Analytical solutions for biopharmaceutical characterization and control

Your partner on every step of your journey
Together we can address the challenges of biotherapeutic drug development

Your molecules are complex
Biotherapeutics such as monoclonal antibodies, biosimilars, antibody-drug conjugates, and nucleotide-based therapies are increasingly important drug product classes. Most biotherapeutic drug products are fundamentally more complex than traditional chemically synthesized products, and are subject to modification events, throughout development, manufacturing and storage.

You need fit-for-purpose tools at each biotherapeutic development stage
Well-designed characterization technologies provide unique insights which advance the development of biotherapeutics. Comprehensive characterization, allowing for full product understanding can save significant time and development costs. Throughout process development and manufacturing, tools are required for reliable monitoring of product microheterogeneity to ensure drug safety and efficacy.

Technology innovations to help you on your drug development journey
Our technology innovations have been specifically designed with the rapid pace and complexity challenges of biotherapeutic development in mind. From early discovery through to delivery of a commercial product, we provide technologies to confidently answer your analytical questions, bringing life-changing biotherapeutics to market faster than ever before.
Many modifications that cause structural heterogeneity of biotherapeutic products have profound impact on function, efficacy, and safety. These modifications, known as critical quality attributes (CQAs), must be defined and analytical methods implemented to monitor them.
Discovery

Early development phases identify potential molecules to develop as drug candidates.

Requires
Advanced tools and high-throughput screening capabilities to elucidate structure.

Enabling technologies for drug discovery

- Advanced mass spectrometry capabilities
- Exceptional separations
- Flexible software tools
The Orbitrap Eclipse Tribrid mass spectrometer brings a new dimension to native MS, enabling us to discover and chemically define the ligands, lipids, and drugs that regulate the function of membrane protein assemblies.

Dr. Joseph Gault, University of Oxford, the UK

Orthogonal selectivity expands confidence in characterization

Add a new dimension of selectivity with high-field asymmetric waveform ion mobility spectrometry (FAIMS).

Enhance peptide level and intact protein characterization by reducing interferences and enhancing sensitivity, whilst reducing time-consuming sample preparation.

FAIMS Pro™ enhances the deep characterization of proteoforms. Our data has generated a lot of excitement, in part due to robustness of the ion source over time.

Prof. Neil Kelleher, Northwestern University
Thermo Scientific Orbitrap Exploris 480 MS with BioPharma option

Extraordinary simplified – maximized throughput
The Thermo Scientific™ Orbitrap Exploris™ 480 mass spectrometer goes beyond routine analytical needs with advanced capabilities and intelligence driven data acquisition strategies for rigorous, high throughput identification, quantitation, and structural characterization of biotherapeutics. Along with the superior resolving power of up to 480,000 at m/z 200, adding the BioPharma option enables analysis of intact biotherapeutics under native-like conditions with an ion transmission and mass detection up to m/z 8,000.

- m/z 40–8,000 with BioPharma option
- Resolution up to 480,000 at m/z 200
- Scan modes: Full MS, dd MS/MS, TopN, TopSpeed, targeted MS/MS, MSX, tSIM, tSIM MSX, DIA, BoxCar DIA, Acquire X

With the Orbitrap Exploris 480 we can leverage optimal combination of signal to noise ratio and spectral resolution for our native SEC-MS lead selection studies with exceptional robustness demonstrated through the analysis of hundreds of samples.

Dr. Dan Bach Kristensen,
Principal Scientist, Symphogen

Thermo Scientific Q Exactive UHMR Hybrid-Quadrupole Orbitrap MS

Delivering unmatched performance for ultra-high mass analysis
Designed for scientists needing higher resolution and sensitivity in the ultra-high mass range (up to m/z 80,000) and ability to perform highest quality native MS and experiments run under native condition. The unique combination of high resolution, high sensitivity and MS³/pseudo-MS³ capabilities makes the Thermo Scientific™ Q Exactive™ UHMR Hybrid-Quadrupole Orbitrap mass spectrometer ideal to further analyze complex macromolecules and aggregate forms of your biotherapeutic.

- m/z 350 – 80,000
- Resolution up to 200,000 @ m/z 400
- In-source trapping capability that enables improved transmission and efficient desolvation and fragmentation.
- Pseudo-MS³ capability
- Quadrupole isolation up to m/z 25,000

The Q Exactive UHMR mass spectrometer has been a game changer in native mass spectrometry. Due to the very high resolution, we can now measure small molecules bound to large proteins, which is an important step forward for fragment-based drug discovery.

Dr. Idilir Liko, CTO, OMass Therapeutics
Thermo Scientific Vanquish Horizon UHPLC System

Deliver results without compromise

The Thermo Scientific™ Vanquish™ Horizon UHPLC system delivers confidence with a fully biocompatible flow path and proven compliance. With it, today’s biopharmaceutical scientists can enjoy unprecedented performance in retention time stability, sensitivity and separation efficiency with the widest range of column chemistries for biotherapeutic proteins. You can expect operational simplicity with easy, freely available, one-click workflows and tool-free Viper fittings.

The system features high sample capacity for high-throughput workflows and versatility through seamless integration with market-leading mass spectrometry, ultraviolet, fluorescence and charged aerosol detection, allowing you to do more with less.

- 1,500 bar
- Ultra-low gradient delay volume
- Fully biocompatible

One of the key features for us is really the simplicity of use.

Prof. Jonathan Bones, National Institute for Bioprocessing Research and Training

The 908 Devices ZipChip® platform

Seamless workflow for BioPharma applications

The Thermo Scientific™ compatible 908 Devices™ ZipChip™ platform integrates capillary electrophoresis (CE) and electrospray ionization (ESI) into a single microfluidic device to rapidly prepare, separate, and electrospray biological samples directly into a mass spectrometer. The portable size ZipChip interface directly mounts onto select models of Thermo Scientific Orbitrap-based mass spectrometers, and creates a seamless CE/ESI-MS workflow that offers fast CE separation, nano-spray level sensitivity, and HRAM mass spectrometry for the characterization of intact proteins, antibody-drug conjugates, antibody subunits, peptides, and metabolites.

Unrivalled separations, faster results, and easier operation
Here analytical innovations are applied to gaining a deep product and impurity understanding.

Requires advanced tools to answer in-depth molecular questions with full confidence.

Featured technologies for confident characterization

- Unique purpose-built chemistries
- High productivity separations
- Workhorse mass spectrometry
- Enabling software
Thermo Scientific™ BioPharma Finder™ software answers your biotherapeutic characterization needs.

- Novel deconvolution algorithms ensure determination of the correct molecular weight, confident identification of glycoforms and accurate measurement of drug-to-antibody ratio (DAR).
- Combine in-depth knowledge of post-translational modifications (PTMs), disulfide bonds, and low level impurities with unique data visualization tools.
- Simple software workflows guide along the characterization pathway, all centrally managed within an integrated library for sequences.

