Thermo Scientific

FOCUS GC Gas Chromatograph

Site Preparation and Installation Manual

PN 317 094 11, Revision May 2010

FOCUS™ GC Site Preparation and Installation Manual

May 2010 Edition Part Number 317 094 11 © 2007-2010 Thermo Fisher Scientific Inc. All rights reserved. Printed in Italy

Published by Thermo Fisher Scientific S.p.A., Strada Rivoltana, 20090 Rodano - Milan - Italy Tel: +39 02 95059355 Fax: +39 02 95059388

Printing History: First Edition, released June 2002 Second Edition, released May 2003 Third Edition, released April 2004 Fourth Edition, released November 2004 Fifth Edition, released January 2005 Sixth Edition, released September 2005 Seventh Edition, released June 2006 Eighth Edition, released May 2007 Ninth Edition, released July 2007 Tenth Edition, released April 2009 Eleventh Edition, released September 2009 Twelfth Edition, released May 2010

Disclaimer

Technical Information contained in this publication is for reference purposes only and is subject to change without notice. Every effort has been made to supply complete and accurate information; however, Thermo Fisher Scientific assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use of this manual or the information contained therein (even if this information is properly followed and problems still arise).

This publication is not part of the Agreement of Sale between Thermo Fisher Scientific and the purchaser of a FOCUS[™] GC system. In the event of any conflict between the provisions of this document and those contained in Thermo Fisher Scientific's Terms and Conditions, the provisions of the Terms and Conditions shall govern.

Reference to System Configurations and Specifications supercede all previous information and are subject to change without notice.

Trademarks

FOCUSTM GC is a trademark of Thermo Fisher Scientific Inc., and its subsidiaries. Other brand and product names may be trademarks or registered trademarks of their respective companies.

Declaration

Manufacturer: Thermo Fisher Scientific

Thermo Fisher Scientific is the manufacturer of the instrument described in this manual and, as such, is responsible for the instrument safety, reliability and performance only if:

- installation
- re-calibration
- changes and repairs

have been carried out by authorized personnel and if:

- the local installation complies with local law regulations
- the instrument is used according to the instructions provided, and if its operation is only entrusted to qualified, trained personnel

Thermo Fisher Scientific is not liable for any damages derived from the noncompliance with the aforementioned recommendations.

Contents

About This Manual	ix
Overview	ix
Conventions Used in This Manual	x
Instrument Markings and Symbols	xii
Using the FOCUS GC Document Set	XV

SECTION I Site Preparation

Chapter 1

Laboratory Preparation	
Entrance	
Space and Load Requirements	
Power Requirements	
120 V ac Power Requirements	
230 V ac Power Requirements	
Power Quality	
Effects of Voltage Disturbances	
Wall Outlets	
Technical Assistance	
Operating Environment	
Temperature	
Cooling Requirements	
Oven Exhaust	
Altitude	
Humidity	
Particulate Matter	
Electrostatic Discharge	
Vibration	
Lighting	
Other Environmental Factors	
Exhaust System	
Gas and Plumbing Requirements	
Gas Purity	
Traps	
Purity Requirements	
Gas Regulators and Fittings	

Secondary Gas Regulators	
Gas Tanks	
Gas Lines	
Telephone	
Required Tools	
Supplemental Equipment	
Hardware and Software Minimum Requirements	
ChromQuest Data System	
Hardware Requirements	
Operating System Requirements	
Chrom-Card Data System	
Hardware Requirements	
Operating System Requirements	

Chapter 2

Instrument Arrival
Shipping Information
Origin
Destination
Receiving Instruments
Installation
Training

SECTION II Installation

Chapter 3

Before You Begin	47
Verify Site Preparation	
Unpacking the Instrument	
Gas Plumbing Basics	
How to Use a Tubing Cutter	
How to Use Teflon Tape on Pipe Threads	
How to Use Swagelok Tube Fittings	
How to Attach a Swagelok Tee or Cross	
5	

Chapter 4

Plumbing the Gas Supply to the GC	
Using Hydrogen	
Using the Hydrogen Sensor	
Building the Gas Lines	
Connecting the Gas Supplies	
Adding Traps to the Gas Supply	
Purging Gas Lines	
Connecting the Gas Supply to the GC	
Connection to the Inlet Manifold	
Connection to the Detector Manifold	
Connecting the Servo Air for the Gas Sampling Valve	
Testing for Leaks	
-	

Chapter 5

Getting Connected	
Mounting Peripheral Devices	
Connect the Data System Computer	
Connect the Autosampler Cable	67
Computing Integrators	
System Power Up	69

Appendix A

Preinstallation Checklist	7	1
---------------------------	---	---

Appendix B

Customer Communication	
How To Contact Us	
Reader Survey	74
Glossary	75
Index	81

Contents

About This Manual

Overview

The *Site Preparation and Installation Manual* will help you prepare for the arrival and installation of your FOCUS GC gas chromatograph. Following the procedures and guidelines in this manual will help the installation process go smoothly.

This manual is organized as follows:

Section I, *Site Preparation*, contains the information you need to prepare for the arrival of your FOCUS GC gas chromatograph system. In addition to laboratory and operating environment standards, this section contains information about the shipping and delivery of your FOCUS GC system.

Chapter 1, *Laboratory Preparation*, gives you all the information you need to prepare your laboratory for the arrival of your FOCUS GC system.

Chapter 2, *Instrument Arrival*, gives an overview of shipping and receiving procedures, installation, and training.

Section II, *Installation*, contains information to help you set up and install your FOCUS GC gas chromatograph.

Chapter 3, *Before You Begin...*, contains unpacking instructions and provides a brief tutorial of basic gas plumbing operations you must know before you can continue the installation process.

Chapter 4, *Plumbing the Gas Supply to the GC*, explains the proper gas supply connections and configuration information for your GC.

Chapter 5, *Getting Connected*, explains the FOCUS GC power connections, and helps you mount and configure peripheral devices and data systems.

Appendix A, *Preinstallation Checklist*, contains a step-by-step list of items you should complete before your FOCUS GC system arrives.

Appendix B, *Customer Communication*, contains contact information for Thermo Fisher Scientific offices worldwide. Use the *Reader Survey* in this section to give us feedback on this manual and help us improve the quality of our documentation.

The *Glossary* lists and defines terms used in this guide and the *Site Preparation Help File*. This includes are abbreviations, acronyms, metric prefixes, and symbols.

The *Index* contains an alphabetical list of key terms and topics in this guide with cross references and the corresponding page numbers.

Conventions Used in This Manual

The following symbols and typographical conventions are used throughout this manual.

Bold	Bold text indicates names of windows, menus, dialog boxes, buttons, and fields.
Italic	Italic text indicates cross references, first references to important terms defined in the glossary, and special emphasis.
Monospace	Monospace, or Courier, indicates filenames and filepaths, or text the user should enter with the keyboard.
Monospace Bold	Monospace Bold indicates messages or prompts displayed on the computer screen or on a digital display.
**	This symbol illustrates menu paths to select, such as File » Open
KEY NAME	Bold, uppercase sans serif font indicates the name of a key on a keyboard or keypad, such as ENTER .
	This symbol alerts you to an action or procedure that, if performed improperly, could damage the instrument.
	This symbol alerts you to important information related to the text in the previous paragraph.

This symbol alerts you to an action or procedure that, if performed improperly, could result in damage to the instrument or possible physical harm to the user. This symbol may be followed by icons indicating special precautions that should be taken to avoid injury.

This symbol indicates electric shock hazard.

This symbol indicates danger from hazardous chemicals.

This symbol indicates danger from high temperature surfaces or substances.

This symbol indicates a fire hazard.

This symbol indicates an explosion hazard.

This symbol indicates a toxic hazard.

This symbol indicates the presence of flammable materials.

This symbol indicates the presence of radioactive material.

This symbol indicates an operation or procedure that must NOT be performed by the user. A Thermo Fisher Scientific authorized Customer Support Engineer must perform this procedure.

This symbol indicates all metal objects, such as watches, jewels, etc., must be taken off.

This symbol indicates an eye hazard. Eye protection must be worn.

This symbol indicates the user must wear a protective screen when performing the procedure.

This symbol indicates the user must wear protective shoes when performing the procedure.

This symbol indicates the user must wear protective clothing when performing the procedure.

This symbol indicates the user must wear gloves when performing the procedure.

Instrument Markings and Symbols

The following table explains the symbols used on Thermo Fisher Scientific instruments. Only a few of them are used on the FOCUS GC gas chromatograph.

Symbol	Description
	Direct Current
\sim	Alternating Current
\langle	Both direct and alternating current
3~~	Three-phase alternating current

Symbol	Description
	Earth (ground) terminal
	Protective conductor terminal
	Frame or chassis terminal
\checkmark	Equipotentiality
	On (Supply)
\bigcirc	Off (Supply)
	Equipment protected throughout by DOUBLE INSULATION or REINFORCED INSULATION (Equivalent to Class II of IEC 536)
	Indicates that the user must refer to the manual for specific Warning or Caution information to avoid personal injury or damage to the product.
4	Caution, risk of electric shock
	Caution, hot surface
\bigwedge	Caution (refer to accompanying documents)
	In-position of a bistable push control

Symbol	Description
	Out-position of a bistable push control
	Symbol in compliance to the Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE) placed on the european market after August, 13, 2005.

