub>   | 281.2092                            |
| Clomipramine    | C19H23CIN2                                       | 315.1623                            | Clomipramine-d <sub>3</sub>    | 318.1811                            |
| Clozapine       | C <sub>18</sub> H <sub>19</sub> CIN <sub>4</sub> | 327.1371                            | Clozapine-d <sub>4</sub>       | 331.1622                            |
| Desipramine     | C <sub>18</sub> H <sub>22</sub> N <sub>2</sub>   | 267.1856                            | Desipramine-d <sub>3</sub>     | 270.2044                            |
| Doxepin         | C <sub>19</sub> H <sub>21</sub> NO               | 280.1696                            | Doxepin-d <sub>3</sub>         | 283.1884                            |
| Imipramine      | C <sub>19</sub> H <sub>24</sub> N <sub>2</sub>   | 281.2012                            | Imipramine-d <sub>3</sub>      | 284.2201                            |
| Maprotiline     | C <sub>20</sub> H <sub>23</sub> N                | 278.1903                            | Maprotiline-d <sub>5</sub>     | 283.2217                            |
| Norclomipramine | C <sub>18</sub> H <sub>21</sub> CIN <sub>2</sub> | 301.1466                            | Norclomipramine-d <sub>3</sub> | 304.1654                            |
| Norclozapine    | C <sub>17</sub> H <sub>17</sub> CIN <sub>4</sub> | 313.1215                            | Norclozapine-d <sub>8</sub>    | 321.1717                            |
| Nordoxepin      | C <sub>18</sub> H <sub>19</sub> NO               | 266.1539                            | Nordoxepin-d <sub>3</sub>      | 269.1728                            |
| Normaprotiline  | C <sub>19</sub> H <sub>21</sub> N                | 264.1747                            | Desipramine-d <sub>3</sub>     | 270.2044                            |
| Nortrimipramine | C <sub>19</sub> H <sub>24</sub> N <sub>2</sub>   | 281.2012                            | Imipramine-d <sub>3</sub>      | 284.2201                            |
| Nortriptyline   | C <sub>19</sub> H <sub>21</sub> N                | 264.1747                            | Nortriptyline-d <sub>3</sub>   | 267.1935                            |
| Protriptyline   | C <sub>19</sub> H <sub>21</sub> N                | 264.1747                            | Nortriptyline-d <sub>3</sub>   | 267.1935                            |
| Trimipramine    | C <sub>20</sub> H <sub>26</sub> N <sub>2</sub>   | 295.2169                            | Trimipramine-d <sub>3</sub>    | 298.2357                            |

#### Table 2. Retention times and calibration levels

| Compound name   | Retention time (min) |      | Concentration (µg/L) |      |
|-----------------|----------------------|------|----------------------|------|
|                 |                      | L1   | L2                   | L3   |
| Amitriptyline   | 5.11                 | 15.6 | 103                  | 316  |
| Clomipramine    | 5.90                 | 17.6 | 123                  | 366  |
| Clozapine       | 3.20                 | 60.4 | 432                  | 1274 |
| Desipramine     | 4.65                 | 17.2 | 117                  | 363  |
| Doxepin         | 3.20                 | 13.9 | 91.1                 | 274  |
| Imipramine      | 4.70                 | 15.3 | 105                  | 326  |
| Maprotiline     | 4.90                 | 22.2 | 145                  | 442  |
| Norclomipramine | 5.87                 | 20.2 | 135                  | 412  |
| Norclozapine    | 3.00                 | 46.4 | 318                  | 952  |
| Nordoxepin      | 3.20                 | 14.1 | 97.4                 | 301  |
| Normaprotiline  | 4.80                 | 33.4 | 230                  | 737  |
| Nortrimipramine | 5.60                 | 8.24 | 54.0                 | 164  |
| Nortriptyline   | 5.15                 | 17.1 | 117                  | 357  |
| Protriptyline   | 4.55                 | 15.1 | 102                  | 315  |
| Trimipramine    | 5.55                 | 17.0 | 117                  | 360  |

Samples of 50  $\mu$ L of plasma were protein precipitated using 100  $\mu$ L of acetonitrile containing the internal standards. Precipitated samples were vortex-mixed, kept at room temperature for 5 minutes, vortex-mixed again, and centrifuged. The supernatant was transferred to a clean vial, and 1  $\mu$ L was injected onto the LC-MS system.