Simple, confident characterization software:
- Peptide mapping
- Intact mass analysis
- Fragment mass analysis
- Oligonucleotide mapping and impurity analysis
- Multi-attribute method development
- Top-down sequencing
- DAR calculations
- PTM site location
- Host cell protein analysis

Superior deconvolution algorithms

Informative and interactive sequence coverage map, colored by intensity

Automatically annotate peaks in the chromatogram

Chromatographic shading, predicted vs. experimental fragment ion spectra and sequence variant searching allows visualization of every peptide, modified or not.

Multiple interactive plot display options for flexibility in visualization – Oligonucleotide component detection and deconvolution

Automatic annotation of MS²
Confident characterization
Dependable, flexible, productive separations

Thermo Scientific™ Vanquish™ HPLC and UHPLC systems are the most advanced liquid chromatography instruments available. The Vanquish LC platform improves performance, repeatability, and dependability with no trade-offs in quality or ease-of-use.

Thermo Scientific™ Vanquish™ Duo HPLC and UHPLC systems

- Double the throughput of your LC-MS application without the need for additional bench space
- Improve return on investment by reducing cost per sample
- Reduce column carry over through extended column washing without sacrificing throughput
- Run parallel experiments on the same sample simultaneously
- Full biocompatibility to address the most challenging biotherapeutic applications

Easier method development and routine analysis
Whether you need an LC or LC-MS solution, the flexibility of the Vanquish Flex systems with binary or quaternary solvent blending provides the most advanced performance through better separations, more results and easier interaction.

Four workflows. Two flow paths. Maximized productivity.
Expand the benefits of our award-winning Vanquish platform with four workflows (Dual LC, Dual LC-MS, Tandem LC or LC-MS, and Inverse Gradient). Save time and cost per sample without adding bench space, and without compromising performance, robustness, or ease-of-use.

At Symphogen the implementation of Vanquish Duo UHPLC system has radically reduced analysis time during early lead selection studies.
Dr. Dan Bach Kristensen,
Principal Scientist, Symphogen
Thermo Scientific Orbitrap Exploris 240 MS with BioPharma option

- **m/z 40–8,000 with BioPharma option**
- **Resolution up to 240,000 at m/z 200**

Confidently achieve greater insights with even more productivity

With superb spectral clarity, the Thermo Scientific™ Orbitrap Exploris™ 240 mass spectrometer delivers the high-confidence characterization required to reliably quantitate and identify biotherapeutics in both research and routine laboratory environments. With new-generation system architecture and instrument control software, the system provides easy to use and powerful data acquisition capabilities, addressing the most demanding analytical challenges for intact mass analysis, subunit analysis, and peptide or disulfide bond mapping.

> The Orbitrap Exploris 240 mass spectrometer is a reliable and flexible solution for high performance biopharmaceutical characterization. I am really impressed by the sensitivity achieved for native MS analyses. The system is a must-have instrument for analytical and characterization labs supporting biopharmaceutical development and manufacture.

Dr. Jonathan Bones, Principal Investigator, NIBRT

Thermo Scientific Q Exactive Plus Hybrid Quadrupole-Orbitrap MS with BioPharma option

- **m/z 50–8,000 with BioPharma option**
- **Resolution up to 140,000 at m/z 200**

Everyday performance and flexibility to see more and quantify more

The Thermo Scientific™ Q Exactive™ Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer delivers everything you need for demanding routine and QC environments where the right results matter. It facilitates a wide range of protein analysis applications, from top- and middle-down antibody characterization and peptide mapping applications to data-independent acquisition (DIA)-based peptide and protein quantitation.

> The system gets tuned and calibrated once a week. It’s incredibly stable and easy to set-up.

Dr. David Tickle, Senior Principal Scientist, LifeArc
Our unique sample preparation and column chemistries for biomolecule workflows have been specifically designed for the separation and analysis of proteins, peptides, monoclonal antibodies, glycans, oligonucleotides, viral vectors and more.

Oligonucleotide separation
- Thermo Scientific™ DNASwift™ SAX-1S Monolith columns
- Thermo Scientific™ DNAPac™ PA200 columns
- Thermo Scientific™ DNAPac™ PA200RS columns
- Thermo Scientific™ DNAPac™ RP columns

Gene therapy analytics
- Thermo Scientific™ EASY-Spray™ PepMap™ RSLC columns
- Thermo Scientific™ ProPac™ SAX-10 HPLC columns
- Thermo Scientific™ SMART Digest™ kits
- Thermo Scientific™ MAbPac™ RP columns
- Thermo Scientific™ Hypersil GOLD™ C4 LC columns

Protein separation

Charge variant
- Thermo Scientific™ CX-1 pH Gradient Buffers
- Thermo Scientific™ MAbPac™ SCX-10 LC columns
- Thermo Scientific™ ProPac™ Elite WCX LC columns

Intact mass
- MAbPac™ SEC-1 LC columns
- Thermo Scientific™ MAbPac™ SEC-1 LC columns
- Thermo Scientific™ MAbPac™ HIC LC column family
- MAbPac SCX-10 LC columns
- ProPac Elite WCX LC columns

Antibody – drug conjugates
- MAbPac HIC LC column family
- MAbPac RP LC columns

Peptide mapping
- Thermo Scientific™ SMART™ Digest Kits
- Thermo Scientific™ SOLA™ Plates and Cartridges
- Thermo Scientific™ Accucore™ Vanquish™ C18+ LC columns
- Thermo Scientific™ Hypersil GOLD™ C18 LC columns
- Thermo Scientific™ Acclaim™ VANQUISH™ C18 columns

Aggregates
- MAbPac SEC-1 LC columns
- MAbPac HIC LC column family

Glycan analysis
- Thermo Scientific™ Accucore™ 150-Amide-HILIC LC columns
- Thermo Scientific™ Dionex® BioIC columns
- Thermo Scientific™ Acclaim™ 120 C18 columns

In my work, I have found the DNAPac PA200 is quite versatile for oligonucleotide analysis, with excellent resolution for both DNA and RNA oligonucleotides of a size of up to about 100 nucleotides as well as profiling of mRNA.

Anastassia Kanavarioti, Founder and Director, Yenos Analytical LLC

The CX-1 pH Buffer Kits are really popular with the team in the lab because they are easy to prepare. In a few minutes you are ready to go. Plus we have full traceability from the certified kits.

Dr. Martin De Cecco, Biochemistry R&D, Sartorius Stedim BioOutsource
During process development, an in-depth understanding of process effects on biomolecules allows for quicker progression through the development pipeline.

Requires robust and reproducible analyses to monitor molecular attribute changes with speed and confidence.

Small changes in manufacturing conditions can have a significant impact on the quality and consistency of a biotherapeutic. To ensure the release of safe and effective products, advanced analytical methods are implemented to closely monitor critical quality attributes for each batch.

Requires reproducible, robust, GMP compliance-ready methods.

Dependable technologies for monitoring and control

- Simplified sample preparation and automation
- Multi attribute method capabilities proven in GMP
- Compliance-ready software
Chromeleon CDS is a very efficient platform for acquiring, processing and evaluating data in a single, seamless platform.