Using the FOCUS GC Document Set

The FOCUS GC Document Set (CD-Rom PN 317 095 00) includes all manuals in electronic format, and serves as your library for information about the FOCUS GC hardware and software.

The FOCUS GC Document Set (PN 317 094 10) as paper copy is also available Furthermore, Thermo Fisher Scientific part numbers (PN) for the paper copy manuals are provided for each book title.

Site Preparation and Installation Manual (PN 317 094 11)

This manual and diskette describes how to set up a workspace for the FOCUS GC and how to connect the FOCUS GC to the gas supplies and peripheral devices.

Instruction Manual for FID (PN 317 094 12)

This manual provides descriptions of the FOCUS GC hardware and software and instructions for their use.

Spare Parts Catalog (PN 317 094 13) This catalog contains a list of spare parts for the FOCUS GC.

Site Preparation

The *Site Preparation* section contains the information you need to prepare for the arrival of your FOCUS GC gas chromatograph. In addition to laboratory and operating environment standards, this section contains information about the shipping and delivery of your FOCUS GC system.

Chapter 1, *Laboratory Preparation*, gives you all the information you need to prepare your laboratory for your FOCUS GC system.

Chapter 2, *Instrument Arrival*, gives an overview of shipping and receiving procedures, installation, and training.

Laboratory Preparation

This chapter gives you all the information you need to prepare your site for the arrival of your FOCUS GC system. It also includes a list of tools and supplies you need to install your gas chromatograph. The information in this chapter will help you plan, construct, and fully equip your laboratory. Your laboratory must meet the requirements for power, exhaust systems, and environmental conditions explained in this chapter before your gas chromatograph can be installed.

Your laboratory preparations should be completed *before* the FOCUS GC is unpacked. Complete any work that creates dust, high humidity, or corrosive vapors before you begin unpacking the instruments.

Chapter at a Glance...

Entrance	20
Space and Load Requirements	21
Power Requirements	23
Operating Environment	27
Exhaust System	
Gas and Plumbing Requirements	
Telephone	
Required Tools	
Supplemental Equipment	
Hardware and Software Minimum Requirements	

FOCUS GC systems operate reliably under controlled environment conditions. Operating or maintaining a system outside the specifications outlined in this guide may cause many different types of system failures. The repair of such failures is specifically excluded from the standard warranty and service contract coverage. Use this chapter to ensure that your site meets all the criteria of the *Preinstallation Checklist* in Appendix A.

In addition to the information in this chapter, you must also obey the building and safety rules and regulations for construction that apply in your area.

Entrance

The entrance to your facility and the width of all hallways, elevators, and doorways should be at least 92 cm (37 in.).¹ However, you should allow additional room for maneuvering the system around corners, into elevators, or through doorways.

The FOCUS GC and accessories are shipped in a container with the following dimensions:

l—92 cm (37 in.), *w*—76 cm (30 in.), *h*—88 cm (35 in.)

The container and its contents weigh approximately 65 kg (145 lbs). Other modules, such as the computer, monitor, and options, are shipped in their own containers. Their dimensions and weights are less than those of the FOCUS GC container.

^{1.} Your instrument is shipped in a container, the smallest dimension of which is 92 cm (37 in.). If the entrance to your laboratory will not accommodate a 92 cm (37 in.) container, you can remove the individual modules from the container before moving them into the room. If the instrument is removed from its shipping container before it is delivered to the lab site, be sure that all the contents of the container remain with the instrument.

Space and Load Requirements

We recommend the following space allowances for the area around the gas chromatograph:

- The working area should be at least 1.5 m (5 ft) wide.
- The working area should be 1.5 m (5 ft) deep. The depth includes a 75 cm (30 in.) bench for the gas chromatograph.
- The area behind the instrument should be a minimum of 30 cm (12 in.).

Provide enough space around the instrument for operators to work beside it and in front of it. Keep in mind that the GC oven vents to the rear. Any material exposed to the oven exhaust must withstand repeated exposure to temperatures of up to $350 \degree C$ (660 $\degree F$).

The space requirements and weights for the standard system components are given in Table 1-1. Similar information for FOCUS GC optional instruments is provided in Table 1-2.

The FOCUS GC system should be placed on a workbench that has minimum dimensions of $0.75 \times 2 \text{ m} (2.5 \times 6 \text{ ft.})$. The workbench must also be capable of supporting the weight of the data system computer or computing integrator, 27 kg (60 lb), plus the weight of any options. Be sure there is at least 16 cm (6 in.) of space behind the workbench for connections. In addition, there must be at least 92 cm (36 in.) of vertical clearance from the top of the FOCUS GC system. Therefore, you should avoid placing the instrument below cabinets or shelves.

To keep the data system computer or integrator close to the electrical connections, we recommend placing it on the right side of the GC.

Use Table 1-1 to determine the minimum space and weight requirements for a standard FOCUS GC system.

NOTE

	Height		Width		Depth		Mass	
Instrument	cm	in.	cm	in.	cm	in.	kgs	lbs
FOCUS GC gas chromatograph	44.8	18	35	14	60	23.6	30	66
computer	42	16.5	15.6	6.5	44.5	17.5	12	27
monitor	42	16.5	40	16	43	17	3	7
keyboard	2.5	1	47	18	18	7	1	2

Table 1-1. Minimum Space and Weight Requirements: FOCUS GC Standard System

The total load on the workbench is 75 kg (164 lbs).

Use Table 1-2 to determine the space and weight requirements for optional instruments for your FOCUS GC system.

	Height		Height Width		Depth		Mass	
Instrument	cm	in.	cm	in.	cm	in.	kgs	lbs
Autosamplers								
AI 3000 AutoInjector	40	16	23	9	25	10	6	13
AS 3000 Autosampler	40	16	40	16	25	10	6	13
TriPlus	66.7	26.3	87	34.3	77.3	30.4	25	56
TriPlus (extended version)	66.7	26.3	122	48	77.3	30.4	25	56
Printers								
inkjet printer/plotter	20	8	43	17	38	15	4	8
laser printer	29	12	42	17	41	16	20	44

Table 1-2. Space and Weight Requirements: FOCUS GC Optional Instruments

Other peripheral devices, such as purge and trap units, may be connected to the FOCUS GC. These peripheral devices may have additional bench space requirements. Consult your local Thermo Fisher Scientific Customer Support Engineer (CSE) for assistance.

Power Requirements

It is your responsibility to provide an acceptable source of power. You should provide a dedicated power line with a circuit breaker capable of withstanding the power ratings listed in the following sections.

120 V ac Power Requirements

For FOCUS GC systems installed in the US and other countries using 120 V ac power, the *minimum* power requirements are as follows:

- 120 V ac +6, -10%
- frequency of 50/60 Hz \pm 2 Hz; 1600 VA
- three duplex outlets (single-phase power) with a minimum power rating of 20 A at each duplex outlet
- earth ground hard-wired to the main panel

230 V ac Power Requirements

For FOCUS GC systems installed in countries using 230 V ac power, the *minimum* power requirements are as follows:

- $230 \text{ V} \text{ ac} \pm 10\%$
- frequency of $50/60 \text{ Hz} \pm 2 \text{ Hz}$; 1600 VA
- three duplex outlets, with a minimum power rating of 16 A at each duplex outlet
- earth ground hardwired to the main panel

Power Quality

The quality of power supplied to your FOCUS GC system must be stable and within the specifications listed in this guide. The line voltage must be free of fluctuation due to slow changes in the average voltage, surges, sags, transients, and harmonics.

The FOCUS GC system operates in an Overvoltage Category II environment, as defined in International Standard EN 61010.

Below are definitions for the most common voltage disturbances:

Slow average is a gradual, long-term change in average root mean square (RMS) voltage level, with typical durations greater than 2 s.

Sags and surges are sudden changes in average RMS voltage level, with typical durations between 50 μ s and 2 s.

Transients (or *impulses*) are brief voltage surges of up to several thousand volts, with durations of less than 50 μ s.

Harmonic distortion is a high-frequency disturbance that appears as distortion of the fundamental sine wave. Total harmonic distortion should be less than 3%.

Effects of Voltage Disturbances

Constant high line voltage or surges in voltage can cause overheating and component failures. Constant low line voltage or sags in voltage can cause the system to function erratically. Transients, even of a few microseconds duration, can cause electronic devices to fail catastrophically or to degrade, shortening their lives significantly. Harmonic distortion can cause noise in power supply lines and degrade the performance of the instrument. Therefore, it is important to establish the quality of the line power in your laboratory prior to the installation of your FOCUS GC system.