# Liquid chromatography

LC separation was performed on a Vanquish Flex Binary UHPLC system using the following mobile phases:

Mobile phase A: 5 mM ammonium formate + 0.1% formic acid in water

Mobile phase B: 5 mM ammonium formate + 0.1% formic acid in methanol

Chromatographic separation was achieved by gradient elution on a Thermo Scientific<sup>™</sup> Hypersil GOLD<sup>™</sup> Phenyl 2.1 × 100 mm (1.9 µm) analytical column (P/N 25902-102130) run at 40 °C at a flow rate of 0.5 mL/min. The chromatographic conditions are given in Table 3.

# Mass spectrometry

Detection was performed in Full Scan acquisition mode using a resolution setting of 60,000 (FWHM) at *m/z* 200 and a scan range of 100–500 using an Orbitrap Exploris 120 mass spectrometer, equipped with a HESI source operated in positive ionization mode. The ion source conditions and the mass spectrometry settings are presented in Tables 4 and 5, respectively.

# Data analysis

Data were acquired and processed using Thermo Scientific<sup>™</sup> TraceFinder<sup>™</sup> 5.1 software.

# Method evaluation

The parameters used to evaluate the performance of the method included linearity of response, lower limit of quantification (LLOQ), intra- and inter-assay accuracy and precision for all the analytes.

Accuracy was calculated as the percent of the nominal concentration. Precision was evaluated as the coefficient of variation (%CV). The intra-assay accuracy and precision were evaluated on two levels of QC samples extracted in replicates of five (n=5) on three different days. The interassay accuracy and precision were calculated using the same approach as for the intra-assay ones but using the full set of replicates (n=15).

#### Table 3. Gradient profile

| Time (min) | Flow rate<br>(mL/min) | %B  |
|------------|-----------------------|-----|
| 0          | 0.5                   | 10  |
| 0.2        | 0.5                   | 10  |
| 0.5        | 0.5                   | 50  |
| 4.5        | 0.5                   | 50  |
| 5.2        | 0.5                   | 100 |
| 6.5        | 0.5                   | 100 |
| 6.5        | 0.5                   | 10  |
| 8          | 0.5                   | 10  |

#### Table 4. Ion source settings

| Parameter                     | Setting |
|-------------------------------|---------|
| Sheath gas                    | 50 AU   |
| Aux gas                       | 10 AU   |
| Sweep gas                     | 0 AU    |
| Spray voltage                 | 3,500 V |
| lon transfer tube temperature | 300 °C  |
| Vaporizer temperature         | 320 °C  |

#### Table 5. Mass spectrometer settings

| Parameter                   | Setting        |
|-----------------------------|----------------|
| Resolution @ m/z 200        | 60,000         |
| Scan range ( <i>m/z</i> )   | 100–500        |
| AGC target                  | Standard (1e6) |
| RF lens                     | 70%            |
| Maximum injection time mode | Auto           |
| Data type                   | Profile        |
| Polarity                    | Positive       |
| Source fragmentation        | Off            |
| Source tragmentation        | OII            |