Trine Melborg Sloth, Senior Technician, Symphogen

Customizable Chromeleon Studio

1. Sequence
2. Target components
3. Deconvolution parameters
4. Chromatogram view
5. Full MS source spectrum
6. Deconvoluted spectrum
7. Source spectrum with indication of a specific charge state series
8. Result component table

An example report for intact protein deconvolution displaying sequence analysis results, generated by Chromeleon CDS. The panel in the back shows the injection list with the five target components with pass/fail results for each injection. The panel in the front represents XICs for the target components for each injection.

Monoclonal antibody mass confirmation using intact protein deconvolution for a compliance-ready manufacturing environment
Fast, simple, reproducible protein digestion in an hour or less
SMART Digest kits use optimized heat-stable enzymes on magnetic or non-magnetic beads. This innovation generates high confidence in your LC and LC/MS results. Digestion procedures can be performed manually or automated with the Thermo Scientific™ KingFisher™ Duo Prime purification system.

Your samples, fast, consistent, and simple
KingFisher Duo Prime purification system improves your digestion by removing manual steps and reducing overall processing time, reducing user processing errors while increasing the reproducibility of your results, and uses optimized, easy-to-follow protocols for nearly every downstream application or sample type.

Easy and simple
• Significantly increased speed of sample processing
• Simple process
• Easily automatable protocol for high-throughput processing

Reliable results
• Higher sensitivity
• Increased reproducibility over existing protocols
• Higher data confidence
• Low levels of sample preparation-induced post-translational modifications

Our bottleneck lies in the sample preparation where we have taken a process that takes days down to minutes. With the easy to use, simple kit the data quality is absolutely excellent with the SMART Digest kit.
Charles Olea Ph.D, Analytical Development, Ajinomoto Althea

SMART Digest protein digestion kits
Investigating process-related post-translational modifications
KingFisher Duo Prime System
High-precision, automated peptide mapping of proteins
Because resolution matters from research to routine

A primary goal of the biopharmaceutical industry is to deliver the highest quality product faster and at the lowest cost possible. HR MAM workflow can replace numerous conventional lot release assays, offering potential for significant cost and time-to-market savings.

Benefits of the HR MAM full workflow solution include:

- Verified single-vendor solution containing all necessary components of a MAM workflow
- Standardized solution allows for easy lab-to-lab method transfer, for consistency from characterization through manufacturing.
- Standardization offers peace of mind when preparing regulatory filing.

BioPharma Finder software.

Thermo Fisher's single-vendor solution for MAM was very useful as there is seamless integration of hardware, software, and ultimately the data readout.

Carly Daniels, Pfizer

By adding MAM throughout process development, one establishes a deep understanding of the method, leading to higher confidence in the method's ability to replace traditional release assays once the molecule reaches the quality control laboratory.

Dr. Richard Rogers, MAM Consortium

Target peptide workbook
Attributes to monitor are captured in a BioPharma Finder workbook, which is imported by Chromeleon CDS for routine GMP-compliant monitoring.

Attribute monitoring and new peak detection
Targeted quantitation of the CQAs using high resolution MS1 only measurements, along with detection of new peaks when compared to a reference standard.

Carly Daniels, Pfizer
Analytical workflows

Powerful, efficient and accurate tools are brought together to provide seamless analytical workflows purpose built to address the challenges of biotherapeutic drug development.

- Unrivalled technologies
- Rapid, high throughput capabilities
- Robust and reproducible methods
- Unique structural insights
- Data confidence
- Industry endorsed
Analytical workflows

- Peptide mapping
- Peptide monitoring
- Top-down characterization
- Intact mass analysis
- Charge variant analysis
- Aggregate analysis
- Higher-order structure analysis
- Host cell proteins
- Multi-Attribute Method
- Glycan characterization and monitoring
- Amino acids
- Antibody-drug conjugate analysis
- Oligonucleotide analysis
- Viral vector characterization
- Formulation analysis

Discovery Characterization Process development QC monitoring Analytical workflows
Fast, reproducible and accurate peptide mapping

Peptide mapping is a critical workflow for product characterization and is essential for elucidating the primary amino acid structure of proteins.

Peptide mapping workflow for product characterization

Sample handling
Thermo Scientific™ WebSeal Plate + glass coated well plates Thermo Scientific™ National 9 mm Total Recovery Vials

Protein digestion
KingFisher Duo Prime purification system and SMART Digest Kit

Peptide separation
Acclaim VANQUISH C18 column

Resolution and confidence
Vanquish UHPLC systems and Orbitrap-based mass spectrometers

End-to-end solutions for complete product characterization
- Sequence coverage
- PTMs (identification and quantitation)
- Disulfide bonds
- Sequence variants
- De novo sequencing

Characterize all peptides and modifications with a wide dynamic range
Class leading accurate mass and resolving power provide the most effective way to accurately and confidently identify peptides. Working together with the Acclaim VANQUISH C18 column and Vanquish UHPLC system, our Orbitrap-based mass spectrometers give you the confidence to perform peptide mapping where full characterization is required and complete sequence information needed.

Sequence coverage
Confident and complete sequence coverage with versatile BioPharma Finder software

BioPharma Finder software is purpose-built for biotherapeutic analyses, with efficient workflows that ensure you get the right answers first time. Novel data visualization tools, from chromatographic shading and in-depth coverage maps mean that you won’t miss a thing.
High throughput peptide mapping with Vanquish Duo UHPLC system

We understand product monitoring requires the analysis of many samples and results are needed as soon as possible. Our Vanquish UHPLC systems coupled to a wide variety of fit-for-purpose Thermo Scientific columns can help to achieve the productivity and resolution needed.

Increase productivity with a dual UHPLC system

Vanquish Duo UHPLC system

Since installing the Tandem LC-MS system we have doubled our throughput and increased the precision of our data! Dr. Richard Rogers, Just Biotherapeutics, Inc.

“Real productivity savings can be achieved by converting single channel LC methods to tandem, enabling full utilization of detector time.”

BSA digest analyzed using diode-array detection with first lot of Hypersil GOLD VANQUISH C18 UHPLC column.

BSA digest analyzed using variable wavelength detection with second lot of Hypersil GOLD VANQUISH C18 UHPLC column.

The figure shows well-aligned chromatograms produced using the Vanquish Duo UHPLC system, run in tandem mode with 2 different lots of the Hypersil Gold VANQUISH column.

Hypersil GOLD VANQUISH C18 UHPLC columns

Thermo Scientific™ barcoded WebSeal™ Well Plates

BSA digest analyzed using diode-array detection with first lot of Hypersil GOLD VANQUISH C18 UHPLC column.

BSA digest analyzed using variable wavelength detection with second lot of Hypersil GOLD VANQUISH C18 UHPLC column.

The figure shows well-aligned chromatograms produced using the Vanquish Duo UHPLC system, run in tandem mode with 2 different lots of the Hypersil Gold VANQUISH column.

Hypersil GOLD VANQUISH C18 UHPLC columns

Thermo Scientific™ barcoded WebSeal™ Well Plates
Confident peptide monitoring

Peptide monitoring can confirm the primary structure of a product compared to a reference standard on a lot-to-lot basis for determining identity, stability, lot release, and monitoring manufacturing changes. Sample preparation and non-reproducible chromatography are common issues for reproducibility in peptide monitoring. Using an end-to-end workflow for automated peptide monitoring, your lab can achieve the robustness and reproducibility needed every time.