The interconnected power outlets for the FOCUS GC system require a common point to one ground connector. If there are two such points, with each connected to separate external grounds, noise current will flow through the ground system via the ground loop that is formed.

Wall Outlets

NOTE

The power cable from the FOCUS GC is approximately 3 m (9 ft) long.

Use an Uninterruptible Power Source (UPS) to protect your data system against possible loss due to power outages. At this time, we do not recommend using a UPS with the GC.

Most UPS systems are not designed to provide high-quality distortion-free power for scientific equipment.

The 120 V ac systems are fitted with U.S. standard National Electronics Manufacturers Association (NEMA) 5-20P power plugs. A NEMA 5-20P power plug and its corresponding outlet are rated at 20 A and 125 V ac.

The power cables from the personal computer, monitor, and printer are approximately 2 m (6 ft) long. The 120 V ac systems are fitted with NEMA 5-15P plugs. For optional instruments, the plug requirements may vary. Refer to your product's user manual for specifications.

Figure 1-1 shows the NEMA power plugs and outlets.

Figure 1-1. NEMA 5-20P and 5-15P Power Plugs and Outlets: 120 V ac

The 230 V ac systems are fitted with Shuco German-type power plugs. Plug requirements are dictated by country. Figure 1-2 shows the Shuco power plug and outlet.

Figure 1-2. Shuco 230 V ac Power Plugs and Outlets

ION You should never connect the FOCUS GC and its peripheral devices to the same electrical wall outlet. You will run the risk of overloading the circuit.

Tables 1-3 and 1-4 show maximum current requirements for the FOCUS GC system and optional instruments.

Instrument	120 V Current Requirement (in amperes)	230 V Current Requirement (in amperes)
FOCUS GC	20	10
computer	4	2
monitor	2	1
Total	26	13

Table 1-3. Maximum Current Requirements for the FOCUS GC Standard System

Table 1-4. Maximum Current Requirements for FOCUS GC Optional Instruments

Instrument	120 V Current Requirement (in amperes)	230 V Current Requirement (in amperes)
GC Autosamplers		
AI/AS 3000	0.6	0.3
TriPlus	2	1
Printers		
ink jet printer/plotter	1.8	0.9
laser printer	7	3.5

Other peripheral devices, such as purge and trap units, may be connected to the FOCUS GC. These peripheral devices may have additional power requirements. Consult your local Thermo Fisher Scientific CSE for assistance.

Technical Assistance

Occasionally, unacceptable quality in line power sources may adversely affect the operation of a FOCUS GC system. It is the user's responsibility to correct line voltage problems.

Specifying power conditioning equipment is a complex task that is best handled by a company or consultant specializing in that field.

Contact your Thermo Fisher Scientific CSE for assistance in locating a power consultant. Refer to Appendix B *Customer Communication* for a Thermo Fisher Scientific office in your area.

Operating Environment

The operating environment in your laboratory is affected by such factors as temperature, humidity, particulate matter, and electrostatic discharge. It is your responsibility to provide an acceptable operating environment for your FOCUS GC system.

Attention to the operating environment will ensure continued high performance of your gas chromatograph.

Temperature

The room temperature must be maintained between 18 and 35 $^{\circ}$ C (65 and 95 $^{\circ}$ F), and should remain consistent. As the laboratory temperature increases, system reliability decreases.

All electronic components generate heat while operating. This heat must be dissipated to the surrounding air for the components to operate reliably.

Cooling Requirements

There must be a good flow of air around the system, and the air conditioning must be capable of maintaining a constant temperature (within the operational limits). Any costs for air conditioning are more than offset by good sample throughput and reduced repair costs.

ON Do not directly expose the GC system to any cooling duct outlets.

The air conditioning load for a basic FOCUS GC system is approximately 400 W (3866 Btu h⁻¹). Table 1-5 and Table 1-6 show the approximate heat output for a FOCUS GC standard system and FOCUS GC optional instruments.

Instrument	Heat Output (in BTU h ⁻¹)
FOCUS GC	1366
computer	1650
monitor	850
Total	3866

Table 1-5. Heat Output: FOCUS GC Standard System

Table 1-6. Heat Output:	FOCUS GC C	Optional Instruments
-------------------------	------------	----------------------

Instrument	Heat Output (in BTU h ^{−1})
GC Autosamplers	
AI/AS 3000	341.5
TriPlus	752
Printers	
ink jet printer/plotter	200
laser printer	2900

Other peripheral devices, such as purge and trap units, may be connected to the FOCUS GC . These peripheral devices may have additional cooling requirements. Consult your local Thermo Fisher Scientific CSE for assistance.

Oven Exhaust

The GC oven exhaust vents are in the rear of the instrument. Hot air $(350 \ ^\circ\text{C} \ [660 \ ^\circ\text{F}])$ exits through these vents during GC operation. As stated under *Space and Load Requirements* in this chapter, there should be at least 30 cm (12 in.) free space behind the instrument to allow the exhaust to dissipate. Any material exposed to the oven exhaust must be able to withstand repeated exposure to temperatures of up to 350 \ ^\circ\text{C} (660 \ ^\circ\text{F}).

WARNING! Oven exhaust can cause severe burns. Avoid working behind the instrument when the oven vents during cooling-down cycles. Do not expose gas tanks or bottles, chemicals, regulators, electrical cords, or other temperature-sensitive items to oven exhaust.

Altitude

The maximum operating altitude for the FOCUS GC is 2,000 meters above sea level.

Humidity

The relative humidity of the operating environment must be between 5 and 95% with no condensation.

Operating your FOCUS GC system in low humidity will cause the accumulation and discharge of static electricity, which shortens the life of electronic components. Operating your GC system in high humidity causes condensation, which can lead to short circuits. High humidity also blocks traps on cooling fans.

We recommended you equip your laboratory with temperature and humidity monitors to ensure your laboratory is always within the required temperature and humidity specifications.

Particulate Matter

The air in your laboratory must not have excessive dust, smoke, or other particulate matter. The air should contain fewer than 1,000,000 particles per cubic meter (100,000 particles per cubic foot) larger than 5 μ m.

Dust can clog the air traps causing a reduction in air flow around electronic components. Dust will also form a layer on electronic components that will act as an insulating blanket, reducing the transfer of heat from the components to the surrounding air.

Electrostatic Discharge

The FOCUS GC, with all its covers in place, is not susceptible to static discharge. However, laboratory conditions that expose instrumentation and laboratory personnel to repeated high levels of static discharge should be considered a safety hazard.

Therefore, we recommend you take the following precautions, especially if you are operating your system at the lower end of the relative humidity specification listed above.

- Use a static-dissipating floor covering (such as tile or conductive linoleum) in the room housing your instrument.
- Use laboratory chairs covered with natural fibers or other static-dissipating material.
- Wear laboratory coats and clothing made from natural fibers or other staticdissipating material.
- Do not place polystyrene (foam) cups or packing materials on the instrument.

Vibration

Place your instruments on surfaces that are free of vibration. Be aware of vibrations caused by equipment in adjoining locations.

Lighting

Overhead lighting is recommended to light your work area.

Other Environmental Factors

The FOCUS GC operates in an environment where normally only non-conductive pollution occurs, but in which temporary conductivity due to condensation must be expected. This is a Pollution Degree 2 environment, as specified in International Standard EN 61010.

Exhaust System

Laboratories meeting the heating and cooling requirements specified in this manual will sufficiently circulate lab air to prevent accumulation of gases and fumes vented during normal GC use. Extensive leaks in plumbing lines to the GC may present hazards. Be sure to follow all local codes regulating plumbing of gases.

Gas and Plumbing Requirements

You must provide the gas supplies for your gas chromatograph. Be sure to order your gases and regulators far enough ahead of time to have them ready for the GC installation process.

WARNING! All Thermo Fisher Scientific gas chromatographs are designed to use an inert gas as the carrier gas. If you wish to use hydrogen as a carrier gas, you must install a hydrogen sensor. Contact a Thermo Fisher Scientific sales representative if you plan to use hydrogen as the carrier gas in your new FOCUS GC. If you don't have the hydrogen sensor, you must use an inert carrier gas.

Table 1-7 lists the gas recommendations for capillary columns.

Detector Type	Carrier Gases	Fuel Gases	Make-Up Gas
FID	Helium Nitrogen Hydrogen	Hydrogen + Air	Helium Nitrogen
TCD	Helium Nitrogen Hydrogen Argon	None	Same as carrier

Table 1-7. Capillary and Wide-Bore Column Gas Recommendations

Table 1-8 lists the gas recommendations for packed columns.

Table 1-8.	Packed	Column	Gas	Recommendations
------------	--------	--------	-----	-----------------

Detector Type	Carrier Gases	Fuel Gases	Make-Up Gas
TCD	Helium Nitrogen Hydrogen Argon	None	Not Required

Gas Purity

If possible, you should use only instrument or chromatographic purity grade gases in your FOCUS GC.