#### Table 6. Mean accuracy and CV% of back-calculated calibrators (n=3)

|                 | Me    | Mean accuracy (n=3) |       |     | %CV |     |
|-----------------|-------|---------------------|-------|-----|-----|-----|
|                 | L1    | L2                  | L3    | L1  | L2  | L3  |
| Amitriptyline   | 98.6  | 102.0               | 99.4  | 2.1 | 3.0 | 0.9 |
| Clomipramine    | 100.6 | 99.2                | 100.2 | 1.4 | 2.1 | 0.6 |
| Clozapine       | 101.0 | 98.5                | 100.5 | 1.5 | 2.1 | 0.7 |
| Desipramine     | 98.0  | 102.8               | 99.2  | 1.6 | 2.3 | 0.7 |
| Doxepin         | 99.6  | 100.6               | 99.8  | 1.3 | 1.8 | 0.5 |
| Imipramine      | 98.1  | 102.7               | 99.2  | 1.7 | 2.4 | 0.7 |
| Maprotiline     | 98.8  | 101.8               | 99.5  | 1.2 | 1.6 | 0.5 |
| Norclomipramine | 98.9  | 101.5               | 99.6  | 1.7 | 2.4 | 0.7 |
| Norclozapine    | 98.5  | 102.1               | 99.4  | 0.3 | 0.5 | 0.1 |
| Nordoxepin      | 98.7  | 101.9               | 99.5  | 1.7 | 2.4 | 0.7 |
| Normaprotiline  | 98.4  | 102.2               | 99.4  | 1.9 | 2.6 | 0.7 |
| Nortrimipramine | 98.6  | 102.0               | 99.4  | 1.4 | 2.0 | 0.6 |
| Nortriptyline   | 99.2  | 101.1               | 99.7  | 1.4 | 1.9 | 0.6 |
| Protriptyline   | 98.4  | 102.3               | 99.3  | 1.5 | 2.2 | 0.6 |
| Trimipramine    | 98.2  | 102.6               | 99.2  | 1.7 | 2.4 | 0.7 |

The limit of quantitation (LLOQ) used in this study was set to the level of the lowest calibrator, L1. The possibility to use a lower concentration as LLOQ was investigated by dilution of the lowest calibrator.

Linearity was investigated on three calibration curves prepared and extracted on three different days by evaluation of the accuracy of the back-calculated concentration for the provided calibrators.

# **Results and discussion**

A linear regression with 1/x weighting was used for all compounds. The mean accuracy and precision of the back-calculated calibrators are presented in Table 6. The linearity was good for all compounds in the calibrated range, with a coefficient of determination (R<sup>2</sup>) above 0.9989. The mean accuracies were within 98.0 to 102.8% and the precision was <3.0% for all compounds at all levels.

The lowest concentration of the diluted calibrators that had a mean back-calculated accuracy within 80 to 120% and a precision (CV) better than 20% (1 replicate for 3 days) are presented in Table 7. For all compounds, there is a possibility to extend the LLOQ below the lowest calibrator.

#### Table 7. Estimated extension of LLOQ for all compounds

| Analyte         | LLOQ (µg/L) |
|-----------------|-------------|
| Amitriptyline   | 1.56        |
| Clomipramine    | 1.76        |
| Clozapine       | 6.04        |
| Desipramine     | 1.72        |
| Doxepin         | 1.39        |
| Imipramine      | 1.53        |
| Maprotiline     | 2.22        |
| Norclomipramine | 2.02        |
| Norclozapine    | 4.64        |
| Nordoxepin      | 1.41        |
| Normaprotiline  | 3.34        |
| Nortrimipramine | 0.824       |
| Nortriptyline   | 1.71        |
| Protriptyline   | 1.51        |
| Trimipramine    | 1.70        |
|                 |             |

Representative chromatograms at the estimated LLOQ are presented in Figure 1, and representative calibration curves are presented in Figure 2.

The data demonstrate good accuracy and precision of the method. The intra-assay accuracy and precision results are reported in Tables 8 and 9, respectively. The intra-assay accuracy was between 95.1 and 113.4%, and the intra-assay precision was better than 7.8% for all compounds at all levels.

The inter-assay accuracy and precision results are reported in Table 10. The inter-assay accuracy was between 98.1 and 111.6%, and the inter-assay precision was better than 6.1% for all compounds at all levels.