The Thermo Scientific™ ISQ™ EM single quadrupole mass detector can be coupled to UV to aid in method optimization and add confidence in peak identification within the compliance-ready environment of Chromeleon CDS. Peptide confirmation is demonstrated to the right.

Thermo Scientific ISQ EM Single Quadrupole MS

Flexible and routine detection for additional confidence

- Mass range m/z 10–2,000 with unit mass resolution
- Mass accuracy ≤0.1 Da

The Thermo Scientific™ ISQ™ EM single quadrupole mass detector can be coupled to UV to aid in method optimization and add confidence in peak identification within the compliance-ready environment of Chromeleon CDS. Peptide confirmation is demonstrated to the right.
Top-down structural characterization of complex biologics under native conditions

Complex biologics demand in-depth characterization employing multiple orthogonal analytical workflows to confidently determine protein structure ideally in its unmodified therapeutic form.

Characterization of proteins in their native state can now be achieved on the Orbitrap Eclipse Tribrid mass spectrometer with its enhanced vacuum technology and high mass range accessible in the HMR mode. The instrument provides the ability to analyze native molecules at the MS/MS level for detailed structural insights without sample preparation.

Deeper structural understanding, earlier in drug development, to make confident decisions faster.

Specific benefits of top-down analysis approaches:

- Fewer sample preparation steps
- Avoids preparation-induced chemical modification thereby reducing the number of experimental artefacts.
- Detect modifications that are removed or scrambled during peptide sample preparation.
- Elucidate functional relationships (for example, cross-talk) between PTMs on the same protein molecule.
- Characterize drug–target interactions
- Identify and quantify proteoforms that would have been convoluted by endoproteinase digestion.
- Achieve more in-depth structural heterogeneity characterization during biopharmaceutical development and control.

Generate complementary fragment ions that significantly increase structural insights

Top-down analysis of intact trastuzumab (148 kDa) supplied by direct infusion. A single charge state was isolated and fragmented using ETD, EThcD, UVPD and HCD. Fragment ion spectra were acquired with resolution of 240,000 @ m/z 200.

The advantage of this approach is that the IgG molecule can be efficiently probed in its native state, with covalent (S-S) and non-covalent bonds still intact. The resulting sequence coverage for intact IgG was 43% with 3.7 ppm RMS.
Structural insights in minutes with FAIMS and top-down

Incorporation of the FAIMS Pro interface for enhanced top-down characterization
The addition of the FAIMS Pro interface to the Orbitrap Eclipse Tribrid mass spectrometer can enhance gas-phase selectivity of complex protein mixtures, enabling high-quality intact mass analysis, as well as top-down or middle-down sequencing using the multitude of dissociation options in conjunction with PTCR for unmatched characterization capabilities.

Rapid characterization by gas-phase separation of mAb light and heavy chains
Light and heavy chains can be analyzed simultaneously or separated in the gas phase and introduced sequentially into the MS. Top-down or middle-down sequencing can then be performed utilizing multiple fragmentation modes including ETD, EThcD, HCD and UVPD. The figure shows rapid characterization of monoclonal antibody chains, with resulting data processing showing 65% sequence coverage for the light chain and 45% for the heavy chain which was achieved in less than five minutes. In addition, the full scan mass spectra acquired at each CV setting were deconvoluted prior to top-down analysis resulting in the molecular weight determination for the various glycoforms.

Fast high quality intact mass and sequence information with automated sample introduction, in just 5 minutes
Intact mass analysis
Exceptional spectral clarity, from discovery to QC

Extended mass range on Orbitrap-based instruments with BioPharma option and operational modes for mass determinations up to m/z 8,000, opening the door for simple, robust, and high spectral quality intact mass analysis of large proteins like mAbs under denaturing and native-like conditions.

Unparalleled sensitivity, resolution, and accuracy, effortlessly at any stage of the drug development.

Orbitrap capabilities have been expanding enormously over these years in multiple dimensions: from detecting elements and isotope ratio analysis to protein complexes and intact viruses; from disease pathway elucidation to biopharmaceutical quality control. Alexander Makarov, the inventor of the Orbitrap mass analyzer

Orbitrap Exploris 480 MS
- Up to m/z 8,000 with BioPharma option
- Resolution up to 480,000 at m/z 200

Orbitrap Exploris 240 MS
- Up to m/z 8,000 with BioPharma option
- Resolution up to 240,000 at m/z 200

Q Exactive Plus MS
- Up to m/z 8,000 with BioPharma option
- BioPharma workhorse
- Dedicated protein analytical workflow modes

Q Exactive UHMR Hybrid Quadrupole-Orbitrap MS
- Up to m/z 80,000
- Resolution 200,000 at m/z 400
- Quadrupole isolation up to m/z 25,000

Orbitrap Eclipse Tribrid MS with HMR^ Option
- Up to m/z 8,000 with HMR^ option
- Resolution up to 1 M at m/z 200
- Proton Transfer Charge Reduction (PTCR), (ETD)/PTCR ion source
Simplify complex spectra by decreasing the charge state of ions with PTCR

As the biopharmaceutical industry works toward a deeper product understanding, the need for innovative approaches to facilitate deeper protein characterization grows. The pioneering technology and software developments incorporated into the Orbitrap Eclipse Tribrid mass spectrometer enable superior analytical performance across all biopharmaceutical characterization workflows. Take advantage of high mass range MSⁿ (HMRⁿ) on a Thermo Scientific Tribrid Orbitrap mass spectrometer.

PTCR of denatured monoclonal antibody to reduce spectral complexity

Denatured 148 kDa Antibody Full Scan

Isolate Portion of the Charge Envelope

7 ms PTCR

PTCR of an isolated portion of the denatured mAb charge envelope (49+) reveals a charge-reduced spectra, facilitating more accurate data interpretation.

Analysis of cytokine-Fc fusion protein under native conditions with PTCR MS

MS spectrum of native desialylated Cytokine-Fc

PTCR MSⁿ: PTCR of 80 amu window m/z 5,677-5,757

Deconvolution result

Proton Transfer Charge Reduction (PTCR) makes it possible to deconvolve the mass spectrum obtained from a desialylated Cytokine-Fc fusion protein acquired under native conditions. The charge reduced product ions are detected in the Orbitrap mass analyzer taking advantage of the extended mass range.

Go beyond in biopharmaceutical characterization

≥ 30 Charge reductions
Intact mass analysis
Exceptional data from low sample concentrations

Instruments made for intact mass analysis

- Fast, sample prep-free, robust method to determine molecular weight, post-translational modifications, and impurities of biotherapeutics
- Intact Protein Mode available on several Orbitrap-based mass spectrometers for mass detection up to \(m/z \) 8,000, supports intact mass analysis performed under both denaturing and native conditions
- Assign more spectral features and maximize your productivity through improved flexibility, speed, dependability, and operational simplicity

Use less sample for reliable, high-sensitivity intact mass analysis acquired under native conditions

Size exclusion chromatography (SEC)-MS analysis of trastuzumab from 50 to 0.2 µg on-column using the BioPharma option to access the extended mass range to \(m/z \) 8,000 (left). Compared to denaturing conditions, intact native analysis, reduces the complexity of mass spectra (center). Consistent glycoform distributions are obtained (right), even at low sample loadings.

