A solution to the top three analytical challenges in industrial water and waste water processing

To eliminate **corrosion** and **scaling** that can damage valuable industrial components and to ensure **regulatory compliance**, you must perform reliable water analysis.

Process complexity

Maintaining a sustainable water program is essential for all major water consuming industries. Routine water testing and monitoring—from source water to waste water discharge—is critical for safe and profitable operation.

Discharge

Numerous analytes and diverse samples and concentrations

Daily testing of multiple analytes from diverse water samples and varying concentrations is critical to maintain production performance, but it puts a heavy burden on your lab resources.

= Scaling	Parameters	Why	Where	Parameters	Why	Where
= Corrosion	pH Conductivity Alkalinity Total hardness	•	Source water DI water Make up water Cooling water Waste water	Iron Copper Hexavalent chromium Zinc	•	Steam condensate Make up water Cooling water
	Silica Calcium Magnesium	•	DI water Make up water Cooling water	Acetic acid Formic acid Glycolic acid	•	DI water Make up water Steam condensate
compliance	Fluoride Chloride Sulfate Sulfide	•	Source water DI water Make up water Cooling water Waste water	Total Kjeldahl Nitrogen (TKN) Total phosphate Total phenol Total Oxidizable	•	Waste water
 Corrosion inhibitors 	Nitrite Ammonia Alkyl amines Alkanol amines Azole derivatives Zinc Molybdenum	•	Cooling water Make up water Steam condensate	Nitrogen (TON) Cyanide Total cyanide Boron Hexavalent chromium Total iron, etc.		
 Resin/Reverse Osmosis (RO) membrane break through indicators 	Hydrazine Poly acrylic acid (PAA) Morpholine		Coolin water	ng		
	S	ource water		Steam condensate		
DI water U water						
Number of parameters						
Number of samples						

Testing frequency

Concentration range

Matrix effect

Lab resources

Testing many samples for diverse parameters and concentrations can create a bottleneck with limited lab resources. Traditional analytical methods are slow, require large volumes of reagents and only process one parameter at a time—resulting in low throughput.

The Solution

Consolidated and comprehensive water analysis

The key to improved productivity is processing many parameters simultaneously with high-throughput analysis and walkaway operation. The combined power of a discrete analyzer and ion chromatography—Thermo Scientific[™] Disc-IC[™] System—offers a comprehensive solution for consolidated industrial process and waste water analysis.

Thermo Scientific discrete analyzer

The Thermo Scientific[™] Gallery[™] platform integrates multi-parameter testing for routine high-throughput water analysis, offering a true walkaway solution.

Thermo Scientific Dionex ion chromatograph

The Thermo Scientific[™] Dionex[™] Reagent-Free[™] ion chromatography (RFIC[™]) system offers an easy-to-use, comprehensive ion analysis solution for routine and complex water samples.

Disc-IC System

The Disc-IC System delivers consolidated analysis of many parameters per sample, covering a wide concentration range—all while offering

unattended operation for walkaway efficiency.

Find out more at **thermofisher.com/discreteanalysis** and **thermofisher.com/ic**

© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. IN73526-EN 1120M

ThermoFisher SCIENTIFIC