Traps

UHP (Ultra-High Purity) gases should not contain impurities above 1 ppm. Impurities below 1 ppm generally do not require purification. Gases with higher impurity levels may require oxygen and hydrocarbon traps. A number of GC supply and accessory companies carry a variety of traps for gases.

See Figure 4-2, *Gas Trap Order*, on page 57, for the correct trap installation sequence. For more information on gas purification, contact your local Thermo Fisher Scientific CSE.

Moisture Traps

Water in the carrier or fuel gas may damage the gas chromatograph column and contaminate the FOCUS GC system. Water content should be less than 1 ppm in all cases. If you are using multiple traps, install the moisture trap closest the gas supply, before the hydrocarbon and the oxygen trap.

Hydrocarbon Traps

Hydrocarbon traps remove organic materials from gases. If you are using multiple traps, install the hydrocarbon trap after the moisture trap, but before the oxygen trap.

Oxygen Traps

Oxygen content in the carrier and gas lines should be less than 1 ppm. To achieve a level of oxygen of less than 1 ppm, install an oxygen-removing trap in the carrier gas line between the gas tank and the GC. If you are using multiple traps, the oxygen trap should be the last trap in the series.

Purity Requirements

The following sections describe the minimum requirements for gases used in your gas chromatograph system. Always consider using UHP 99.999% pure gases when available.

Helium

For carrier gas: $99.995\%^1$ high purity, with less than 1.0 ppm each of water, oxygen, and total hydrocarbons after purification. One full-size tank that has an outlet pressure of 400–700 kPa (60–100 psi). Use a regulator with a CGA 580 connection or equivalent. Use water, oxygen, and hydrocarbon traps.

Hydrogen

For carrier or detector fuel gas: $99.995\%^{1}$ high purity, with less than 1.0 ppm of total hydrocarbons after purification. One full-size tank that has an outlet pressure of 400–700 kPa (60–100 psi). Use a regulator with a CGA 350 connection or equivalent. Use water, oxygen and hydrocarbon traps.

Air

For detector fuel gas: 99.995%¹ high purity. Use a regulator with a CGA 0590 connection or equivalent. Air compressors are not acceptable because they do not meet pressure, water, and hydrocarbon requirements.

Nitrogen

For carrier or make-up gas: 99.995% high purity, with less than 1.0 ppm of total hydrocarbons after purification. Use a regulator with a CGA 0580 connection or equivalent.

Argon

For carrier or make-up gas: 99.995%¹ high purity. Use a regulator with a CGA 350 connection or equivalent.

Gas Regulators and Fittings

Gas tanks may be equipped with either single- or dual-stage regulators that contain stainless steel diaphragms. The regulator output pressure should be adjustable from 300 to 700 kPa (45–100 psi). Each regulator should be equipped with a 1/8-in. Swagelok compression fitting, or equivalent. Figure 1-3 shows a dual-stage gas regulator with 1/8-in. fittings.

^{1. 99.995%} gas requires the use of appropriate traps.

Figure 1-3. Dual-Stage Gas Regulator

Verify with your gas supplier the type of CGA fitting on the gas bottles you order. Be sure these fittings match the regulators described in *Purity Requirements* in this chapter. If not, contact your gas supplier or your area Thermo Fisher Scientific sales representative to make the appropriate changes.

Secondary Gas Regulators

Because secondary regulation of carrier, fuel, and make-up gases may be provided downstream of the cylinder regulator, a single- or dual-stage regulator is acceptable, but it must use a stainless steel diaphragm.

Gas Tanks

Gas tanks should be placed where they cannot damage cables or gas lines. Use standard safety practices for securing gas tanks and bottles. Gas supply lines should terminate with 1/8-in. female Swagelok connectors.

Stored gases should be placed in an area where a wide temperature variation will not occur. Don't forget to plan for gas cylinder storage when preparing your laboratory.

Gas Lines

Gas lines should:

- be refrigeration grade, precleaned copper or new stainless steel
- be 1/8-in. or 1/4-in. diameter (gas lines longer than 3 m [10 ft] and supplying more than one GC should be 1/4-in.)
- be free of oil
- be free of moisture
- run to the back or side of the FOCUS GC system
- be spliced with Swagelok fittings

Precleaned tubing

Properly cleaned tubing is solvent-flushed and purge-dried with an inert gas, such as nitrogen or helium. Flush gas lines using acetone or hexane. Never use a chlorinated solvent. When flushing gas lines, collect the solvent passing through the gas line and inspect it for discoloration or residue. Continue to flush gas lines until all waste solvent is free of discoloration and residue. Purge the gas line for several minutes to make sure the gas line is free of all FOCUS GCs of solvent.

DO NOT...

- use any tubing other than new, clean metal tubing of the specified size
- allow any brazed or soldered plumbing joints to be made in the gas delivery system without precleaning
- allow pipe-threaded joints without PTFE tape as a sealant (no other thread sealant is acceptable)
- use PTFE tape on compression fitting joints (Swagelok fittings, or equivalent)
- mix components of one fitting brand with those of another brand (for example, Swagelok ferrules with Tylok body, etc.)
Telephone

We recommended you install a telephone near the instrument so, if necessary, you can conveniently operate the system while speaking with Thermo Fisher Scientific Technical Support. (Refer to Appendix B, *Customer Communication*, for a list of Thermo Fisher Scientific offices worldwide.) The telephone line should accept digital transmissions for direct connection to the FOCUS GC. The telephone outlet should be within 2 m (6 ft) of your system.

Required Tools

The following tools are required for the installation and maintenance of your FOCUS GC system. Some of them are supplied with the instrument.

- two 16 X 17 mm open-ended wrenches
- two 12 X 14 mm open-ended wrenches
- two 8 X 10 mm open-ended wrenches
- two 7 X 6 mm open-ended wrenches
- two 7/16 X 3/8-in. open-ended wrenches
- #1 and #2 cross-recessed (Phillips[®]) screwdrivers
- small and large common screwdrivers
- wire strippers
- 6-in. adjustable (Crescent[®]) wrench
- elbow (Channelok[®]) pliers
- a pen light
- steel rule tape
- Teflon[®] tape
- tweezers
- 12-in. adjustable (Crescent[®]) wrench
- 1/8-in. tubing cutter

- gas flow meter (Thermo Scientific GFM Pro Flowmeter, or equivalent)
- Allen wrench set including 1.5 mm, 2 mm, 2.5 mm, 3 mm, 4 mm, 5 mm, and 6 mm wrenches

Supplemental Equipment

The following items are supplemental equipment necessary for the installation of your FOCUS GC system. Some of them are supplied with the instrument.

- carrier gas (refer to *Gas and Plumbing Requirements* on page 32 for information about the carrier gas requirements for your gas chromatograph)
- detector gas (refer to *Gas and Plumbing Requirements* on page 32 for the detector gas requirements for your gas chromatograph)
- dual-stage gas cylinder pressure regulators with an output pressure range of 0-700 kPa (0-100 psi), stainless steel diaphragms, and a 1/8-in. Swagelok terminate nut
- sample syringe (5 or 10 µl)
- columns (a 7 m test column is supplied with each GC)
- tubing and fittings for carrier and detector gases (refer to *Gas Tanks* on page 35 for the tubing and fitting requirements for your gas chromatograph)
- spare septa
- column ferrules
- Swagelok[®] fittings
- leak detector (Thermo Scientific GLD Pro, or equivalent, or 50/50 IPA/water solution)
- data system or integrator (refer to *Hardware and Software Minimum Requirements* on page 39 for the data system requirements)

() NOTE

It is the responsibility of the customer to replace any consumables used during installation.

Hardware and Software Minimum Requirements

Your FOCUS GC produces analog and digital data output when you perform chromatographic analysis. A computer with a data system or a computing integrator can be used to process the data from the GC. The following topics provide the minimum requirements for computer hardware and operating systems depending on the data system you use to process the GC data.

ChromQuest Data System

The ChromQuest data system has the following minimum computer requirements.

Hardware Requirements

- 133 MHz Pentium processor
- 48 MB RAM
- 1 GB hard drive
- CD ROM
- mouse (serial port)

Computer compatibility should not be assumed. The computer may not be included with the FOCUS GC ChromQuest data system.

Operating System Requirements

• Windows 2000/XP

Chrom-Card Data System

The Chrom-Card data system has the following minimum computer requirements.

Hardware Requirements

- 133 MHz Pentium processor
- 24 MB of RAM
- 1 GB hard drive
- CD ROM

Operating System Requirements

• Windows 2000/XP

Instrument Arrival

This chapter gives an overview of shipping and receiving procedures, installation, and training. The information in this chapter will give you an idea of what to expect when your FOCUS GC system arrives.

Telephone and fax numbers for the Thermo Fisher Scientific offices are listed in Appendix B, *Customer Communication*.

Chapter at a Glance...

Shipping Information	41
Installation	
Training	44

Shipping Information

Instruments are shipped in the manner agreed upon at the time of sale. There are two categories of shipping: *Origin* (FOB) and *Destination* (FOB, CIP, or CIF).