Intact mass analysis under native and denaturing conditions

Native MS conditions allow molecules to retain their conformation in the gas phase resulting in ions in lower and fewer charge states. The detected mass signals appear at higher \(m/z \) and at higher intensity reducing the complexity of the overall protein spectra.

Denaturing solvent conditions result in protein unfolding and increased protonation. The use of salt-free, high organic solvents results in the detection of higher charge state peaks at lower \(m/z \) values.

Complete characterization of monoclonal antibodies under native and denaturing conditions
Intact Protein Analysis Workflows
Intact mass analysis
High throughput lead selection

In early discovery phases analytical methods need to support lead selection studies which require fast high confidence identification of the potential lead molecules. Combining information on aggregates and molecular mass with glycoform identifications in a single, rapid analysis provides several benefits:

- High quality data with rich information content
- Combination of 2 key analytical methods: Size Exclusion Chromatography (SEC) and MS
- No sample preparation required
- Very fast, robust and reproducible.

A) Overlay of several UV traces of Symphogen reference antibody shows excellent reproducibility.

B) Deconvolution of the reference antibody allows for confident assignment of glycoforms.

C) Average relative glycoform intensities of reference mAb from five independent studies showcase exceptional SEC-MS method reproducibility to allow reliable relative quantitation.

Vanquish Duo LC analysis time

A) In the tandem LC-MS configuration two columns are operated at the same time, with alternating column reconditioning.

B) In a standard single column configuration analysis time is 8 min per sample. In the tandem LC configuration analysis time is 4.7 min per sample.

With the use of innovative UHPLC systems like the Vanquish Duo for tandem LC workflows, significant productivity can be gained, allowing for most efficient utilization of the high resolution accurate mass (HRAM) MS system.

Vanquish standard configuration (single column):
- Column 1: Analysis 1, Analysis 2
- Column 2: Analysis 3

Vanquish Duo Tandem LC setup for simultaneous analysis and reconditioning:
- Column 1: Analysis 1, Analysis 2
- Column 2: Analysis 1, Analysis 2

Increasing throughput of native SEC-MS in biopharmaceutical development using a tandem UHPLC setup.

Instrument control and data processing in Chromeleon CDS

Vanquish Duo UHPLC System for Tandem LC or LC-MS

Orbitrap mass spectrometer with BioPharma Option

4 x 96-well plates

Analytical workflows

Discovery
Characterization
Process development
QC monitoring
Charge variant analysis (CVA)

Heterogeneity of monoclonal antibodies must be monitored and revealed by charge sensitive techniques. Separation by charge followed by mass spectrometry (CVA-MS) allows for characterization of PTMs at the intact protein level.

CVA-MS for characterization of charge heterogeneity

Analyze multiple protein forms simultaneously, without the need for sample preparation, saving resource and time. Utilizing advanced software tools such as the sliding window algorithm available with BioPharma Finder software, one can improve the detection of low abundance species, providing more accurate qualitative and quantitative information and ultimately ensuring confidence in drug product quality.

Purpose-built tools for seamless charge variant monitoring

pH gradient ion-exchange chromatography provides rapid, highly robust and reproducible charge variant monitoring. Save time in method development, facilitate method transfer to QA/QC through a generic HPLC-based approach, and avoid the need for time-consuming mobile phase adjustments.
Meeting your needs for charge variant profiling

Charge variant analysis

Charge variants are monitored during drug development through to manufacturing because these variants can influence stability and biological activity of the product. Salt gradient cation-exchange chromatography can be used to monitor mAb charge variants. However, significant effort is often required to tailor the salt gradient method for each individual mAb. In the fast-paced drug development environment, a quick and robust platform method is desirable and can be achieved by using a pH gradient buffer.

The advantages of pH-based gradients

- Global applicability to monoclonal antibodies (mAb)
- Greatly simplified method development
- Significantly shorter analysis times: pH gradients (15 min.) vs. conventional ionic strength salt gradients (90 min.)

High-resolution, high efficiency mAb analysis

- Resolves isoforms that differ by a single charged residue
- High efficiency separations through rapid mass transfer
- Designed to eliminate hydrophobic interactions, resulting in very efficient separation.

CX-1 pH gradient buffer

- Robust, reproducible gradients compared to traditional salt-based gradients
- Ready to use – No need to formulate mobile phases
- Saving time in method development and easily transferable to QA/QC

Next generation cation exchange columns for method robustness and column lifetime

- Enhanced resolution separations for mAb variants
- Small particle sizes for faster separation and sharp peaks
- Ideal for quality control and assessment of mAbs
Intact mass analysis under native conditions
Charge variant analysis coupled to MS further expands intact protein characterization

For product characterization, understanding intact mAb heterogeneity is imperative. Combining the separation benefits of charge variant analysis (CVA) using ion-exchange chromatography (IEX) while obtaining mass spectral information is a powerful tool for analysis of complex mAb mixtures and for deeper insights when characterizing single mAb samples.

Native MS using CVA-MS

A) Base peak chromatogram from MS analysis of trastuzumab. 8 chromatographic peaks are separated that correspond to unique charge variants.

B) Averaged spectra corresponding to unique charge variants of trastuzumab. Spectra are highlighted by red and blue color shading which correspond to the two most abundant chromatographic peaks, peak 2 and peak 5.

C) Sliding Window ReSpect deconvolution in BioPharma Finder software displaying abundance traces of deconvolved components in peak 5, with top 3 glycoforms in both deamidated and unmodified forms.
Protein aggregation gives rise to higher order structures which can significantly affect the efficacy of biologic drugs and cause harmful side effects and therefore needs to be monitored and controlled. Protein aggregates are commonly measured using liquid chromatography with either UV detection (HPLC-UV) or fluorescence detection (FLD) or followed by intact MS characterization under native conditions.

SEC-MS for aggregate and intact protein analysis
Aggregate separation followed by HRAM MS facilitates the analysis of the proteins in their native form, without the need for sample preparation, while providing information on aggregation and fragmentation.

Robust reproducible tools for aggregate monitoring
Ensure confident characterization of sub-visible protein aggregates in biotherapeutic products. Take advantage of MAbPac SEC-1 columns which offer superior, reproducible separation of monomers, aggregates, and fragments resulting from proteolysis. As a secondary confirmation, MAbPac HIC column family separates based on hydrophobicity in the native state, allowing for the detection of changes in protein structure and aggregates. Couple this to the biocompatible Vanquish Flex or Vanquish Horizon LC systems for the robust system to handle the high salts of HIC methods.
Confident aggregate control

Monitor aggregates confidently
Investigators routinely use size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC), because they are well-suited for separation of fragments and monomer peaks from aggregates. Robust, reproducible methods can be expected using the Vanquish UHPLC system coupled to the MAbPac SEC-1 column or MAbPac HIC-10 column.