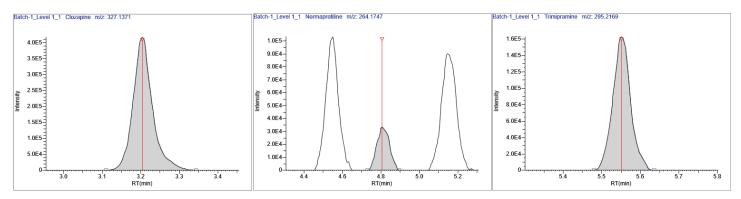



Figure 1. Representative chromatograms at the estimated LLOQ

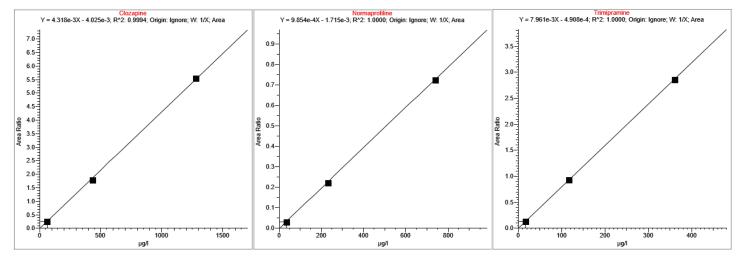



Figure 2. Representative calibration curves

### Table 8. Intra-assay % accuracy of the QC samples (mean, n=5)

|                 |                            | QC Level 1 |         |         |                            | QC L    | evel 2  |         |
|-----------------|----------------------------|------------|---------|---------|----------------------------|---------|---------|---------|
|                 | Nominal<br>conc.<br>(μg/L) | Batch 1    | Batch 2 | Batch 3 | Nominal<br>conc.<br>(µg/L) | Batch 1 | Batch 2 | Batch 3 |
| Amitriptyline   | 59.2                       | 108.6      | 102.8   | 104.6   | 135                        | 104.4   | 105.9   | 108.8   |
| Clomipramine    | 66.5                       | 113.4      | 106.5   | 107.3   | 154                        | 107.7   | 107.1   | 105.9   |
| Clozapine       | 217                        | 110.1      | 103.1   | 103.8   | 510                        | 103.0   | 103.8   | 99.7    |
| Desipramine     | 64.3                       | 111.9      | 105.3   | 105.1   | 152                        | 103.5   | 106.1   | 98.2    |
| Doxepin         | 50.8                       | 110.1      | 103.1   | 104.8   | 117                        | 105.6   | 104.8   | 108.1   |
| Imipramine      | 57.5                       | 111.2      | 104.0   | 104.9   | 133                        | 105.4   | 104.3   | 106.8   |
| Maprotiline     | 82.7                       | 112.4      | 104.8   | 105.8   | 193                        | 105.5   | 104.3   | 98.8    |
| Norclomipramine | 71.9                       | 113.2      | 107.0   | 108.1   | 169                        | 105.4   | 105.9   | 100.4   |
| Norclozapine    | 179                        | 112.7      | 103.3   | 109.2   | 418                        | 105.7   | 104.4   | 104.5   |
| Nordoxepin      | 49.4                       | 112.6      | 105.9   | 107.6   | 116                        | 107.5   | 106.4   | 100.9   |
| Normaprotiline  | 121                        | 110.8      | 104.6   | 110.5   | 280                        | 107.0   | 107.3   | 103.2   |
| Nortrimipramine | 35.8                       | 109.9      | 112.3   | 112.6   | 86.4                       | 107.2   | 106.9   | 107.5   |
| Nortriptyline   | 64.5                       | 111.3      | 104.4   | 105.5   | 145                        | 108.9   | 107.2   | 103.0   |
| Protriptyline   | 58.1                       | 110.8      | 104.1   | 105.5   | 143                        | 99.9    | 99.3    | 95.1    |
| Trimipramine    | 64.2                       | 112.5      | 105.3   | 107.4   | 155                        | 102.2   | 102.8   | 105.8   |
|                 | 02                         |            |         |         |                            |         | .02.0   |         |