Origin

For instruments shipped Ex-Works, also known as FOB (Free On Board) Origin, damages incurred in shipment are the responsibility of the purchaser and the carrier. However, Thermo Fisher Scientific will assist with filing claims and (billable) repairs, if necessary.

Destination

There are two types of Destination shipping: CIP (Carriage and Insurance Paid to) Destination and CIF (Carriage Insurance and Freight paid to) Destination. These are also known as FOB Destination. For all types of Destination shipping, Thermo Fisher Scientific will file claims against the carrier for any damages incurred in shipment. Note, however, that Thermo Fisher Scientific will not accept liability for damage not recorded on the receiving documents.

Receiving Instruments

Thermo Fisher Scientific instruments are shipped by electronic equipment carriers who specialize in the handling of delicate equipment. Occasionally, however, equipment inadvertently gets damaged in transit.

Please take the following precautions when receiving the instruments:

- Check carefully for obvious damage or evidence of rough handling, including triggering of Shockwatch[®] and Tiltwatch[™] labels.
- If external damage is apparent, note this fact on all copies of the receiving documents, and describe briefly the extent of the damage. The driver should sign (or initial) next to your comments to signify agreement with your observations. It may be necessary to photograph damaged areas for claims purposes. Contact the appropriate Thermo Fisher Scientific office to report the damage.
- Move the cartons to a protected location, preferably to the installation site.
- Leave the boxes as complete as possible, and do not unpack the components unless absolutely necessary.

The Customer Support Engineer (CSE) will also check for damage and verify the completeness of shipment. This will protect you in the event of missing or damaged components.

Freight insurance requires that obvious damage be noted on the receiving documents.

Installation

If you have purchased the installation option, you must submit a completed Preinstallation Checklist (*Appendix A*) to us before a Thermo Fisher Scientific CSE will install your system.

The CSE will unpack and completely install the system, including optional instruments. The CSE will also initialize settings, verify that the system is operating according to specifications, and familiarize you with the system. Contact your local Thermo Fisher Scientific office for details.

If you have not purchased the installation option, refer to Section II, *Installation*, for installation instructions.

Training

Valuable training on Thermo Fisher Scientific instruments and software is offered worldwide.

Experience has shown that maximum value can be derived from a scientific instrument if there is one person who has a major responsibility for the instrument.

We recommend that you designate a key operator to manage the operation and maintenance of the FOCUS GC system. We also recommend that the key operator receive training at your site, or at one of the local Thermo Fisher Scientific offices.

For information on courses or enrollment, contact your local Thermo Fisher Scientific office:

Thermo Fisher Scientific S.p.A.

Strada Rivoltana km 4 20090 Rodano (MI) ITALY 39 02 95059 355

SECTION

Installation

If you have purchased the installation option for your system, a Thermo Fisher Scientific authorized CSE (Customer Support Engineer) will install your system. If you have not purchased the installation option, this section will help you set up your FOCUS GC. Included in this section are basic installation procedures you will need to be familiar with before you can install the GC.

Chapter 3, *Before You Begin...*, contains unpacking instructions and provides a brief tutorial of basic gas plumbing operations you must know before you can continue the installation process.

Chapter 4, *Plumbing the Gas Supply to the GC*, explains the proper gas supply connections and configuration for your GC.

Chapter 5, *Getting Connected*, explains the FOCUS GC power connections and helps you mount and configure peripheral devices and data systems.

Before You Begin...

This chapter contains unpacking instructions and a brief tutorial of basic gas plumbing operations you must know before you can continue the installation process.

Chapter at a Glance...

Verify Site Preparation	47
Unpacking the Instrument	47
Gas Plumbing Basics	

Verify Site Preparation

Before the FOCUS GC system can be installed, your laboratory must be in compliance with the guidelines and requirements in the *Site Preparation* section of this manual.

Use the *Preinstallation Checklist* in Appendix A to verify your laboratory conditions conform to the guidelines in Chapter 1, *Laboratory Preparation*, before you unpack your GC and begin the installation process.

Unpacking the Instrument

You should have already inspected the exterior of the shipping container for damage as described in Chapter 2, *Instrument Arrival*. Carefully unpack the instrument and do the following:

1. Check the contents of each box or crate against the packing list to verify the shipment is complete.

- 2. Inspect each item for damage.
 - If equipment is damaged, keep boxes and their equipment in their existing condition and immediately notify the carrier.
 - Submit a damage claim directly to the carrier, and send a copy (including any shortage claims) to your authorized Thermo Fisher Scientific sales representative.
 - Do not return any equipment to the dealer or the factory without prior factory authorization.
- 3. Place the FOCUS GC on your bench, allowing space to the rear of the instrument for venting.

WARNING! The FOCUS GC weighs 30 kg (70 lbs). Two people should lift the instrument onto the benchtop.

You should already have configured your laboratory according to the space requirements in Chapter 1, *Laboratory Preparation*, and the gas and power supplies should be accessible.

Remove all protecting bags (if any) from the detector cell.

Optional equipment should be placed near the GC so you can connect it easily. After placing the FOCUS GC on the bench, open the oven door and remove any packing material or other debris.

Before continuing with the installation, you should determine the following:

- the type of detector installed on the GC
- the type of injector port installed on the GC
- the type of carrier gas required for the detector
- the type of makeup gas required for the detector

Refer to *Gas and Plumbing Requirements* in Chapter 1, *Laboratory Preparation*, for a list of detector and injector gas requirements.

Gas Plumbing Basics

In order to perform the procedures in this section properly, you must first have a working knowledge of a few basic gas plumbing operations. During the gas plumbing process, you will frequently perform the operations explained in the following sections.

How to Use a Tubing Cutter

Use the following procedure to cut your gas supply tubing properly.

- 1. Attach the tubing cutter where you want to cut the tubing, and tighten the knob.
- 2. Rotate the cutter around the tubing and tighten the knob. Continue rotating and tightening the knob until you deeply score the tubing.
- 3. Remove the cutter, and snap the tubing in two.

How to Use Teflon Tape on Pipe Threads

To ensure an inert seal around all tank and regulator pipe fittings, use the following procedure:

- 1. Wrap the tape around the pipe threads in a clockwise direction about three times. You should be able to tear the tape easily to separate it from the roll.
- 2. Make sure the tape does not extend past the threads or obstruct the pipe opening.
- 3. Make sure the tape does not twist or bunch up when you connect the pipe.

Do not use Teflon tape on Swagelok type compression fittings.

How to Use Swagelok Tube Fittings

The Swagelok fitting consists of four components: a Swagelok nut, a back ferrule, a front ferrule, and an inlet body. It becomes a five-piece connection when affixed to the tubing. The two ferrules merge when the nut is tightened, forming a safe and leak-free seal between the tubing and body.

Use the following procedure to connect tubing using Swagelok fittings:

- 1. Place a Swagelok nut over the end of the tubing.
- 2. Place a back ferrule over the end of the tubing.
- Place a front ferrule over the end of the tubing. If you are using tubing smaller than 1/8-in., make sure the tubing extends only 5 mm past the front ferrule. This will prevent damage to the fritted filter inside the inlet manifold. Figure 3-1 shows the proper assembly order.

Figure 3-1. Swagelok Ferrule and Nut Assembly

- 4. Push the Swagelok nut over the ferrules.
- 5. Insert the tubing into the inlet body as far as it will go. If you are using tubing smaller than 1/8-in, make sure the tubing extends only 5 mm past the front ferrule when you insert it into the inlet body.

6. Slide the nut over the inlet body, as shown in Figure 3-2, and tighten until finger-tight.

Figure 3-2. Swagelok and Inlet Connection

7. While holding the inlet body tightly with a backup wrench, tighten the nut about a 3/4 turn past finger-tight, as shown in Figure 3-3.

Figure 3-3. Tightening Swagelok Fittings

You can mark the nut before tightening. This will help you confirm that you have turned the nut a 3/4 turn.

How to Attach a Swagelok Tee or Cross

To use a single gas source for more than one inlet or detector module, use a Swagelok tee or cross to split the gas flow. Use the following procedure to connect a Swagelok tee or cross:

- 1. Use a tubing cutter to cut gas supply tubing where you want to install the tee or cross.
- 2. Connect the tubing to the tee or cross with a Swagelok fitting, as described in *How to Use Swagelok Tube Fittings* on page 50.
- 3. Measure the distance from the tee or cross to the inlets or detectors, and cut tubing in the appropriate lengths.
- 4. Connect the tubing to the tee or cross ends with Swagelok fittings.
- 5. Install Swagelok caps on any open ends of the tee or cross that you do not plan to connect with tubing.

Plumbing the Gas Supply to the GC

This chapter explains the proper gas supply connections and configuration information for your GC. Use the information in this chapter to connect your inlet and detector gas supplies.

Chapter at a Glance...