Selection of representative UV-chromatograms showcasing excellent resolution and reproducibility of aggregates using the MAbPac SEC-1 column over 1,953 injections.

As an alternative to SEC, for separation of mAb aggregates and hydrophilic variants use the MAbPac HIC-10 column.
Use ultra-high mass range to see your biotherapeutic aggregates for the first time

Native MS is a powerful tool for understanding the structure of large protein complexes. Technology limitations have prevented native MS for achieving its full potential until now.

The Q Exactive UHMR Hybrid Quadrupole Orbitrap MS

- Designed for scientists needing higher resolution and sensitivity in the ultra-high mass range and ability to perform highest quality native MS and native top-down experiments
- Unique combination of high resolution, high sensitivity and MS\(^3\)/pseudo-MS\(^3\) capabilities makes the Q Exactive UHMR mass spectrometer ideal to further analyze complex macromolecules and aggregate forms of your biotherapeutic

Due to increased complexity, there is a critical need for tools capable of resolving large protein complexes and accurately determine MW of aggregates of multispecific antibodies. The first instrument I have seen to make this possible is the Q Exactive UHMR. With its ability to efficiently transmit and detect ions of high m/z (>8,000), it provides a unique toolbox to tackle these complex problems.

Dr. Andrew Mahan, Principal Scientist, The Janssen Pharmaceutical Companies of Johnson & Johnson

Q Exactive UHMR MS allows for high quality native MS measurement and identification of different size protein fragments as small as ~27 kDa and aggregates up to ~630 kDa in size with remarkable resolution and clarity in a single analysis.
Oligonucleotide mapping

Confident identification, mapping, and relative quantitation of oligonucleotides

Oligonucleotides are being developed as therapeutic agents and vaccines against a wide range of disease conditions. Advanced tools are indispensable for the characterization of oligonucleotides and their impurities.

We solve the common oligonucleotide challenges by offering:

- High quality MS data for confident sequence confirmation
- Automated mass confirmation at both MS and MS/MS levels using BioPharma Finder software
- Robust and reproduction LC separation of oligonucleotides with DNAPac RP column and Vanquish UHPLC systems

Oligonucleotide analysis

Compatible with MS and separation of large and small oligonucleotides, our DNAPac RP column has high pH and temperature stability, excellent resolution, and exceptional column lifetime.

The biocompatibility of the Vanquish Flex UHPLC system allows for the use of ion-pairing modifying buffer conditions. HRAM based data-dependent tandem MS (ddMS2) method allows for confident identification and mapping of oligonucleotides and their impurities.

Oligonucleotide analysis workflow in BioPharma Finder software provides:

- A streamlined process from sequence creation and oligonucleotide mapping to relative quantitation of impurities and result reviewing.
- Fast processing and annotation of ddMS2 data.
- Comparative analysis tools allow easy optimization of ddMS2 and comparisons of data from different studies.

ddMS2 identification and quantitation of oligonucleotides, impurities, and degradation products

Excellent separation of 21 mer oligonucleotide and its impurities using the DNAPac RP column with the Vanquish Horizon UHPLC system coupled to the Orbitrap Exploris 240 MS.

Total ion chromatogram of n-16 present, but not discernible, at a very low level. Using BioPharma Finder software, the impurity could be confidently identified by its MS² spectrum and a complete fragment coverage map.
Emerging gene therapies: fast, robust, and confident analysis from characterization through control

For gene therapy products, viruses such as Adeno-associated virus (AAV) are common vectors for gene delivery. AAV attributes need to be monitored, including purity, identity, and empty: full capsid ratio. With the right analytical tools scientists can expedite development of safe, high-quality gene therapy products while reducing time-to-market and reducing costs of manufacturing.

Separation and ratio determination of empty and full AAV capsids
Empty or partial capsids are by-products of the AAV production and must be monitored because they can impact product efficacy. Fast and robust empty: full capsid separation can be accomplished using the Vanquish UHPLC system with ProPac SAX-10 column. The biocompatibility of the Vanquish Flex UHPLC system allows for the use of ion exchange and ion-pairing modifying buffer.

Capsid protein characterization
The correct AAV serotype is selected, then identity and purity are monitored; either on the intact protein level or by peptide mapping. Peptide mapping can be performed using pepsin SMART digest kit, with state-of-the-art consumables and instrumentation, to increase viral protein 1 (VP1) coverage for confidence in your characterization and monitoring of viral capsids.

Intact capsid mass analysis
Mass confirmation of empty capsids can be performed with high confidence using the Q Exactive UHMR Hybrid Quadrupole-Orbitrap mass spectrometer. See how a mixture of 3 MDa and 4 MDa virus capsids analyzed under charge reducing conditions span a wide mass range between \(m/z \) 27,000 and 36,000.

Protein digestion
Thermo Scientific™ SMART Digest™ Pepsin Kit

Peptide separation
Thermo Scientific™ EASY-Spray column.

Resolution and confidence
Thermo Scientific™ U3000 RSLC nano system and Orbitrap-based mass spectrometers.

This workflow solution offers a fast and reproducible solution to full capsid protein coverage.
Higher order structure analysis with an all-in-one HDX solution

Full structural characterization is critical where local conformational changes can impact safety and efficacy. Hydrogen deuterium exchange (HDX) mass spectrometry (MS) is a powerful analytical approach for studying the dynamics of higher order structure of protein-based therapeutics. The rate of hydrogen-to-deuterium exchange within the amide hydrogen on the backbone of biotherapeutics provides solvent accessibility information and thus protein structure and conformation can be inferred. We offer a unique total solution for your HDX workflow.

The Thermo Scientific HDX-MS workflow solutions

Bottom-up HDX

Labelling and in-line digestion

Analysis by LC-MS

H/D-X PAL Hydrogen Deuterium Exchange autosampler coupled to MS

Intact/top-down HDX

Labelling

Analysis by LC-MS

H/D-X PAL Hydrogen Deuterium Exchange autosampler coupled to MS

Bottom-up HDX: Trastuzumab and its biosimilar deuterium uptake residual plots. A) Deuterium uptake comparison for peptides of the light chain. X-axis: number of peptides, Y-axis: deuterium uptake percent difference per peptide. B) specific peptides which have shown only around 4% differences in deuterium uptake between the originator and the biosimilar. C) Deuterium uptake comparison for peptides of the heavy chain. D) first panel: example of 100% match of peptide’s deuterium uptake plots. D) last three panels: multiple peptides showed slightly different deuterium uptake curves.

HDX-MS can characterize a protein a lot better than other biophysical characterization methods. I believe in the future of HDX-MS as a must-have in the protein characterization toolkit.

Yoshitomo Hamuro, HDX-MS Expert, SGS
Simple, fast and sensitive host cell protein analysis rivals traditional techniques

HCPs are low-level, process-related protein impurities in drug products derived from the host organism during biotherapeutic manufacturing. Their levels need to be controlled and monitored.

The analytical solution for HCP monitoring must be extremely robust and relatively fast. As the need for increased process understanding grows, scientists are turning to an HCP analysis that utilizes robust and reliable UHPLC system coupled to an HRAM mass spectrometer to identify and quantify multiple HCPs in a single chromatographic separation, allowing for reliable HCP monitoring throughout the purification process.