# Table 9. Intra-assay precision of the QC samples, CV% (n=5)

|                 |         | QC Level 1 |         |         | QC Level 2 |         |
|-----------------|---------|------------|---------|---------|------------|---------|
|                 | Batch 1 | Batch2     | Batch 3 | Batch 1 | Batch 2    | Batch 3 |
| Amitriptyline   | 3.0     | 7.2        | 3.1     | 5.6     | 6.7        | 3.5     |
| Clomipramine    | 3.3     | 7.8        | 3.9     | 5.8     | 4.6        | 4.5     |
| Clozapine       | 3.3     | 7.1        | 3.7     | 5.9     | 7.4        | 4.7     |
| Desipramine     | 3.5     | 7.3        | 3.1     | 5.3     | 6.5        | 4.2     |
| Doxepin         | 3.5     | 7.2        | 5.3     | 6.2     | 6.9        | 4.6     |
| Imipramine      | 3.6     | 6.9        | 3.2     | 5.5     | 4.9        | 4.4     |
| Maprotiline     | 3.2     | 7.1        | 3.5     | 5.9     | 5.1        | 4.7     |
| Norclomipramine | 3.0     | 6.8        | 3.2     | 5.1     | 3.8        | 4.3     |
| Norclozapine    | 3.6     | 6.8        | 2.9     | 5.6     | 4.5        | 6.1     |
| Nordoxepin      | 2.8     | 6.2        | 3.4     | 5.5     | 4.3        | 4.7     |
| Normaprotiline  | 2.8     | 5.3        | 3.3     | 4.0     | 1.5        | 2.6     |
| Nortrimipramine | 2.5     | 7.5        | 1.8     | 5.4     | 5.1        | 2.6     |
| Nortriptyline   | 3.4     | 7.5        | 3.0     | 5.1     | 3.6        | 4.4     |
| Protriptyline   | 2.8     | 7.5        | 2.8     | 5.1     | 6.2        | 4.6     |
| Trimipramine    | 3.3     | 7.2        | 3.3     | 5.7     | 7.1        | 4.6     |

# thermo scientific

#### Table 10. Inter-assay accuracy and precision of the QC samples, CV% (n=15)

|                 | Accuracy |       | Prec | ision |
|-----------------|----------|-------|------|-------|
|                 | QC1      | QC2   | QC1  | QC2   |
| Amitriptyline   | 105.3    | 106.4 | 5.0  | 5.3   |
| Clomipramine    | 109.0    | 106.9 | 5.7  | 4.7   |
| Clozapine       | 105.7    | 102.2 | 5.5  | 6.0   |
| Desipramine     | 107.4    | 102.6 | 5.5  | 6.1   |
| Doxepin         | 106.0    | 106.2 | 5.8  | 5.7   |
| mipramine       | 106.7    | 105.5 | 5.4  | 4.7   |
| Maprotiline     | 107.7    | 102.9 | 5.6  | 5.7   |
| Norclomipramine | 109.4    | 103.9 | 5.0  | 4.8   |
| Norclozapine    | 108.4    | 104.9 | 5.7  | 5.1   |
| Nordoxepin      | 108.7    | 105.0 | 4.8  | 5.3   |
| Normaprotiline  | 108.6    | 105.8 | 4.5  | 3.2   |
| Nortrimipramine | 111.6    | 107.2 | 4.5  | 4.2   |
| Nortriptyline   | 107.1    | 106.4 | 5.4  | 4.8   |
| Protriptyline   | 106.8    | 98.1  | 5.2  | 5.4   |
| Trimipramine    | 108.4    | 103.6 | 5.3  | 5.7   |

# Conclusion

A reproducible, accurate, and sensitive liquid chromatography-HRAM mass spectrometry method was implemented for the quantification of 15 tricyclic antidepressant drugs in human plasma in less than 8 min/sample. The method was analytically validated on a Vanquish Binary Flex UHPLC system coupled to an Orbitrap Exploris 120 mass spectrometer. It offers a rapid and simple offline protein precipitation with concomitant internal standard addition. The described method meets research laboratory requirements in terms of sensitivity, linearity of response, accuracy, and precision.

# Find out more at thermofisher.com/ClinicalResearchApps

For Research Use Only. Not for use in diagnostic procedures. ©2021 Thermo Fisher Scientific Inc. All rights reserved. ClinMass is a registered trademark of RECIPE Chemicals + Instruments GmbH. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details **TN66063-EN 0721S** 