Using Hydrogen	
Connecting the Gas Supplies	
Adding Traps to the Gas Supply	
Purging Gas Lines	
Connecting the Gas Supply to the GC	
Connecting the Servo Air for the Gas Sampling Valve	63
Testing for Leaks	64

Before you begin plumbing gas to the GC, locate the main power cable and position it near the appropriate outlet. **Do not plug in the power cable at this time.** Follow the procedures in this section to build your gas supply lines for carrier, make-up, and detector gases.

DO NOT loosen or remove caps from the GC until you have purged your gas lines and are ready to connect them. Loosening or removing caps early will contaminate instruments and filters.

WARNING! Hydrogen is a dangerous gas that, when mixed with air, may create an explosive mixture. The use of hydrogen as a carrier gas requires the operator's extreme caution. Special precautions must be taken because of the risk of explosion. The gas chromatograph must be equipped with a hydrogen sensor if you use hydrogen as a carrier gas. Refer to *Using Hydrogen* on page 54 for more information.

Using Hydrogen

The use of hydrogen as a carrier gas or as fuel for certain flame detectors requires the operator's strict attention and compliance with special precautions due to the hazards involved.

Hydrogen is a dangerous gas, particularly in an enclosed area when it reaches a concentration corresponding to its lower explosion level (4% in volume). When mixed with air it can create an explosive mixture. An explosion hazard could develop in the GC oven when hydrogen is used as a carrier gas if oven elements are not perfectly connected to each other, or if the connection materials are worn out, broken, or otherwise faulty.

Use the following safety precautions when using hydrogen:

- Ensure that all hydrogen cylinders comply with the safety requirements for proper use and storage. Hydrogen cylinders and delivery systems must couply with local regulations.
- Make sure the gas supply is turned completely off when connecting hydrogen lines.
- Perform a *bubble test* to ensure that the hydrogen lines are leak-tight before using the instrument. Perform this test after the pressure test described in the *Testing for Leaks* portion of this chapter. Repeat this test to eliminate all leaks.
- Ensure your GC column oven has a Thermo Fisher Scientific hydrogen sensor. A hydrogen sensor continuously monitors the hydrogen level in the GC column oven.

If your GC oven does not have a hydrogen sensor already installed, contact your Thermo Fisher Scientific sales representative. To comply with

instrument safety requirements, a Thermo Fisher Scientific CSE or authorized service technician should install the sensor.

If you plan to use a sensor other than the recommended Thermo Fisher Scientific sensor, you must verify its ability to perform the functions listed above before installing it. It must comply with your local safety regulations, or with the IEC 61010^{1} regulations if local regulations do not exist.

Using the Hydrogen Sensor

The lower limit of the hydrogen sensor is 0.5% in volume. You should adjust the detection threshold to 1% in volume, which is 25% of the hydrogen lower limit of explosion (4% in volume).

In cases where the connections begin to leak or the column breaks, the sensor alerts the operator. Then it automatically cuts off the gas supply and heating to the active zones, and sweeps the column oven with forced air ventilation.

If the sensor detects anomalies or leaks during GC operation due to instrument malfunction, the operator must immediately:

- close the hydrogen supply
- switch off the gas chromatograph
- air out the room

The reliability of the sensor depends on careful maintenance. After the sensor is in use, you must periodically check its operating performance and calibration as recommended by the manufacturer. Refer to your hydrogen sensor's instruction manual for maintenance guidelines.

WARNING! Never use hydrogen in your FOCUS GC system unless your GC oven has a hydrogen sensor installed.

Thermo Fisher Scientific CSEs are not authorized to install or repair any instrument using hydrogen as a carrier gas unless the instrument is equipped with the appropriate sensor.

NOTE

^{1.} IEC 1010-1, First Edition, September 1990; IEC 1010-1, Amendment 1, September 1992; IEC 1010-1, Amendment 2, June 1995.

Building the Gas Lines

Building the gas supply lines to the GC includes connecting the gas lines to the gas supply control valves and adding any traps or filters to the line.

An example of plumbing layout is shown in Figure 4-1.

Figure 4-1. Example of Plumbing Layout

Connecting the Gas Supplies

To properly connect the gas lines to the gas supplies panel board, you will need the following materials:

- 1/8-in. copper tubing
- a tubing cutter
- 1/8-in. Swagelok nuts, and front and back ferrules
- two 7/16-in. X 3/8-in. open-ended wrenches
- Teflon[®] tape

WARNING! Handle and secure all gases according to local safety regulations.

Use the following procedure to connect tubing to the gas supply control valves:

- 1. Make sure the initial supply valves (on cylinders or panel board) are turned off.
- 2. Determine the length of tubing you need. Use only enough tubing to connect the instrument to the gas supplies, but allow enough slack to allow the GC to be moved at least 40 cm (16 in.) from other equipment. This allows enough room to perform column connections and system maintenance. Also, be sure to account for tee connections.
- 3. Use a tubing cutter to cut the tubing.
- 4. Use a Swagelok tube fitting to attach the tubing to the gas outlet. Refer to *How to Use Swagelok Tube Fittings* in Chapter 3, *Before You Begin...*, for instructions on using Swagelok fittings.

Adding Traps to the Gas Supply

You may wish to use traps, such as moisture or oxygen traps, in your gas supply line. Traps are especially necessary if you are unsure of the purity of your gas supplies. Refer to *Gas and Plumbing Requirements* in Chapter 1, *Laboratory Preparation*, for more information about gas purity requirements and appropriate traps for your GC. Figure 4-2 shows the proper order of traps in a gas supply line. Refer to your trap's instruction manual for specific purging and installation requirements.

Figure 4-2. Gas Trap Order

Use the following procedure to attach traps to your gas line:

- 1. Determine the location for the trap in your supply line. Figure 4-2 shows the recommended trap order.
- 2. Use a tubing cutter to cut the tubing to the desired length.
- 3. Turn the gas regulator supply handle counterclockwise to reduce line pressure, then turn the gas supply on and increase the pressure to 35 kPa (5 psi) for about 15 seconds to purge the line of any unwanted debris.
- 4. Turn the gas supply off.
- 5. Use a 1/8" Swagelok fitting to connect the trap inlet to the gas supply tubing coming from the tank.
- 6. Turn the gas supply on to 35 kPa (5 psi) for about 30 seconds.
- 7. Turn the gas supply off.
- 8. Connect tubing to the trap outlet with a 1/8" Swagelok fitting.

Follow this procedure for all traps you wish to add to your gas supply line.

Purging Gas Lines

You must purge the lines any time you make a cut in the tubing during the gas line assembly process. This will clear them of any debris from the cut. You will also need to purge the completely assembled gas lines, including any traps you plan to use, before you connect the your gas supply to the FOCUS GC.

Use the following procedure to purge the gas lines:

- 1. Turn the gas supply on, and set the pressure to 35 kPa (5 psi).
- 2. Allow the line to purge for 10 minutes.
- 3. Turn off the gas supply.

Connecting the Gas Supply to the GC

The gas supply connections to the GC are schematically shown in Figure 4-3.

Figure 4-3. Inlet Manifold and Detector Manifold Gas Supply Connections

Connection to the Inlet Manifold

By now you should have done the following:

- completely built your gas line from your gas supply, including any traps, tees, and extra tubing to allow about 40 cm (16 in.) of slack in the line
- purged the gas line after every tube cut to remove any debris or contaminants

Use the following procedure to connect the gas line to the GC inlet manifold:

- 1. Make sure the gas supply is turned off.
- 2. Connect the gas line to the carrier gas inlet with 1/8-in. Swagelok fittings.

If the GC has been furnished with a 2x1 mm tube, use the ferrule for 2x1mm/1/8-in provided in the start-up kit.

Repeat the process if you are connecting the carrier gas supply to more than one inlet. Be sure to finish all inlet connections before turning on the gas supply.

Connection to the Detector Manifold

Before you connect the detector gas line you should have done the following:

- built and connected the gas supply lines for your inlet gas supply, as described in *Building the Gas Lines* in this chapter.
- completely built your detector gas line from your gas supply, including any traps, tees, and extra tubing to allow about 40 cm (16 in.) of slack in the line, as described in *Building the Gas Lines* in this chapter.
- purged the gas line to remove any debris or contaminants, as described in *Purging Gas Lines* in this chapter.

Use the following procedure to connect the gas line to the detector manifold:

- 1. Make sure the gas supply is turned off.
- 2. Connect each detector gas line to the appropriate detector gas bulkhead with 1/8-in. Swagelok fittings.

NOTE If the GC has been furnished with a 2x1 mm tube, use the ferrule for 2x1mm/1/8-in

Maximum input pressure to FOCUS GC (from supply gas lines) is 1000 kPa (145 psi).

Note for FID

The FID requires hydrogen and air as fuel gas and nitrogen as make-up gas. The adjustment of the detector gases flow is done in factory prior shipment.