LC-MS detection of low abundant HCPs using non-denaturing protein digestion

Detection of low abundant HCPs is facilitated by non-denaturing protein digestion. Under these conditions the dominating drug product is digested only to a small extent allowing for removal of remaining intact protein upon heat denaturation post digestion. This reduces the dynamic range of the sample making the low abundant HCPs more amenable for detection.

Detection of HCPs ranging in concentrations from <0.5 ppm to 200 ppm

Thanks to the excellent sensitivity and dynamic range capabilities of Orbitrap MS systems, many HCPs can be identified with high confidence in samples with at least two peptides where these HCPs are present from ~200 ppm to <0.5 ppm.

Residual host cell protein analysis of NISTmAb:

From simplified sample preparation to reliable results

Host cell protein analysis
Antibody-drug conjugates
DAR confirmation and monitoring

Leveraging hydrophobic interactions for separation
Hydrophobic interaction chromatography (HIC) takes advantage of the altered hydrophobicity of the antibody due to attachment of cytotoxic small molecules.

Attain high resolution separation of mAbs and ADCs using MAbPac HIC family of columns.

ADC analysis
For antibody drug conjugates (ADC) the drug load must be monitored, as the distribution of drug can impact the therapeutic efficacy of an ADC. This complexity presents a great analytical challenge which requires high resolution liquid chromatography.

Leveraging reverse phase chromatography
RP-LC is often the quickest monitoring assay of DARs for ADCs. The MAbPac RP column offers fast and high resolution separation.

Chromatogram shows outstanding separation of a Cys-conjugated ADC mimic on a MAbPac HIC-Butyl column.

HIC can provide chromatographic resolution required for separation of Fab and Fc fragments and related variants during subunit analysis. The MAbPac HIC-20 column efficiently separates the fragments and other variants.

For the analysis of the MMAE Modified trastuzumab ADC - DAR values ranging from 0 to 4 are well resolved on the MAbPac RP column.
Calculating Drug to Antibody Ratio (DAR) of Antibody-Drug Conjugates (ADCs) using High Resolution Native MS

High resolution accurate mass MS systems fit for unique ADC challenges – deeper structural insights, accurate determination drug-to-antibody ratios, and conjugation isoform and modification characterization.

Native intact MS allows for greater spatial separation between sequential charge states. For ADC samples, this allows low and high abundant DAR forms with varying degrees of glycosylation to be better separated spatially and detected more accurately.

<table>
<thead>
<tr>
<th>G0F/G1F DAR</th>
<th>Mass accuracy (ppm)</th>
<th>Relative abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAR0</td>
<td>6.5</td>
<td>9.19</td>
</tr>
<tr>
<td>DAR2</td>
<td>4.4</td>
<td>85.74</td>
</tr>
<tr>
<td>DAR4</td>
<td>2.1</td>
<td>100</td>
</tr>
<tr>
<td>DAR6</td>
<td>7.8</td>
<td>88.66</td>
</tr>
<tr>
<td>DAR8</td>
<td>11.4</td>
<td>49.25</td>
</tr>
</tbody>
</table>

Average Drug-to-Antibody Ratio (DAR) **4.56**

Heterogeneity with varying degrees of glycosylation and drug to antibody ratios results in complex spectra. With the resolution power of the Orbitrap Exploris MS systems, DAR determination is straightforward in a very fast simple native MS analysis with no prior sample preparation. No need for deglycosylation to simplify spectra, as all glycoforms are resolved.
Biopharmaceutical glycan analysis

Biotherapeutics with complex glycosylation patterns have the potential to easily fall out of specification with changes in biomanufacturing processes. To meet regulatory demands, manufacturers must carefully characterize and monitor glycosylation of proteins throughout the development and manufacturing process. The complete analysis of a glycoprotein provides information on the primary structure of the oligosaccharides as well as their variation at individual glycosylation sites. Several complete analytical solutions for glycan profiling of biotherapeutic proteins may need to be applied.

Intact glycoform mass analysis

Released glycan analysis using fluorescence labels

Unlabeled released glycan analysis

Glycopeptide analysis

Monosaccharide and sialic acid analysis
It is crucial when analyzing glycans to be able to efficiently separate all isomeric and branching variants present within the sample to achieve maximum structural elucidation. The separation must be rapid but with sufficient resolution to allow batch-to-batch differences in the glycan profile to be identified and subsequently characterized by high-resolution accurate-mass (HRAM) mass spectrometry.

The Accucore™ 150-Amide-HILIC HPLC phase is designed for the separation of hydrophilic biomolecules
- High-throughput screening method for unambiguous identification of glycoforms
- 20 times reduction in separation time compared to standard profiling methods
- Excellent batch-to-batch reproducibility for method development of novel mAbs and biosimilar products

Thermo Scientific Accucore 150-Amide-HILIC column provides excellent separation for n-glycoforms from biotherapeutics with excellent retention time precision. Coupled with the Vanquish Horizon UHPLC platform and the Vanquish FLD is a powerful tool for the analysis of 2AA-labelled glycans.

Dr. Stefan Mittermayr, Biopharmaceutical Applications Scientist, NIBRT

An ultrafast, batch-to-batch comparison of monoclonal antibody glycosylation

An Applied Biosystems™ GlycanAssure™ HyPerformance APTS Kit is a magnetic bead–based sample preparation solution offering multiple fluorescent dyes for high-throughput analysis.

Accucore 150-Amide-HILIC column for robustness, reproducibility, accuracy, and precision needed for quantitation of released glycans.
Glycan characterization and monitoring
Released N- & O-glycans without labeling

Save time and money and avoid complex labeling routines
Analysis of unlabeled glycans not only eliminates an extra reaction step and cumbersome cleanup methods during labeling, but also retains the original glycan profiles without adding further ambiguity imposed by labeling reactions. This analysis can be performed using ion chromatography (IC) with high-performance anion-exchange chromatography with pulsed amperometric detection (HPAE-PAD) or liquid chromatography (LC) with charged aerosol detection (CAD).

See more. Label-free.

Label-free ion chromatography with HPAE-PAD detection
Glycan characterization and monitoring
Glycopeptide analysis and site location

The use of glycoengineering to produce therapeutic proteins with specific glycoforms may be required to achieve the desired therapeutic efficacy. Glycan site location is a critical characterization step. Thermo Scientific™ Trivid™ MS systems can perform novel fragmentation such as electron transfer dissociation (ETD), and electron-transfer/higher-energy collisional dissociation (EThcD) which is especially advantageous for N-linked glycopeptides, enabling higher sequence coverage and glycosylation site localization.

The Orbitrap Eclipse Trivid mass spectrometer offers unique versatility in fragmentation options and MS² capabilities that enable the user to go beyond of what is possible in glycan and glycopeptide analyses. Glycan analysis performed at the peptide level can provide both glycan composition and peptide sequence at the site of glycosylation.

EThCD fragmentation technique enables unambiguous assignment of glycosylation site

Acclaim 120 C18 columns are recommended for peptide mapping of biotherapeutic glycoproteins, offering excellent separation with superb peak shapes.
Monosaccharides and sialic acids

Determination and monitoring of monosaccharide and sialic acid composition is a key during process optimization and quality control for glycoprotein-based therapeutics. Thermo Fisher Scientific provides sensitive workflows based on high performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD).

Benefits of HPAE-PAD for determining monosaccharides, sialic acids and other carbohydrates

- Allows for direct detection without sample derivatization, reducing time and cost
- It is a selective technique with sensitive detection
- Fast separations without resolution loss using Thermo Scientific™ Dionex™ CarboPac™ PA20 columns

HPAE-PAD method shows excellent linearity for each monosaccharide measured.

Monosaccharide analysis

Sialic acid analysis

Human serum IgG trifluoroacetic acid (TFA) and hydrochloric acid (HCl) hydrolysates. Although human serum IgG has lower carbohydrate content compared to most mammalian glycoproteins, HPAE-PAD is sensitive enough to determine monosaccharides without derivatization.

Direct and accurate quantitation of sialic acids in glycoprotein hydrolysates. Method shows good separation of the two most commonly analyzed forms of sialic acid.

Improved Profiling of Sialylated N-Linked Glycans by Ion Chromatography-Orbitrap Mass Spectrometry

Analyzing carbohydrates by HPAE-PAD ion chromatography

Glycoprotein monosaccharide analysis using HPAE-PAD with manually prepared eluent

Monosaccharides and sialic acids

Monosaccharide concentration (µM)

Peak area (nC∙min)

Fucose
Galactosamine
Glucosamine
Galactose
Glucose
Mannose

Fucose
Galactosamine
Glucosamine
Galactose
Glucose
Mannose

F = 0.999
F = 0.999
F = 0.997
F = 0.998
F = 0.998

r² = 0.999
r² = 0.997
r² = 0.998
r² = 0.998
r² = 0.998

0 20 40 60 80 100 120
0 2 4 6 8 10 12
0 20 40 60 80 100 120
0 2 4 6 8 10 12

Monosaccharide concentration (µM)

Peak area (nC∙min)

Monosaccharides

Acid

Glycoprotein

Monosaccharides

Ion Chromatography

Process development

QC monitoring

Analytical workflows
Amino acids typically require derivatization prior to analysis by UV-Vis detection due to weak chromophoric properties. This is typically a laborious and time-consuming step during sample preparation. Thermo Fisher Scientific has solutions to automate in-line or eradicate the step altogether reducing time and cost of analysis.

Automate the post-column derivatization with robust IC separation

Thermo Fisher Scientific ion chromatography (IC) systems have a totally inert flow path that provides a robust and corrosion resistant platform for separations with high salt content, while allowing use of popular post-column derivatization agents, automated through Chromeleon CDS.

Eliminate the need for derivatization with rapid CAD detection

Combining rapid ion-paired UHPLC separation and near-universal detection capabilities of Thermo Fisher Scientific charged aerosol detection (CAD) speeds up amino acid analysis and removes the need to derivatize pre- or post-separation, removing manual sample preparation steps.

Use of ion-paring agent can assist chromatographic retention on reverse phase columns whilst providing narrow peak widths, increasing sensitivity.

Linear calibration curves for all measured amino acids can be achieved with CAD detection by optimization of the user defined power function values (PFV).

Separation of amino acid standards (NISTmAb, supplemented with tryptophan) using HPAE-PAD for direct amino acid detection without derivatization.

Determination of the Amino Acid Content of Peptides

Amino acid separation by ion chromatography

Ion Chromatography

UV/Vis detection

HPLC and UHPLC Charged Aerosol Detectors

Enhancement of linearity and response in Charged Aerosol Detection

UHPLC-CAD

Analytical workflows

Process development QC monitoring

Characterization

Discovery
Confident formulation analysis

There are many instances where the biotherapeutic agent is UV active, but UV-transparent excipients and critical non-chromophoric modifications must be detected and analyzed.

Charged aerosol detector (CAD) is a near universal detection technology that can be used to detect non-volatile and some semi-volatile compounds with or without a strong UV chromophore, no derivatization required.

Profiling surfactants is made possible with CAD

Example of surfactant analysis for PEGs shows the power of CAD. Quantitation methods are also available.

Great linearity achieved for Tween 80

Calibration curve of Tween 80 (10–50 mg/L)

Polysorbates are non-ionic surfactants commonly used in biotherapeutic formulations to prevent surface adsorption and stabilize proteins against aggregation induced by stress.

For quality control purposes, their concentration needs to be determined. The quantitative analysis of polysorbate can be challenging since polysorbate is a complex mixture of many different species, which lack natural UV chromophores. CAD can help you to get the results you need.

The Vanquish CAD system is essential in situations where more conventional detection techniques are not optimal. It adds an extra dimension to our detection capabilities.
The Multi-Attribute Method (MAM) is a peptide mapping-based method used to monitor and quantify multiple potential CQAs simultaneously. HR Multi-Attribute Method (MAM) is a powerful high resolution accurate mass (HRAM)-based workflow that enables comprehensive characterization and monitoring of quality attributes from research to quality control (QC). MAM is in alignment with the Quality by Design (QbD) approach to the development of biopharmaceuticals, which is advocated by regulatory agencies and is being adopted by biopharmaceutical companies.

High Resolution Multi-Attribute Method:
Resolution matters from research to routine

The HR MAM workflow enables characterization of biologics with ease and allows potential CQAs to be monitored throughout the drug development process while also providing purity testing with the feature of New Peak Detection (NPD). Data processing performed with Chromeleon CDS.

10 ppm mass tolerance
- low abundant deamidated peptide not integrated due to abundant wild type form (if peak integration based on intensity)

5 ppm mass tolerance
- deamidated peptide correctly integrated illustrates the importance of high mass accuracy for peak integration and accurate quantitation
An end-to-end analytical workflow verified and fully supported by the world leader in serving science

The HR MAM consists of industry-leading hardware and compliance-ready software as well as a system suitability test specifically developed for the workflow.

HR MAM provides:
- High resolution accurate mass detection
- Robust instrument performance
- Reproducible and accurate CQA quantitation
- New Peak Detection for impurity analysis
- Advanced user friendly data analysis tools
- System suitability test
- Professional support from service and application teams

Fully verified protocol

Additional benefits of HR MAM:
- Potential reduction in cost and time, as well as fewer SOPs and instruments to maintain.
- A standardized workflow for your analytical processes on multiple instruments across different development sites, from research and development to manufacturing and QC.
- Global environment – workflow standardization offers peace of mind when preparing regulatory filings.
- Full workflow support, globally, from a dedicated team of Thermo Fisher Scientific MAM experts.

Reproducibility demonstrated on different instruments

Average ratios for the same NISTmAb digest analyzed on three different Q Exactive Plus mass spectrometers.

Release your product with fewer tests and more confidence
Be Confident... as your partner, Thermo Fisher Scientific provides all the right products and solutions for your characterization and control challenges with exceptional separation, reproducibility, and high-quality data providing deeper insights in a compliance-ready data environment.

Find out more at thermofisher.com/biopharma