Gas	Flow
Hydrogen (fuel gas)	35 mL/min
Air (fuel gas)	350 mL/min
Nitrogen (make-up gas)	30 mL/min

Verify that the corresponding gases flows are correct. If not, adjust the value turning the relevant regulation screw as shown in Figure 4-4.

Figure 4-4. FID-External Detector Gases Flow Regulation

The flow is measured at the exit of the detector base body. Enter the FID detector control menu to turn the flow on/off.

Note for TCD

The TCD detector requires the same gas whether for the measure channel (carrier and make-up gas, when necessary) and the reference channel (reference gas)

Helium is the recommended carrier gas due to its high thermal conductivity and chemical inertness.

The adjustment of the detector gases flow is done in factory prior shipment.

Gas	Flow
Helium (make-up gas)	27 mL/min
Helium (reference gas)	30 mL/min

Verify that the corresponding gases flows are correct. If not adjust the value turning the relevant regulation screw as shown in Figure 4-5.

Figure 4-5. TCD Detector Gases Flow Regulation

The flow is measured at the exit of the detector. Enter the TCD detector control menu to turn the flow on/off.

Connecting the Servo Air for the Gas Sampling Valve

The connection of the servo air supply for the gas sampling valve is schematically shown in Figure 4-6.

Figure 4-6. Gas Sampling Valve Servo Air Connection

Use the following procedure to connect the servo air to the GC inlet manifold when the GC is equipped with the gas sampling valve.

- 1. Make sure the air supply is turned off.
- 2. Connect the air line to the Servo air inlet with 1/8-in. Swagelok fittings.

If the GC has been furnished with a 2x1 mm tube, use the ferrule for 2x1mm/1/8-in provided in the start-up kit.

WARNING! Pressure of the servo air supply line should be set to a maximum of 500 kPa (72 psi).

Testing for Leaks

Once you have connected the gas supply to the GC inlet you need to test the supply lines for leaks. Turn on your gas supply and use the following information to set the gas pressures for the leak test.

- Set the carrier gas pressure to approximately 50 kPa (7 psi) higher than the maximum pressure of the GC regulator.
- Set the detector gas pressures to approximately 350 kPa (50 psi).
- Next you need to check all Swagelok ® fittings for leaks. Use the following procedure to check the fittings for leaks:
- 1. Use the handheld electronic leak detector compatible with the carrier gas in use to check each fitting for leaks.
- 2. If you detect a leak, tighten the connection and retest it.
- 3. Repeat this process until all Swagelok[®] connections are leak free.

WARNING! Do not use liquid soap leaks sensor for leaks. Liquid soap leaks sensor contaminates your system.

A mixture of 50% $H_2O/50\%$ methanol or isopropyl alcohol may be used as a liquid leak detector. Never use liquid leak detectors on or around electronic pneumatic circuits.

Getting Connected

This chapter explains the FOCUS GC power connections, and helps you mount and configure peripheral devices and data systems.

Chapter at a Glance...

Mounting Peripheral Devices	66
System Power Up	69

Mounting Peripheral Devices

If you plan to use any peripheral devices with your GC, such as an autosampler or data system, you will need to unpack them and follow any setup instructions included with them. Follow the instructions in the sections below to connect your peripheral devices to the GC.

Connect the Data System Computer

There are two types of information transfer techniques between the FOCUS GC and the computer: digital and analog. Use the following procedure to connect your data system computer to the GC for digital transfer:

- 1. Connect the computer, monitor, keyboard, mouse, printer (if applicable), and network connection (if applicable) according to the instructions in the accompanying documentation.
- 2. Plug in the computer, monitor, and printer power cables.
- 3. Connect the RS232 cable supplied with the data system to one of the COM ports of you computer, taking note of which port you use. You will need this information for software configuration.
- 4. Connect the other end of the cable to the port on the rear of the GC labeled COMPUTER.
- 5. Turn on the GC (if it is not already on), the computer, the monitor, and the printer. Check the time, date, and monitor settings.
- 6. Test the printer and network connections and install drivers as necessary.

Refer to your data system's operating manual for instructions on configuring your data system and using it to control GC functions and process information from the GC.

Connect the Autosampler Cable

You can connect an TriPlus or AI/AS 3000 autosampler to the FOCUS GC. Use the following scheme to connect the autosampler cables to the GC:

To connect the TriPlus sampler, please refer to the TriPlus Operating Manual.

If the GC and autosampler are on, the GC will automatically recognize the autosampler. Refer to the autosampler operating manual for instructions on mounting the autosampler turret and tray on top of the GC, and for configuration instructions.

Computing Integrators

Setup your integrator and connect it to a power supply according to the manufacturer's instructions. Each FOCUS GC comes with shielded two-conductor cables for each detector analog output, and a remote ready inhibit, start, and stop cable (handshake cable). The two-conductor cables consist of a blue positive wire, a white negative wire, and a shield wire. The handshake cable has a DIN connector on one end (for connection to the rear panel of the GC), and leads on the other (for connection to the integrator).

The blue positive (+) and white negative (-) wires of the two-conductor cable connect the detector output and the integrator. Figure 5-1 shows the cable connections.

Figure 5-1. Integrator Cable Connections

Refer to your integrator's operating manual for instructions on using the integrator to process information from the GC.

System Power Up

By now your lab should be equipped with the proper power supply and outlets as described in *Power Requirements* in Chapter 1, *Laboratory Preparation*. You also should have completed the gas supply plumbing procedure, as described in Chapter 4, *Plumbing the Gas Supply to the GC*.

If you have not already done so, connect the power cord to the GC. Plug the power cord into the appropriate power outlet. The power switch is located on the back side of the GC. Flip the switch to the ON position.

If the detectors are not already installed on your FOCUS GC, you will need to install them now. Refer to the *FOCUS GC Instruction Manual* for more information about installing detector.

You will need to install a column in the GC. Refer to the *FOCUS GC Instruction Manual* for more information about installing columns.

For system test information, refer to the *FOCUS GC Instruction Manual*, and to the user manuals of any accessories you have connected to your FOCUS GC system.

Chapter 5 Getting Connected

Preinstallation Checklist

This appendix contains a step-by-step list of items you should complete before your FOCUS GC arrives. Please complete the checklist after reading the <i>Site</i> <i>Preparation</i> section. This will ensure that your site is suitable for the installation of your new FOCUS GC. Please contact a Thermo Fisher Scientific Customer Support Engineer (CSE) if you encounter any difficulties preparing your site for installation.
Ensure that entrances and hallways are at least 92 cm (37 in.) across.
Ensure that your workbench space is at least $1.5 \text{ m} (4.5 \text{ ft})$ across and can support a 75 kg (170 lb) load.
Ensure that the instruments can be placed on surfaces that do not vibrate.
Ensure that your work area has proper lighting.
Provide an acceptable power source for your FOCUS GC system.
Provide a wall outlet configuration that meets specifications.
Ensure that the temperature in your laboratory is between 15 and 35 $^{\circ}$ C (65 and 95 $^{\circ}$ F).
Ensure that the relative humidity level in your laboratory is between 40 and 80%, with no condensation.
Ensure that the air in your laboratory is free of excessive dust, smoke, or other particulate matter.

Appendix A Preinstallation Checklist

Ensure that your system is free of electrostatic discharge.

- Provide an adequate exhaust system.
- Ensure that you meet appropriate gas line requirements.
- Install a telephone near your system.

FOCUS GC *Preinstallation Checklist* to the appropriate Thermo Fisher Scientific office.

You can refer to Appendix B, *Customer Communication*, to select the Thermo Fisher Scientific office nearest you.
B

Customer Communication

Thermo Fisher Scientific provides comprehensive technical assistance worldwide and is dedicated to the quality of our customer relationships and services.

This appendix also contains a one-page *Reader Survey*. Use this survey to give us feedback on this manual and help us improve the quality of our documentation.

How To Contact Us

Use http://www.thermo.com/com/cda/resources/resource_detail/1,,12512,00.html address for products information.

Use http://www.gc-gcms-customersupport.com/WebPage/Share/Default.aspx address to contact your local Thermo Fisher Scientific office or affiliate GC-GC/ MS Customer Support.

Reader Survey

Product:FOCUS GCManual:Site Preparation and Installation ManualPart No.:317 094 11

Please help us improve the quality of our documentation by completing and returning this survey. Circle one number for each of the statements below.

	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree
The manual is well organized.	1	2	3	4	5
The manual is clearly written.	1	2	3	4	5
The manual contains all the information I need.	1	2	3	4	5
The instructions are easy to follow.	1	2	3	4	5
The instructions are complete.	1	2	3	4	5
The technical information is easy to understand.	1	2	3	4	5
Examples of operation are clear and useful.	1	2	3	4	5
The figures are helpful.	1	2	3	4	5
I was able to install the system using this manual.	1	2	3	4	5

If you would like to make additional comments, please do. (Attach additional sheets if necessary.)

Fax or mail this form to: Thermo Fisher Scientific S.p.A. Strada Rivoltana km 4 20090 Rodano (MI) ITALY Fax: 39 02 95059388 This glossary lists and defines terms used in this guide. Included are abbreviations, acronyms, metric prefixes, and symbols.

Α	
А	ampere
ac	alternating current
ADC	analog-to-digital converter
В	
b	bit
В	byte (8 b)
baud rate	data transmission speed in events per second
C	
°C	Celsius
CIP	Carriage and Insurance Paid To
cm	centimeter
CPU	central processing unit (of a computer)
CSE	Customer Service Engineer
D	
d	depth
DAC	digital-to-analog converter
dc	direct current
DS	data system

Glossary

E	
ECD	Electron Capture Detector
EMC	electromagnetic compatibility
ESD	electrostatic discharge
F	
°F	Fahrenheit
FID	Flame Ionization Detector
FOB	Free on Board
FPD	Flame Photometric Detector
ft	foot
G	
g	gram
GC	gas chromatograph
GND	electrical ground
Н	
h	height
h	hour
harmonic distortion	A high-frequency disturbance that appears as distortion of the fundamental sine wave
HV	high voltage
Hz	hertz (cycles per second)

Glossary

I	
IEC	International Electrotechnical Commission
impulse	See transient
in.	inch
I/O	input/output
К	
k	kilo (10 ³ or 1024)
Κ	Kelvin
kg	kilogram
kPa	kilopascal
L	
l	length
L	liter
LAN	Local Area Network
lb	pound
LED	light-emitting diode
Μ	
m	meter (or milli [10 ⁻³])
М	mega (10 ⁶)
μ	micro (10 ⁻⁶)
min	minute
mL	milliliter
mm	millimeter

Glossary

m/z	mass-to-charge ratio
Ν	
n	nano (10 ⁻⁹)
NPD	Nitrogen Phosphorous Detector
0	
Ω	ohm
Р	
p	pico (10^{-12})
Pa	pascal
РСВ	printed circuit board
PID	Photo Ionization Detector
PN	part number
PPKD	Purged Packed Column Injector
psi	pounds per square inch
R	
RAM	random access memory
RF	radio frequency
ROM	read-only memory
RS-232	industry standard for serial communications

S

S	second
sag	See <i>surge</i>
slow average	A gradual, long-term change in average RMS voltage level, with typical durations greater than 2 s
surge	A sudden change in average RMS voltage level, with typical duration between 50 μs and 2 s
т	
TCD	Thermal Conductivity Detector
transient	A brief voltage surge of up to several thousand volts, with a duration of less than 50 μs
V	
V	volt
V ac	volts, alternating current
V dc	volts, direct current
VGA	Video Graphics Array
W	
W	width
W	Watt

Index

A

Air purity 34 Air conditioning humidity 29 particulate matter 30 temperature 28 user's responsibility 27 Altitude 29 Ammonia carrier gases 34 Autosamplers heat output 28 weight 22

С

Capillary columns gases 32 Carrier gases 32 ammonia 34 CGA fittings 35 ChromCard minimum requirements hardware 40 operating system 40 ChromQuest minimum requirements hardware 39 operating system 39 Computer heat output 28 power 26 weight 22 CSE installation 43 Customer service 73

D

Data System ChromCard 40 ChromQuest 39 minimum requirements 39 Detector Manifold Gas Connections 60 Detectors gases 32 Doorways 20 Dust 30

Ε

Electrostatic discharge 30 Elevators entrance 20 Equipment required 37 supplemental 38 Ex-works. See *Shipping*, *origin*.

F

FID External Detector Gases Flow Regulation 61 gases capillary and wide-bore columns 32 Floors vibration 30 Flushing gas lines 36 Freight insurance 42 Frequency power 23 Fuel gases 32

G

Gas lines 35 fittings 36 requirements 36 Gas Sampling Valve Servo Air Connection 63 Gas Supply Connection to the GC **FID-External Detectors** 59 TCD 59 Gases carrier 32 detectors 32 fuel 32 gas lines 35, 36 pre-cleaned tubing 36 requirements 36

gas tanks 35 storage 35 make up 32 plumbing basics 49, 50, 52 cutting tubing 49 Swagelok fittings 50 Swagelok tees and crosses 52 Teflon tape 49 purity 32–?? air 34 helium 34 hydrogen 34 nitrogen 34 recommendations 32 regulators 34 secondary 35 supplies 32–?? traps 33 hydrocarbon 33 moisture 33 oxygen 33 water background 33 Ground 23

Н

Hardware minimum requirements 39 Harmonics 24 Heat output autosamplers 28 computer 28 monitor 28 optional instruments 28 printers 28 TRACE GC 28 Helium purity 34 Humidity low/high 29 static discharge 29 Hydrocarbon traps 33 Hydrogen purity 34 sensor 32 warning 32

I

Inlet Manifold Gas Connection 59 Installation 43 Customer Service Engineer 43 equipment required 37 supplemental 38 purchase option 43 Installation kit replacement of consumables 38 Instrument arrival 41 freight insurance 42

L

Laboratory entrance shipping container 20 Lighting 30

Μ

Minimum dimensions entrance 20 Minimum requirements hardware 39 Moisture traps 33

Ν

Nitrogen purity 34

0

Operating environment user's responsibility 27 Optional instruments heat output 28 power requirements 26 Overvoltage category 24 Oxygen traps 33

Ρ

Particulate matter 30 Plugs international 25 USA 25 Plumbing

Layout Example 56 Plumbing gases cutting tubing 49 Swagelok fittings 50 Swagelok tees and crosses 52 Teflon tape 49 Pollution 31 Power 120 V ac 23 230 V ac 23 current requirements optional instruments 26 printers 26 standard system 26 frequency 23 harmonics 24 quality of 23 sags and surges 24 slow average 24 technical assistance 27 transients or impulses 24 voltage disturbances 23 wall outlets 24 Power supply UPS 25 Printers heat output 28 power 26 weights 22

R

Regulators 34 Required tools 37

S

Sags 24 Secondary gas regulators 35 Setting up the instrument 48 Shipping 41 container 20 damage 42 destination 42 origin 41 Site preparation preinstallation checklist 47 user's responsibility 20 verifying 47 Slow average 24 Solvent in gas lines 36 Static discharge See *Electrostatic discharge* Supplemental equipment 38 Surges 24 Swagelok fittings 50 Swagelok tees and crosses 52

т

TCD Detector Gases Flow Regulation 62 Gases Capillary and Wide-Bore Columns 32 Packed Columns 32 Technical assistance line power problems 27 See also Customer service Teflon tape 49 Telephone 37 support 37 Temperature air conditioning 28 laboratory, optimum 27 See also Heat output system reliability 27 Tools 37 Training 44 Transients or impulses 24 Tubing cutter 49

U

unpacking 47 UPS power supply 25 User's responsibilities air conditioning 27 operating environment 27 quality of power 27 spares 38

Index

V

Vibration 30 Voltage disturbances harmonics 24 sags and surges 24 slow average 24 transients or impulses 24 Voltages 120 V ac 23 230 V ac 23 USA 23 Worldwide 23

W

Wall outlets GC connections 26 Weights computer 22 optional instruments 22 printers 22 TRACE system 22 Wide-bore columns gases 32 Workbench 22

Figures

NEMA 5-20P and 5-15P Power Plugs and Outlets: 120 V ac	25
Shuco 230 V ac Power Plugs and Outlets	25
Dual-Stage Gas Regulator	
Swagelok Ferrule and Nut Assembly	
Swagelok and Inlet Connection	
Tightening Swagelok Fittings	51
Example of Plumbing Layout	56
Gas Trap Order	
Inlet Manifold and Detector Manifold Gas Supply Connections	59
FID-External Detector Gases Flow Regulation	61
TCD Detector Gases Flow Regulation	
Gas Sampling Valve Servo Air Connection	63
Integrator Cable Connections	
	 NEMA 5-20P and 5-15P Power Plugs and Outlets: 120 V ac Shuco 230 V ac Power Plugs and Outlets Dual-Stage Gas Regulator Swagelok Ferrule and Nut Assembly Swagelok and Inlet Connection Tightening Swagelok Fittings Example of Plumbing Layout Gas Trap Order Inlet Manifold and Detector Manifold Gas Supply Connections FID-External Detector Gases Flow Regulation TCD Detector Gases Flow Regulation Gas Sampling Valve Servo Air Connection

Tables

Table 1-1.	Minimum Space and Mass Requirements: FOCUS GC Standard System	22
Table 1-2.	Space and Mass Requirements: FOCUS GC Optional Instruments	22
Table 1-3.	Maximum Current Requirements for the FOCUS GC Standard System	
Table 1-4.	Maximum Current Requirements for FOCUS GC Optional Instruments	
Table 1-5.	Heat Output: FOCUS GC Standard System	
Table 1-6.	Heat Output: FOCUS GC Optional Instruments	
Table 1-7.	Capillary and Wide-Bore Column Gas Recommendations	
Table 1-8.	Packed Column Gas Recommendations	